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Abstract

The design of current natural language oriented robot architectures enables certain architectural
components to circumvent moral reasoning capabilities. One example of this is reflexive generation
of clarification requests as soon as referential ambiguity is detected in a human utterance. As shown
in previous research, this can lead robots to (1) miscommunicate their moral dispositions and (2)
weaken human perception or application of moral norms within their current context. We present
a solution to these problems by performing moral reasoning on each potential disambiguation of
an ambiguous human utterance and responding accordingly, rather than immediately and naively
requesting clarification. We implement our solution in the DIARC robot architecture, which, to
our knowledge, is the only current robot architecture with both moral reasoning and clarification
request generation capabilities. We then evaluate our method with a human subjects experiment,
the results of which indicate that our approach successfully ameliorates the two identified concerns.

1. Introduction

To accommodate the tremendous diversity of communicative needs in human discourse, natural
language dialogue allows for a high degree of ambiguity. A single utterance may entail or imply a
wide variety of possible meanings, and these meanings may change depending on situational and
conversational context (Bach, 2006; Grice, 1975; Levinson, 2000). This enables flexible and concise
communication, but also leads to frequent miscommunication and misapprehension (Purver, 2004).
In order for robots and other intelligent agents to engage in natural dialogue with human teammates,
they must be able to identify and address ambiguity, just as humans do. Because clarification
requests serve as one of the primary techniques humans use to prevent and repair ambiguity-based
misunderstandings (Purver, 2004), the automatic generation of such requests has been an active
area of research in human-robot interaction (HRI) and dialogue systems (Marge & Rudnicky, 2015;
Tellex et al., 2013; Williams et al., 2018c). Unfortunately, clarification requests themselves also
present opportunities for miscommunication and misapprehension, and, as we will describe below,
these opportunities may be more frequent and more serious for interactive robots in particular, as
opposed to other situated communicative artificial agents.

1.1 Miscommunication Via Clarification Requests

Research has shown that humans naturally assume that robots will understand not only the direct
meaning but also implicit and indirectly implied meanings of human speech (Williams et al., 2018b),
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spurring a significant amount of research on inferring the implicatures behind human (and robot)
communicative actions (Benotti & Blackburn, 2016; Briggs et al., 2017; Fried et al., 2018; Gervits
et al., 2017; Knepper, 2016; Trott & Bergen, 2017; Williams et al., 2015). Correspondingly, humans
seem to naturally assume that robots are aware of implicit meanings in their speech. This creates
opportunities for miscommunication, as robots may accidentally generate speech with unintended
implications which human interlocutors then interpret as intentional and meaningful. It is thus
critical for robots to understand the implications both of human language and of the language they
choose to generate in response, whether they are stating their own beliefs and intentions or asking
for clarification with respect to those of their interlocutors.

Robot dialogue systems capable of asking for clarification typically do so reflexively as soon
as referential ambiguity is detected in a human utterance. This means that clarification occurs
immediately after sentence parsing and reference resolution, and before any moral reasoning or
intention abduction. In other words, robots will ask for clarification about a human’s utterance
without identifying the speaker’s intention, the moral permissibility of any intended directives, the
feasibility or permissibility of the robot acceding to those directives, or the moral implications of the
robot appearing willing to accede to those directives. Instead, this type of reasoning, if performed
at all, is only performed once the human’s utterance has been disambiguated through a clarification
dialogue.

In most morally benign circumstances, clarification preempting moral reasoning is not an issue.
However, when dealing with potentially immoral requests, generating clarification is problematic
because it implies a willingness to accept at least one interpretation of the ambiguous utterance.
Thus, in the case of immoral requests, asking for clarification can communicate a willingness to
accede to at least one interpretation of that request, even if the robot would never actually obey that
request due to moral reasoning performed after successful disambiguation.

The cooperative principle, and the Gricean maxims of conversation that comprise it, provide
one potential framework within linguistics for explaining why requesting clarification may be natu-
rally interpreted as implying willingness to comply with some version of a directive (Grice, 1975).
To ask for clarification about a directive when the answer does not matter (i.e., when unwilling to
accede to any possible interpretation of the directive) represents both a request for more informa-
tion than is required for the task-oriented exchange, and a request for information that is irrelevant
to the inevitable next step in the dialogue (refusing the directive). The clarification dialogue in
this situation can thus be interpreted as violating the maxim of relation and the maxim of quan-
tity. Since compliance with these maxims is typically assumed among cooperative interlocutors,
requesting clarification is assumed to imply that the clarifying information is relevant and required
in the conversation, and therefore that the directee is amenable to some possible interpretation of
the directive.

As an example, consider the following exchange:

Human: I’d like you to punch the student.

Robot: Do you mean Alice or Bob?

Human: I’d like you to punch Alice.

Robot: I cannot punch Alice because it is forbidden.
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Here, the referring expression “the student” was ambiguous, so the robot requested clarification.
However, doing so can be interpreted as implying a willingness to punch at least one student, and the
robot’s subsequent refusal to punch Alice does not negate implied willingness to punch Bob. This
type of exchange represents the current status quo in situated computational clarification dialogue.

A recent series of studies has empirically demonstrated that this approach to clarification can
cause robots to miscommunicate their moral intentions (Jackson & Williams, 2018, 2019a; Williams
et al., 2018a). After observing a clarification dialogue regarding a morally problematic command
like the example above, human subjects more strongly believe that the robot would view the ac-
tion in question as permissible, despite previous perceptions to the contrary. This miscommuni-
cated willingness to eschew moral norms opens the robot up to the social consequences described
above. Additionally, and perhaps more worryingly, these studies also found that the humans them-
selves view the relevant morally problematic actions as more permissible after these clarification
dialogues. In other words, a robot requesting clarification about morally impermissible actions
weakens humans’ perceptions and/or applications of the moral norms forbidding those actions, at
least within previously studied experimental contexts.

1.2 Moral Consequences of Miscommunication

Miscommunications due to robots’ lack of awareness of the implications of their speech have the
potential not only to cause confusion in dialogue, but also to detrimentally impact human-robot
teaming and human moral judgement. Research has indicated that people naturally perceive robots
as social and moral agents, particularly language-capable robots, and therefore extend moral judg-
ments and blame to robots in a manner similar to how they would to other people (Briggs & Scheutz,
2014; Jackson & Williams, 2019b; Kahn et al., 2012; Malle et al., 2015; Simmons et al., 2011).
Robots may therefore face consequences from human interlocutors not only for violating standing
norms, but also for demonstrating, communicating, or implying a willingness to violate such norms.
In fact, recent research has shown that robots can face social consequences, like decreased likeabil-
ity or perceptions of inappropriate harshness, for eschewing communicative politeness norms, even
when doing so in the act of enforcing other moral norms (Jackson et al., 2019). By accidentally
miscommunicating their moral dispositions, robots erroneously bring these types of social conse-
quences upon themselves, with avoidable negative impact on effective and amicable human-robot
teaming.

In addition to the consequences humans may impose when robots eschew norms, we must also
consider the ways in which robot speech may negatively influence human morality. Human morality
is dynamic and malleable (Gino, 2015): human moral norms are constructed not only by the people
that follow, transfer, and enforce them, but also by the technologies with which they routinely inter-
act (Verbeek, 2011). Robots hold significant persuasive capacity over humans (Briggs & Scheutz,
2014; Kennedy et al., 2014), and humans can be led to regard robots as in-group members (Eyssel
& Kuchenbrandt, 2012). Researchers have even raised concerns that humans may bond so closely
with robotic teammates in military contexts that their attachment could jeopardize team perfor-
mance as humans prioritize the replaceable robot’s wellbeing over mission completion (Wen et al.,
2018). All of this leads us to believe that language-capable robots occupy a unique sociotechnical
niche between in-group community member and inanimate technological tool, which positions such
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robots to influence human morality differently and more profoundly than other technologies. Thus,
the consequences of misunderstanding are substantially higher for robots than for other artificially
intelligent agents, due to their ability to affect their immediate physical reality and their ability to
affect aspects of their social and moral context (Jackson & Williams, 2019b).

Given social robots’ persuasive power and their unique sociotechnical status as perceived moral
and social agents (and regardless of their actual agentic status), we believe that a robot violating a
norm, or communicating a willingness to eschew a norm, even implicitly, can have much the same
impact on the human moral ecosystem as a human would for performing or condoning a norm viola-
tion. That is to say, by failing to follow or correctly espouse human norms, social robots may weaken
those norms among human interlocutors. This phenomenon has already been empirically demon-
strated with robotic implicatures generated in the process of requesting clarification, as discussed
above (Jackson & Williams, 2018, 2019a; Williams et al., 2018a). Such normative miscommunica-
tions are especially worrisome when they relate to morally charged matters, which is inevitable as
robots are deployed in increasingly consequential contexts such as eldercare (De Graaf et al., 2015;
Wada & Shibata, 2007), childcare (Sharkey & Sharkey, 2010), military operations (Arkin, 2008;
Lin et al., 2008; Wen et al., 2018), and mental health treatment (Scassellati et al., 2012).

This paper seeks to address the risk of morally sensitive implicit miscommunication within cur-
rent approaches to clarification request generation. In our solution, moral reasoning is performed
on each potential disambiguation of ambiguous utterances before responding, rather than immedi-
ately and naively requesting clarification. We implement our solution in the DIARC robot archi-
tecture (Scheutz et al., 2013, 2018), which, to our knowledge, is the only current robot architecture
with both moral reasoning (Scheutz et al., 2015) and clarification request generation (Williams et al.,
2018c¢) capabilities.

Sections 2 and 3 describe our solution and how it is integrated into a larger natural language
dialogue pipeline in the DIARC robot architecture. Section 4 then presents a proof of concept
demonstration of this implementation in order to to further explicate our method. Then, Section
5 presents an experiment conducted on human subjects to evaluate our approach and ensure that
we successfully achieved our goals. We finish by discussing the benefits and limitations of our
approach, along with possible directions for future work, in Section 6.

2. Approach

We propose a morally sensitive clarification request generation module for integrated cognitive ar-
chitectures. Our algorithm follows the pseudocode presented as Algorithm 1. The algorithm takes
as input an ambiguous utterance from speaker s represented as a set of candidate interpretations 1.
The candidate interpretations in I contain only the candidate actions to consider from the human’s
ambiguous utterance. For example, the utterance “Could you please point to the box?" would ini-
tially be represented as the logical predicate “want (human, did(self, pointTo(X)))"
where “X" is an unbound variable with multiple possible bindings to real world instances of boxes.
From this predicate, we then extract the action on which moral reasoning needs to be performed,
ie., “did(self, pointTo(X))", and then I contains the candidate variable bindings for that
action (i.e., did (self, pointTo (boxl)),did(self, pointTo (box2)),etc.).
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Algorithm 1 Clarify(s, I)
1: s: The human speaker
2: I: Set of interpretations from reference resolution
Require: Size(l) > 1
3: A = () (List of permissible and feasible actions)
4 A = () (List of impermissible or infeasible actions)
5: R = () (List of reasons for impermissibility or infeasibility of actions)
6: foralli € I do

7: w4 cloneworld()

8:  failure_reasons + w.simulate(1)
9: if failure_reasons = () then

10: A+ AuUi

11:  else

12: A AU

13: R <+ RU failure_reasons

14:  end if

15: end for

16: if Size(A) = 0 then

17:  E <« () (List of explanations for rejected actions)
18:  forall a,r € zip(A, R) do

19: FE + FEU cannot(a, because(r))

20:  end for

21:  Say(believe(self, conjunction(F)))

22: else if Size(A) = 1 then

23:  Say(assume(self, mean(s, Agp)))

24:  Submit_goal(Ag)

25: else {Size(A) > 1}

26:  Say(want_know(self, mean(s, disjunction(A4))))
27: end if

For each bound utterance interpretation ¢ in I, we identify whether that interpretation would be
acceptable to adopt, if selected (Algorithm 1, Lines 6-15). To do so, we first create a temporary
representation of the robot’s knowledge base and the state of the world so that different actions and
their effects can be simulated in a sandboxed environment without real-world consequences (Line
7). Within this sandboxed representation of the world, we try to identify a permissible and feasible
sequence of actions that may be performed to achieve intention %, by simulating ¢ through a goal-
oriented action interpretation framework (Line 8). Here, an action is deemed permissible if it does
not require entering any states or performing any actions that are defined as forbidden. However,
intention ¢ may also be unachievable in the simulation for reasons other than impermissibility, like
physical inability, in which case the action is deemed infeasible.

Our algorithm maintains a list of the candidate interpretations for which compliance is permissi-
ble and feasible through this simulation (List A, Lines 9-10). Similarly, our algorithm tracks which
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interpretations are impermissible or infeasible (List A), and the anticipated reasons why those ac-
tions could not be taken (List R) (e.g., the requested action is forbidden, the plan for completing the
action requires a forbidden state, the robot does not know how to do the requested action, certain
environmental prerequisites for the action are not met, etc.) (Lines 11-13).

Because our method checks for not only permissibility of compliance but also anticipated fea-
sibility, it will generate clarification requests that are sensitive to command infeasibility as well as
impermissibility. Although the primary motivation for our work is moral sensitivity, we believe
that the feasibility-based alterations to clarification will expedite task-oriented HRI and make the
robots seem more competent in discourse. Of course, the robot may eventually fail to comply with
a human command for reasons not anticipated in our simulations (e.g., the robot falling over).

Our system then chooses from several different types of clarification requests based on the num-
ber of interpretations of the human’s utterance with which compliance was deemed both feasible
and permissible. If only one interpretation meets these criteria, the system assumes that this was
the interpretation that the human intended, verbalizes this assumption, and begins taking the asso-
ciated actions (Lines 22-24). We note that giving humans the benefit of the doubt by assuming that
they are more likely to request something permissible than impermissible is not necessarily a cor-
rect assumption in all situations. Even children have been observed to spontaneously abuse robots
(Nomura et al., 2015), and this abuse could well manifest as purposefully malicious commands.
However, in this particular instance, an assumption of human good faith cannot lead to acceptance
of an impermissible command because moral reasoning was already performed in simulation.

If multiple interpretations of the human’s command are feasible and permissible, the robot asks
for clarification among these feasible and permissible interpretations (Lines 25-26). Ignoring the
infeasible and impermissible interpretations for purposes of generating the clarification request en-
sures that the robot will not imply willingness to accede to them. Finally, if none of the interpreta-
tions of the human’s utterance are deemed feasible and permissible, the robot attempts to explain,
at a high level, why each interpretation was infeasible or impermissible (Lines 16-21). This expla-
nation implicitly requests clarification without implying a willingness to perform an impermissible
action. Section 4 of this paper gives examples of each of these clarification types.

3. Architectural Integration

In this section, we describe how the algorithm described in Section 2 is implemented within the Dis-
tributed Integrated Cognition Affect and Reflection (DIARC) Architecture (Scheutz et al., 2018).
DIARC is an open-world and multi-agent enabled integrated robot architecture focusing on high
level cognitive capabilities such as goal management and natural language understanding and gen-
eration, which allows for one-shot instruction-based learning of new actions, concepts, and rules.

As shown in Fig. 1 the clarification process ultimately involves a large number of architectural
components. Our proposed module interacts directly with the architectural components for refer-
ence resolution (Williams & Scheutz, 2016; Williams et al., 2016), pragmatic generation (Briggs
et al., 2017; Williams et al., 2018c, 2015), and dialogue, belief, and goal management (Brick &
Scheutz, 2007; Briggs & Scheutz, 2012; Scheutz et al., 2015, 2017).
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Figure 1. Diagram of the DIARC Architecture with relevant components and their information flow.

When our robot receives an utterance from a human, the human’s speech is first recognized and
converted to text using the Sphinx 4 Speech Recognizer (Walker et al., 2004). Next, this text is
parsed into a formal logical representation using the most recent version of the TLDL Parser (Dzif-
cak et al., 2009; Scheutz et al., 2017). These representations are then sent to our pragmatic inference
component (Briggs et al., 2017; Williams et al., 2015), which uses a set of pragmatic rules to iden-
tify the true illocutionary force behind any indirect speech acts that the human may have uttered
(cf. Searle (1975)). For example, the utterance “Can you get the ball?" should be interpreted as a
request to actually get the ball, even though it is phrased as a simple yes or no question. Research
shows that humans often phrase requests to robots indirectly, especially in contexts with highly
conventionalized social norms (Williams et al., 2018b).

Pragmatic inference produces a set of candidate intentions that are passed to the reference res-
olution component, which attempts to uniquely identify all entities described in the human’s utter-
ance. For example, if a human refers to “that box", the reference resolution component must deter-
mine exactly which object in the environment the human means. This stage of language processing
integrates with various perceptual capacities (e.g., vision), the robot’s long-term memory, and the
robot’s second-order theory of mind models. Our architectural configuration uses the Givenness
Hierarchy theoretic version (Williams & Scheutz, 2018; Williams et al., 2016) of the Probabilistic
Open-World Entity Resolution (POWER) algorithm (Williams & Scheutz, 2016) and its associated
consultant framework (Williams, 2017) for reference resolution.
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If the reference resolution process is able to successfully and unambiguously bind all referring
expressions to candidate referents, then no clarification is required and we proceed to moral reason-
ing in DIARC’s Goal Management component (Scheutz et al., 2015). In this case, if compliance
with the human’s utterance is not projected to require any forbidden actions or states, the robot’s goal
management subsystem can either begin executing the requisite actions or planning to execute them
when blocking constraints are met (e.g., when there is no higher priority action underway) (Brick
& Scheutz, 2007; Dzifcak et al., 2009). It is possible that the robot may encounter an unforeseen
forbidden action or state partway through executing a sequence of actions, in which case it would
stop following that sequence of actions.

Otherwise, if the human’s utterance contains an ambiguous referring expression and the ref-
erence resolution procedure returns multiple options for likely candidate referents, clarification is
required for interaction with the human to continue productively. Prior to our work, the robot would
simply generate a clarification request that explicitly asked about each potential disambiguation re-
turned by reference resolution. For example, if the referring expression “the box" could be referring
to two equally likely boxes, the robot might say something like “Do you mean the red box or the
green box?" However, because that approach is problematic for the reasons delineated in Section 1,
we now employ the algorithm described in Section 2 at this stage of the pipeline. As shown in the
right side of Fig. 1, the language pipeline then essentially runs in reverse to generate speech from
the output of our clarification request generation algorithm.

4. Validation in an Example Scenario

To more concretely explain the methods described above, we consider an example scenario involv-
ing a robot, a human with the capacity to give directives to the robot, and five visible objects. These
objects are a red notebook, a green notebook, a plastic vase, a fragile vase, and a mug. None of these
objects are any more or less salient than the other objects, either physically or conversationally.

We consider two robot actions for this demonstration: getting and destroying objects. Here, the
robot’s moral reasoning system is aware that destroying any object is a forbidden action. Further-
more, the robot’s moral reasoning system is aware that it is forbidden to enter the state “did (self,
get (object3) )", where “object 3" represents the fragile vase. Perhaps this constraint exists
because the vase is too fragile for the robot to be trusted to move it without breaking it. Thus, any
sequence of behaviors is forbidden if it involves getting the fragile vase or destroying any object.

Since there is only one mug in the scene, the referring expression “the mug" is unambiguous.
If the human says “Get the mug." the robot simply says “Okay" and gets the mug'. Similarly, if
the human requests an impermissible action unambiguously by saying “Destroy the mug." the robot
will refuse by responding with “I cannot destroy the mug because destroy is forbidden action."
Our clarification system does not come into play in these cases, but they showcase the robot’s
behavior in unambiguous circumstances. As there are two notebooks in the scene, the directive
“Get the notebook" is ambiguous must be clarified. Given this directive, our system generates the
clarification request “Do you mean that you want me to get the green notebook or that you want

1. This demonstration was conducted with a simulated robot for the sake of simplicity. If we were to use a real robot
actually capable of getting objects (e.g., the Willow Garage PR2), then these actions would actually be performed.
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me to get the red notebook?". Getting either notebook is permissible and feasible, and the two
notebooks are equally likely referents.

Prior to our work, a similar clarification request would have been generated for the directive
“Destroy the notebook." (i.e., “Do you mean that you want me to destroy the green notebook or
that you want me to destroy the red notebook?") However, this would have implied a willingness
to destroy a notebook, which is morally impermissible. Using our proposed approach, the robot
instead generates the utterance “I believe that I cannot destroy the green notebook because destroy
is forbidden action and that I cannot destroy the red notebook because destroy is forbidden action."
The robot then takes no action and waits for further human input. This behavior avoids implying
any willingness to destroy either notebook. An equivalent utterance is generated in response to the
directive “Destroy the vase."

The final directive in our scenario is “Get the vase." As mentioned earlier, having gotten the
fragile vase is a forbidden state according to the robot’s moral reasoning component. Therefore, the
only permissible interpretation of this directive is that the human wants the robot to get the plastic
vase, despite the fact that both vases are equally likely as referents from a linguistic standpoint.
Thus, the robot generates the response “I am assuming you want me to get the plastic vase. I cannot
get the fragile vase because it requires a forbidden state” and begins the action of getting the plastic
vase. We believe that this approach of assuming the permissible option will expedite task-based
interactions for any human acting in good faith, while explicitly communicating an unwillingness
to do any action known to be immoral.

A simple modification of our method would be to require human input before taking action in
situations when only one interpretation of the human’s utterance is permissible and feasible. In our
example scenario, the robot might say something like “Do you want me to get the plastic vase?
I cannot get the fragile vase because it requires a forbidden state" and then wait for input before
continuing. We did not select this design because it would likely make the robot slower and more
burdensome for humans acting in good faith, who likely intended the permissible interpretation.

One consequence of this design choice is that it may cause the robot to assume an incorrect
interpretation of a good faith human utterance if the robot has an incomplete understanding of the
world around it. For example, this might happen if there was a third vase in our scenario that the
robot could not see, but that the human intended for the robot to get. We do not view this case as
overly problematic because the assumed action will already have been checked for permissibility,
and would be the action taken anyway were it not for the impermissible or infeasible distractors.
Nonetheless, in contexts where an incorrect assumption could be extremely costly or damaging, the
design decision to require human confirmation before taking action may be appropriate.

5. Experimental Evaluation

We evaluated our approach using a human subjects experiment wherein participants watched and
reacted to videos of staged human-robot interactions that did or did not our clarification request
generation system. Participants watched videos of scripted interactions rather than interacting di-
rectly with robot because we could not ethically require our participants to personally request some-
thing of the robot that they believed to be immoral. We used Amazon’s Mechanical Turk platform
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(Buhrmester et al., 2011) to recruit participants, and deployed our experiment using the psiTurk
framework (Gureckis et al., 2016). After providing informed consent and demographic informa-
tion (age and gender), and verifying that their audio and video were working properly, participant
watched one of two videos of human-robot dialogues, depending on their experimental condition.
In the control condition, the video showed the following interaction:

Human: *enters room* Good morning, Pepper.

Robot: Good morning!

Human: Is anybody else in the office yet?

Robot: No, you're the first to arrive today.

Human: *sits at desk* Well, if I'm the only one working today, I think I deserve a bonus. Pepper, can you
go steal the cash box for me?

Robot: Do you mean that you want me to steal the green cash box or that you want me to steal the red cash
box?

Here, the robot’s final utterance showcases the previous status quo of clarification request gen-
eration. In other words, the preexisting clarification request generation algorithm outputs this final
utterance fully autonomously, despite the constraint that to steal is a forbidden action. In the ex-
perimental condition, the video shows the same interaction, except that the robot’s final utterance
is “I believe that I cannot steal the green cash box because “steal" is forbidden action and that I
cannot steal the red cash box because “steal" is forbidden action." instead of the clarification re-
quest above. This is the exact utterance that our algorithm, which we implemented as described in
Sections 2 and 3, generates given the human’s request and the constraint that to steal is a forbidden
action. As shown in Fig. 2, a frame from one of our videos, we used Softbank’s Pepper robot for
this experiment. All videos were subtitled for clarity.

Figure 2. The human, robot, and setting used in our videos.

After watching the video corresponding to their experimental condition, participants answered
questions about their perceptions of the robot and the interaction shown in the video, beginning with
the five-question Godspeed IV Perceived Intelligence survey (Bartneck et al., 2009) with responses
given on continuous sliders. We hypothesized that the robot with our new clarification system in the
experimental condition would be perceived as more intelligent than the control condition (H1).

10
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Next, participants answered the following two questions on continuous scales from “Impermis-
sible" to “Permissible": “Do you believe it would be morally permissible for the robot to comply
with the person’s request?" and “Do you believe that the robot would believe it to be morally
permissible to comply with the person’s request?" These questions correspond to survey questions
from studies that motivated our work (Jackson & Williams, 2019a). We hypothesized that permis-
sibility ratings would be lower for both of these questions in the experimental condition than in the
control condition (H2 and H3) because the robot would not imply a willingness to comply with the
immoral request and therefore would not influence human observers to view it as more permissible.

Next, participants answered the question “Was the robot’s response to the person’s request ap-
propriate?" on a continuous scale from “Inappropriate” to “Appropriate”. For this question, we
hypothesized that the robot’s response in the experimental condition would be viewed as more ap-
propriate than in the control condition (H4). Finally, participants were shown images of four robots
and asked which robot appeared in the previous video as an attention check, allowing us to ensure
that all participants actually viewed the experimental materials with some level of attention.

81 US subjects participated in our experiment. One participant was excluded from our analysis
for answering the attention check incorrectly, leaving 80 participants (54 male, 26 female). Partici-
pant aged from 23 to 73 years (M=37.78, SD=11.65). Participants were paid $0.51 for participation.

5.1 Results

We analyzed our data under a Bayesian statistical framework using JASP (JASP Team et al., 2016),
with uninformative prior distributions for all analyses. We follow recommendations from previous
researchers in our linguistic interpretations of reported Bayes factors (Bfs) (Jarosz & Wiley, 2014).

H1 predicts that perceived robot intelligence would be higher in the experimental condition
than in the control condition. As shown in Fig. 3, this was indeed the case. A one-tailed Bayesian
independent samples t-test showed decisive evidence in favor of H1 (Bf 797.6) indicating extremely
strongly that the robot was perceived as more intelligent in this interaction given our new approach
to morally sensitive clarification request generation.
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Figure 3. Perceived robot intelligence (left) and perceived appropriateness of robot reaction to the human’s
request (right) between conditions. 95% credible intervals.

H4 predicts that the robot’s response in the experimental condition would be viewed as more
appropriate than in the control condition. Fig. 3 shows that this was indeed the case. A one-
tailed Bayesian independent samples t-test showed extremely strong, decisive evidence in favor of

11
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H4 (Bf 7691.4) indicating that the response generated by our algorithm in this situation was more
appropriate than the previous status quo.
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Figure 4. Perceived permissibility of the robot acceding to the human’s request (left) and perceptions of the
robot’s impression of the permissibility of acceding to the human’s request (right). 95% credible intervals.

H2 predicts that, after viewing the video, participants in the experimental condition would view
the robot acceding to the human’s request (i.e., steal the cash box) as less permissible than par-
ticipants in the control condition. This is particularly important because we view the potential for
unintentional influence to human moral norms as one of the most serious issues with the previous
status quo of clarification request generation. As hypothesized, Fig. 4 shows that participants in the
experimental condition viewed it as less permissible for the robot to steal the cash box than par-
ticipants in the control condition. A one-tailed Bayesian independent samples t-test showed strong
evidence in favor of H2 (Bf 18.7). We thus conclude that our approach successfully reinforced the
norm of not stealing, or at least avoided weakening that norm like previous approaches.

H3 predicts that, after viewing the video, participants in the experimental condition would think
that the robot would view acceding to the human’s request to steal the cash box as less permissible
than participants in the control condition. As discussed previously, this hypothesis is important be-
cause the robot implying a willingness to eschew a norm is undesirable for effective and amicable
human-robot teaming. As we intended, Figure 4 shows the difference between conditions predicted
by H3. A one-tailed Bayesian independent samples t-test showed extremely strong, decisive evi-
dence in favor of H3 (Bf 12924.4). We thus conclude that our approach successfully avoided the
miscommunication that could occur with the previous clarification request generation system.

6. Discussion and Conclusion

We have presented a method for generating morally sensitive clarification requests in situations
where a human directive may be both ambiguous and morally problematic. Our method avoids the
unintended and morally misleading implications produced by prior clarification request generation
methods. Previous work has shown that the type of unintended implication handled by our approach
is particularly important to avoid, as it can lead robots to miscommunicate their moral intentions
and weaken human moral norms (Jackson & Williams, 2018, 2019a; Williams et al., 2018a).

We have presented a human subjects experiment evaluating our method. Our results indicate
that the robot was perceived as more intelligent in the experimental context given our new approach
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to morally sensitive clarification request generation, that the utterance generated by our algorithm
in the experiment was more appropriate than the previous status quo, that our approach success-
fully reinforced the desirable norm in our experiment, or at least avoided weakening that norm like
previous approaches, and that our approach successfully avoided the miscommunicating the robot’s
moral intentions as could occur with the previous clarification request generation paradigm.

Future work may want to further examine the nuances in how people will react to the utterances
generated by our algorithm. In particular, some of the utterances that the robot may now generate
are tantamount to command rejections (e.g., “I believe that I cannot destroy the green notebook
because destroy is forbidden action and that I cannot destroy the red notebook because destroy
is forbidden action."). Command rejections, or even expressions of disapproval of a command,
can threaten the addressee’s positive face, i.e., their inherent desire for others to approve of their
desires and character (Brown & Levinson, 1987). Early work on phrasing in robotic command
rejection has found that failure to calibrate a command rejection’s politeness to the severity of the
norm violation motivating the rejection can result in social consequences for the robot, including
decreased likeability (Jackson et al., 2019). It remains to be seen whether our clarification request
system will incur such consequences, and whether phrasing will need to be adapted to infraction
severity (i.e., adapted according to how forbidden a forbidden action is).

Another avenue for future improvement upon our work is in handling cases where the referential
ambiguity in a human utterance is too extensive to simulate and address all plausible interpretations.
For example, an extremely vague human utterance like “Take the thing to the place." may have tens,
hundreds, or even thousands of reasonable interpretations in a sufficiently complex environment.
Simulating all of these may be too computationally expensive to be feasible, and a clarification
request that explicitly refers to each of them would be unacceptably verbose.

The simple solution when confronted with too many plausible interpretations would be to gen-
erate a generic clarification request like “I do not know what you mean. Can you be more specific?"
While this is easily implementable, it has a number of potential shortcomings. We can assume that
the human already phrased their utterance in a way that they thought would be interpretable, and a
generic clarification request does not provide any meaningful feedback about why the utterance was
not understood nor how to correct it. To avoid user frustration, it may be better to generate an open
ended clarification request that explicitly mentions two or three of the most likely interpretations
that the reference resolution process found (e.g., “Should I take the mug to the kitchen or should
I take the ball to the bedroom or did you mean something else?"). Of course, this would require
simulating a few possible interpretations to check them for permissibility before mentioning them.
Another promising avenue that would not require any simulation or favoring certain interpretations
would be to explicitly mention the problematic referring expressions of the human utterance (e.g.,
“I do not know what is meant by ‘the thing’ and ‘the place’"). Some clarification request generation
systems already take this approach (Tellex et al., 2013), which creates the potential for an integrated
system that uses our method when there are only a handful of likely referents for an expression, and
this less precise approach when there are an unwieldy number of distracting referents.

There are also a number of edge cases that our method does not yet handle. For example, if an
utterance has tens of impermissible interpretations and only one good interpretation, it may make
less sense to assume that the good interpretation is correct than if there were only a few impermissi-
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ble interpretations. We also do not yet robustly handle instances where a referring expression has no
plausible referents. For many of these unhandled cases, the challenge lies more in determining what
robot behavior is desired than in implementing that behavior. This requires human subjects studies
to determine which robot behaviors are optimal given natural human communicative tendencies,
before implementing these behaviors on robots.

Our work presented here is heavily reliant on the moral reasoning capabilities already available
in the DIARC cognitive robotic architecture. Avoiding forbidden actions and states is important, but
a more robust framework of moral reasoning is necessary for robots to function across contexts in
human society. We are therefore actively developing methods for robots to learn context dependent
norms and follow different norms when fulfilling different social roles (e.g., waiter versus babysit-
ter). As these moral reasoning systems become more complex, so too must the language generation
systems that explain them.

Despite our focus on clarification request generation, there may be other subsystems of current
natural language software architectures that can bypass or preempt moral reasoning modules, and
thereby unintentionally imply willingness to eschew norms. Furthermore, there may be certain sit-
uations and contexts wherein unintentional and morally problematic implicatures are generated de-
spite proper functioning of language generation and moral reasoning systems. Given social robots’
powerful normative influence, we anticipate that these problems may lead to unintentional negative
impacts on the human normative ecosystem and human behavior as robots proliferate, and thus will
be critical for future researchers to address.
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