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Abstract— As autonomous robots become integrated into
society, they must socially navigate around humans. We pro-
pose that effective social robot navigation relies on three key
principles: social norms, perceived safety, and legibility. Our
framework, Overlapping Social Navigation Principles, suggests
that the strength of each principle is influenced by the presence
of other principles. To test our framework, we implemented
SRN behaviors on an autonomous robot in a passing scenario
and conducted an online study where participants ranked
videos of different SRN behavior combinations. Our findings
show that incorporating all three principles enhances SRN, with
social norms having the greatest impact.

I. INTRODUCTION

Effective Social Robot Navigation (SRN) is essential for
robots to coexist with people. Yet, what makes a robot profi-
cient at social navigation? Initially, the focus was on design-
ing robots to avoid people as obstacles [1], [2], but it soon
became clear that effective SRN requires treating humans as
interactive agents, where a robot’s behavior influences human
experiences. In other words, “a socially navigating robot
acts and interacts with humans or other robots, achieving
its navigation goals while modifying its behavior so the
experience of agents around the robot is not degraded or
is even enhanced” [3]. Several principles — safety, comfort,
legibility, politeness, social competency, understanding other
agents, proactivity, and context-appropriate responses —
have been proposed to guide SRN development [3]. However,
the interaction of these principles and their collective impact
on SRN remains unclear. For example, if a robot says
“excuse me” while moving between people, this could be
interpreted as legibility, politeness, social competency, and
perhaps comfort. Moreover, a robot moving at unsafe speeds
might violate social norms, raising questions about which
factor most strongly affects SRN quality. The complexity
of these interactions complicates system development, and
researchers have called for more studies on SRN princi-
ples [4]. In response, we propose the Overlapping Social
Navigation Principles framework, hypothesizing that three
components—social norms, perceived safety, and legibility—
are of primary importance, with varying influence on each
other.

Bryce Ikeda is with the University of North Carolina at Chapel Hill,
Chapel Hill, NC 27599, USA bikeda@cs.unc.edu

Mark Higger is with Colorado School of Mines, Golden, CO 80401, USA
mhigger@mines.edu

Christina Soyoung Songa is with Illinois State University, Normal, IL
61761 , USA ssong13@ilstu.edu

J. Gregory Trafton is with the Naval Research Laboratory, Washington,
DC 20375, USA greg.j.trafton.civ@us.navy.mil

Social
Norms

Perceived
Safety

Legibility

Social Robot
Navigation

(a)

(b)

Fig. 1: We theorize that social norms, perceived safety, and
legibility are key factors in social robot navigation. Our
framework (a) shows these principles overlap, affecting each
other. To test this, participants watched four videos of a robot
navigating a hallway. The Ideal Pass video (b) shows the
robot following social norms, maintaining safe speed, and
using gestures for legibility.

Social Norms: When people pass each other in a hallway,
they typically follow culturally accepted passing etiquette.
Considering the human tendency to attribute human-like
qualities to robots, it is reasonable to expect that robots
follow similar social conventions [5]. In SRN, this has been
achieved by programming robots to follow social norms,
encompassing the established values, beliefs, attitudes, and
behaviors set by groups of people [6]. Previous research
has explored this concept in mobile robots by incorporating
proxemics [7], [8], [9], [10], [11] (i.e., the spatial distances
that people maintain in social situations [12]), social gaze
[8], human-preferred path plans [9], [13], [14], human-like
passing behavior [15], and acceptable robot speeds [16],
[10]. For instance, Senft et al., 2020 [15] conducted a study



that revealed humans prefer a robot exhibiting human-like
crossing behavior in a hallway over a robot that did not.
Fiore et al., 2013 [17] found that robots aligning with social
norms are perceived as possessing a greater social presence,
leading to positive interactions between people and robots
[18]. Furthermore, individuals tend to rate robots that adhere
to social norms as warmer [15], more predictable [19], and
safer [14], all of which collectively contribute to a positive
SRN experience for others. Considering the impact and broad
overlap of social norms on other principles of social robot
navigation, we propose it is one of the most important
guiding principles for SRN systems.

Perceived Safety: Another component of SRN is per-
ceived safety. When robots operate in close proximity to
humans, the robot must be physically safe. This requirement
has resulted in safety standards that provide guidance for the
development and operation of robots in human environments
[20], [21]. However, physical safety alone does not guarantee
that a robot will be perceived as safe. A study conducted by
Lasota and Shah, 2015 [22] demonstrated that a standard
robot that treated participants as obstacles was perceived
as less safe compared to a robot that maneuvered with an
awareness of people and their goals. This insight has led to
further research, indicating that perceived safety also varies
depending on the robot’s speed [23], [10], proximity [24],
physical features [25], [26], [27], legibility [13], body move-
ments [13], and direction of approach [28]. For instance, it
has been found that optimizing perceived safety involves both
ensuring physical safety in close proximity to participants
and adapting the robot’s speed according to participants
preferences [24]. Perceived safety has also been found to
overlap with comfort (safe robots engender more comfort)
[7], [11], [8], [9], legibility (robots telegraphing their future
actions are perceived as safer) [29], [30], understanding
other agents (performing unsafe actions away from people
is best) [24], and social norms as already discussed. Hence,
SRN systems should enhance peoples’ sense of safety by
exhibiting behaviors that align with individuals’ preferences
and by not appearing unsafe.

Legibility: A third component of our framework is the
concept of legibility, which refers to robot motion that allows
an observer to confidently infer a robot’s goal [31]. This
behavior helps a robot communicate its intentions to others
more effectively. In pursuit of understanding legible robot be-
haviors, researchers have incorporated lights [32], [33], [34],
[35], [36], projectors [37], [38], [36], gaze [39], [33], [30],
[17], and gestures [30]. Certain behaviors such as gestures
or deliberate body movements [40], [14], [17] typically build
upon the robot’s naturally existing capabilities. In contrast,
projectors or light fixtures are added features that give the
robot distinct communication abilities. The effectiveness of
each type of behavior can also vary. For example, Hart et
al., 2020 [29] found that gaze results in fewer navigational
conflicts than turn signal lights, while Angelopoulos et al.,
2022 [30] found that diectic gestures resulted in fewer
navigational conflicts than using gaze. Nevertheless, when
properly integrated, there is potential for better human-robot

collaboration [32], [34], higher levels of comfort [33], [40],
[38], and reduction in navigation conflicts [29], [30]. In
addition to the overlap between perceived safety, and social
norms, as previously discussed, legibility also interacts with
comfort [33], politeness [41], social competency [42], and
context [16], [43]. By effectively conveying intent, robots can
better facilitate interaction with humans, thereby advancing
SRN.

A core component of our framework is the proposition
that our three principles are interconnected (see Figure 1a).
A robot can enhance its legibility by following social norms
[44], and perceived safety can be enhanced by legible be-
havior [13]. Therefore, understanding how these principles
interact is crucial for improving SRN. Prior studies have
explored this question by integrating various combinations of
SRN principles onto a mobile robot, utilizing social norms,
safety, proxemics, legibility, or comfort [9], [45], [46], [10],
[47], [48], [49], [41], but lacked empirical evidence for the
effectiveness of these combinations. Pacchierotti et al., 2006
[50] designed a SRN system that encoded lateral distance,
speed, and signaling, showing their impact on perceptions of
SRN, though each specific contribution remain unclear [51],
[52]. Hence, our work aims to clarify how each principle
affects the others to better understand effective SRN.

Contributions: We introduce a novel framework called
Overlapping Social Navigation Principles, which hypothe-
sizes that social norms, perceived safety, and legibility are
key components of social navigation. It predicts that robots
integrating all three principles will be perceived as perform-
ing best and that overlaps in perceptions of these principles
will occur. To test this, we conducted an online study
comparing various combinations of these principles on an
autonomous robot. Our contributions are: (1) A foundational
framework for SRN systems, (2) The first study showing
that combining social norms, perceived safety, and legibility
is essential for effective SRN and their relative importance,
(3) An open-source SRN stack with validated behaviors for
each principle available at OSF for reproducing results or for
integrating with other navigation algorithms [53], [54], [55],
and (4) Three surveys measuring participant perceptions of
social norms, safety, and legibility, laying the groundwork
for future scale development.

II. ROBOT DESIGN

Our goal was to design algorithms that enable an au-
tonomous robot to exhibit social norms, perceived safety,
and legibility both individually and together. Initially, we
observed a robot’s standard behavior, which included nav-
igating down the middle path to optimize obstacle clearance
and minimize the distance to its goal [56], and maintaining
speeds between 0.381m/s and 0.6m/s [10], [52], [57], but
lacking clear legibility signals. 1 Using this as a baseline, we
implemented SRN behaviors to embody our three principles
directly on the robot. We utilized a Spot robot, a quadruped

1Note that previous researchers have used a robot walking towards the
right side as a legibility signal [51]; we decided to provide a more explicit
display of legibility, much like gaze or gesture as described earlier.
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with a 6 degree-of-freedom manipulator. Our framework con-
sists of two main Python components: the Boston Dynamics
Python interface and the social navigation module with A*
for path planning [58] and Pure Pursuit for path following
[59]. Rather than introducing new algorithms, we aimed to
empirically evaluate the relationships and impact of the three
principles. Thus, we present our algorithms to demonstrate
how this was achieved. An open-source code implementation
can be found at the following link OSF.

A. Social Norms

While numerous social norms are relevant in a social
navigation context, we chose to implement a widely recog-
nized and extensively explored social norm [60], [61], [43]:
walking on the culturally appropriate side of a corridor. In
our case, this meant walking on the right side of the hallway.

Algorithm 1 Social Norms

1: function GET SOCIAL COST(pr, pn, θh)
2: C3×3 ← Social Norm Cost Matrix
3: [dx, dy]← CalculateDifference(pr, pn)
4: [rdx

, rdy
]← ApplyRotation(dx, dy, θh)

5: [ix, iy]← TranslateToMatrixindices(rdx
, rdy

)
6: SNcost ← C3×3[ix][iy]
7: return SNcost

8: end function

We incorporated social norms into path planning by adding
a heuristic that favors the right side of the hallway, as
shown in Algorithm 1. The function uses the current A*
node position pr, neighbor node pn, and hallway orientation
θh (line 1). We define a social cost matrix C3×3 to guide
the planner right (line 2). We take the difference between
the current node and the neighbor node [dx, dy] (lines 3),
and transform it to align with the direction of the hallway
[rdx

, rdy
] (line 4). Then, we map the rotated values to

correspond to indices within the cost matrix (line 5), denoted
as [ix, iy], which is used to determine the cost associated with
moving to the neighbor node SNcost (line 6–7).

B. Perceived Safety

As with other principles, there are many possible methods
to manipulate perceived safety. Here we used a common
approach from the literature — manipulating the robot’s
speed [24], [10], [16], [47], [62], [63].

Algorithm 2 Safety

1: function PFC(odom, path, θh, Sw, is safe, is legible)
2: [xla, yla]← CalculateLookaheadPoint(path)
3: κpfc ← CalculateNearCurvature(odom, xla, yla)
4: Sw ← UpdateWalkingState(odom, path, θh, κpfc, Sw)
5: λ← ScaleAngularVelocity(Sw, is safe, is legible)
6: vt ← if is safe then vsafe else vunsafe
7: return [vt, vt · κpfc · λ]
8: end function

To ensure the robot’s physical safety, we used the Spot
robot’s built-in controller, which features five stereo cameras
with a four-meter obstacle detection range, allowing the robot
to automatically avoid obstacles. For perceived safety, we
implemented two speeds in the Path Following Controller
(PFC), as shown in Algorithm 2. The controller adjusts
speed from 0.5m/s (safe) to 1.3m/s (unsafe) based on the
safety flag is safe and legibility flag is legible (line 1). The
algorithm also utilizes the robot’s odometry odom, computed
path plan path, hallway frame rotation θh, and current
walking state Sw. In line 2, the lookahead point position
[xla, yla] is computed, which is passed to the next function
in line 3, for calculating the path curvature κpfc. In line
4, the robot’s walking state is updated, taking into account
the variables odom, path, θh, and Sw. The angular velocity
scaling factor λ is tuned for smooth trajectories, accounting
for the robot’s arm extension, movement speed, and turn
angle. Depending on the safety flag (line 6), the robot’s
target velocity vt is set to either vsafe or vunsafe. Finally,
the controller commands the robot with the calculated linear
and angular velocities (line 7).

C. Legibility

We explored various approaches to convey legibility dur-
ing navigation. However, because the robot’s morphology
resembled a dog lacking facial features, using gaze was not
a viable option. Moreover, prior work has demonstrated that
both gaze and light signals can be challenging to interpret
[29]. Thus, we chose a more effective and natural method
for legible behavior: gestures [30], [64], [65], [66].

Algorithm 3 Legibility

1: function UPDATEARM(odom, path, θh, κpfc, Sw)
2: θd ← Diff(θodom, θh)
3: if Sw ∈ {TIGHT TURN,MODERATE TURN} and

θd ≥ αs then
4: θh ← UpdateFrame(θh)
5: Sw ← STRAIGHTEN
6: Straighten arm towards forward direction
7: else
8: κm ← FarCurvature(d, steps, path)
9: if |κm| ≥ αm then

10: Sw ← TIGHT TURN
11: Gesture towards right of next hallway
12: end if
13: if Sw is WALK FORW. and |κpfc| ≥ αt then
14: Sw ← MODERATE TURN
15: Gesture towards middle of next hallway
16: end if
17: if Sw is STRAIGHTEN and |κpfc| ≤ αt then
18: Sw ←WALK FORW.
19: Gesture towards forward walking direction
20: end if
21: end if
22: return Sw

23: end function

https://osf.io/fy5u8/?view_only=3bb203a66ec547afb327187dd7f79f29


The robot showed legible behavior by using its arm to
gesture towards its intended walking path, the process by
which is detailed in Algorithm 3. In line 1, the robot’s
odometry odom, path plan path, hallway frame rotation θh,
immediate path curvature κpfc, and the current walking state
of the robot Sw is passed as input to the function. Next, if
the robot is turning and the difference between the current
heading θodom and the hallway frame rotation θh (line 2) is
greater than a threshold value αs (line 3), then the robot is
determined to have turned into the next hallway. Therefore,
the hallway frame is updated to signify the new hallway
direction (line 4). This also transitions the robot into the
STRAIGHTEN walking state (line 5), triggering the robot
to straighten its arm (line 6). Next (line 8), we compute the
future path curvature κm between a starting point positioned
at distance d ahead of the robot and two consecutive points
separated by a number of steps along the path segment.
When the curvature κm surpasses a predefined threshold αm

(line 9), indicating an upcoming turn, the robot’s walking
state Sw is updated to TIGHT TURN (line 10). This instructs
the robot to gesture towards the right side of the upcoming
hallway (line 11). In line 13, if the robot’s current walking
state is WALK FORWARD and the immediate path curvature
κpfc is greater than a predefined threshold αt, then the robot
transitions the current walking state to MODERATE TURN
(line 14). This state triggers the robot to gesture towards
the middle of the upcoming hallway. If the robot’s current
walking state is set to STRAIGHTEN and the immediate
path curvature κpfc falls below a set threshold αt (line 17),
then the robot has completed the straightening process. As
a result, the robot transitions the walking state to WALK
FORWARD (line 18), instructing the robot to gesture towards
the forward walking direction (line 19), and finally, returns
the current walking state Sw (line 22). To calibrate the
thresholds and arm movement speeds, we iteratively updated
the values until the robot could navigate smoothly through
each stage.

III. SCALE DESIGN

While there are many methods to measure social norms
[67], [68], [69], [70], perceived safety [71], [72], [73],
[74], [75], [76], [77], and legibility [78], [40], [79], no
established scales specifically address these perceptions in
the context of SRN. Existing scales for social norms, such
as acceptability [80], [81], [82], [47], [83], perceived social
intelligence [84], or social compliance [85], [86], [87], do
not capture perceptions during SRN. For perceived safety,
the Godspeed subscale [88], has poor reliability and includes
items that negatively load on the factor [89]. Alternative
scales like the Negative Attitudes towards Robots Scale
(NARS) [47], Robot Anxiety Scale (RAS) [82], or Robotic
Social Attributes Scale (RoSAS) [89] focus on anxiety and
discomfort, which are related but distinct constructs from
perceived safety. Legibility has been measured through the
time for participants to identify a robot’s goal based on
its arm motion [31] or other ad-hoc metrics [78], [40],
[79], none of which fully capture SRN-specific perceptions.

To address this gap, we developed our own measurement

Social Norms: When the robot was navigating I thought the robot was
. . .

following a similar path to others
taking social expectations into account while navigating the area
taking the route through the area in a usual way
following social conventions while walking
following typical paths while it was moving through the area

Perceived Safety: If I were a person in the video, I would feel . . .
anxious
likely to be harmed
in danger
afraid
unsafe

Legibility: When the robot was navigating I thought the robot’s intended
path was . . .

communicated
understandable
clear
predictable

TABLE I: Questionnaires for measuring people’s perceptions
of the robot’s social norms, safety, and legibility. Ratings
were from 1 (Strongly Disagree) to 6 (Strongly Agree).

scales (see Table I), inspired by prior work and adapted for
SRN. Each Likert-item was rated from 1 (Strongly Disagree)
to 6 (Strongly Agree). For perceived safety, our goal was
to assess how much people perceived the robot lacked in
safety. Therefore, higher levels of perceived safety indicate
the robot was perceived as less safe. We envision these
scales may serve as the first step towards fully validated
measurement tools for evaluating the perception of social
norms, safety, and legibility within the context of SRN.
To quantify reliability, we used α and ωtotal [90]. Our
scales were measured at a reliability of >= .85 (α and ω),
indicating strong results [91]. Thus, we consider our initially
designed scales to be suitable for reporting as a foundational
starting point for future researchers.

IV. EXPERIMENT

A. Method

1) Participants: A power analysis using the WebPower
package [92] in R for a repeated measures study with
four conditions was conducted. Our goal was to obtain
.8 power to detect a medium sized effect (f=.25) at 0.05
α error probability, resulting in 176 participants required
for this study. 200 online participants from CloudResearch
were recruited. 34 participants missed the attention check,
resulting in a total of 166 participants. All participants were
above the age of 18; the average age was 43.7 (SD=13).
There were 96 females, 69 males, and 1 person who preferred
not to answer.

2) Materials: To evaluate our framework, we simulated
a real-world scenario where a robot navigates a T-shaped
hallway intersection, often found in hospitals [93] or grocery
stores [94]. We designed a 1.5m wide hallway (see Figure
2), as per Americans With Disabilities Act (ADA) guidelines,
with a human starting 6.25m away and the robot 1.2m from
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Fig. 2: The layout of our navigation scenarios portrayed in
each video stimuli. All videos halt at the same location, and
the passerby follows the same walking path.

a blind corner. The robot rounds the corner while the human
approaches, leading to a head-on pass.

Videos: To illustrate our SRN scenario, we produced four
videos displaying different combinations of the principles
within our SRN framework The Ideal Pass video portrayed
a robot that adhered to all of our proposed principles:
followed social norms, behaved safely, and was legible (see
Figure 1b). In the other three videos, one SRN principle
was intentionally disabled. Each video was created using the
autonomous code described in the §II. Examples of each
video are available at the following link: OSF.

3) Procedure Design: We conducted a four way within-
participant experiment. Participants first provided demo-
graphic information, then watched two videos: one showing
people walking naturally on the right side of a hallway,
and the other showing the robot navigating a room while
gesturing toward where it was planning on going next. These
videos introduced participants to the hallway space and the
robot’s capabilities as if they had observed the robot before.
Next, participants saw each of the four SRN videos in a
random order. They were able to rewatch the videos if
they desired. After each video, participants were tasked with
providing a brief description of the video and filling out the
three scales (social norms, perceived safety, and legibility)
described in §III. For each participant, scales were randomly
presented but in a consistent order. Afterwards, participants
were asked to describe each video and rank the four videos
from the best navigation to the worst. Participants could
rewatch any of the videos or reference their brief video
descriptions. Finally, participants were asked to describe the
task and give an explanation of the study’s purpose.

B. Predictions

We had two primary predictions based on our Overlapping
Social Navigation Principles framework. First, we expected
that a robot adhering to all three of our SRN principles will
receive a higher SRN rank compared to a robot that disables
any one of our principles. Second, we expect that each
principle will have an impact on other factors: participants
may perceive a robot with poor legibility as also exhibiting

NoSocialNorms

NoSafety

NoLegibility

IdealPass

0 25 50 75 100
Percentage

Ranking 1 2 3 4

Fig. 3: Robots incorporating all three SRN principles consis-
tently achieve higher SRN rankings. The No Social Norms
condition was ranked worst, while No Legibility and No
Safety conditions showed no significant ranking difference.

lower levels of social norms when compared to an ideal
socially navigating robot.

C. Results

The reliability of each scale — social norms, perceived
safety, and legibility — were calculated using using α and
ωtotal from the psych package [90]. Each scale value was
calculated by averaging all items for the scale. Our scales
were measured at a reliability of >= .85 (α and ω), thus
indicating they are a strong initial starting point for future
development [91]. Results can be observed in Figure 3.

1) Ranking Data: Our goal was to assess if the Ideal
Pass condition was perceived as superior and to identify
any significant differences among the other conditions. We
examined this relationship using an ordinal mixed model
regression. Ordinal regression allows us to use an ordinal
dependent variable (ordinal data is assumed to violate nor-
mality assumptions because the distance between numbers is
not metric). A mixed model allows us to take into account
correlations between participants’ scores. We used an ordinal
mixed model to analyze the effects of the video (condition)
on the ranked order of navigation considering random vari-
ation across participants. The analysis was performed using
the R package ordinal [95]. We included the ranked order of
navigation (ordinal 1 – 4) as the dependent variable and the
categorical variable condition as the independent variable.
We included participant as a random-effect factor. We used
the R package emmeans [96] for pairwise comparisons.

Consistent with our hypothesis, participants rated the Ideal
Pass condition better than all the other conditions (all |β| >
1; all |z| > 5; all p < 0.001). The No Social Norms condition
was ranked worse than all other conditions (all |β| > .7; all
|z| > 3.5; all p < 0.005), and the No Legibility and No
Safety conditions were not ranked differently (|β| = .016,
|z| = .08, p > .98) (see Figure 3).

https://osf.io/fy5u8/?view_only=3bb203a66ec547afb327187dd7f79f29


2) Social Norms: Reliability analysis for the Social
Norms scale output an α of .95 and an ωtotal of .86. The
overall ANOVA results indicated a statistically significant
difference in mean Social Norms between at least two groups
(F (3, 495) = 143.2,MSE = 127.07, p < 0.001). Tukey
HSD Test revealed statistically significant differences for all
pairwise comparisons as seen in Table II.

Comparison t-Statistic p-value

No Social Norms vs. Ideal Pass t(495) = 19.371 p < 0.001
No Safety vs. Ideal Pass t(495) = 8.312 p < 0.001
No Legibility vs. Ideal Pass t(495) = 3.350 p < 0.005
No Social Norms vs. No Safety t(495) = 11.060 p < 0.001
No Safety vs. No Legibility t(495) = 4.962 p < 0.001
No Social Norms vs. No Legibility t(495) = 16.022 p < 0.001

TABLE II: Pairwise comparisons for Social Norms.

3) Perceived Safety: Reliability analysis for the Perceived
Safety scale output an α of .97 and an ωtotal of .85. The
overall ANOVA results indicated a statistically significant
difference in mean Perceived Safety between at least two
groups (F (3, 495) = 91.86,MSE = 70.23, p < 0.001).
Tukey HSD Test revealed statistically significant differences
for all pairwise comparisons as seen in Table III.

Comparison t-Statistic p-value

No Safety vs. Ideal Pass t(495) = -10.783 p < 0.001
No Social Norms vs. Ideal Pass t(495) = -14.474 p < 0.001
No Legibility vs. Ideal Pass t(495) = -2.686 p = 0.0373
No Social Norms vs. No Safety t(495) = -3.691 p = 0.0014
No Safety vs. No Legibility t(495) = -8.097 p < 0.001
No Social Norms vs. No Legibility t(495) = -11.788 p < 0.001

TABLE III: Pairwise comparisons for Perceived Safety.

4) Legibility: Reliability analysis for the Perceived Safety
scale output an α of .94 and an ωtotal of .92. The overall
ANOVA results indicated a statistically significant difference
in mean Legibility between at least two groups (F (3, 495) =
64.27,MSE = 84.62, p < 0.001). Tukey HSD Test revealed
statistically significant differences for all pairwise compar-
isons as seen in Table IV.

Comparison t-value p-value

No Legibility vs. Ideal Pass t(495) = 13.536 p = 0.0048
No Social Norms vs. Ideal Pass t(495) = 9.171 p < 0.001
No Safety vs. Ideal Pass t(495) = 6.445 p < 0.001
No Legibility vs. No Safety t(495) = -7.091 p < 0.001
No Legibility vs. No Social Norms t(495) = -4.364 p = 0.001
No Social Norms vs. No Safety t(495) = 2.726 p = 0.0335

TABLE IV: Pairwise comparisons for Legibility.

V. DISCUSSION

Our results provide support for our core hypothesis, em-
phasizing the importance of social norms, perceived safety,
and legibility for achieving effective SRN. As illustrated in
Figure 3, we observe a statistically significant trend, where
the Ideal Pass condition consistently outranks the conditions

that do not incorporate all three of our core principles.
Furthermore, the Ideal Pass condition received higher ratings
across all three of our subjective metrics: social norms,
perceived safety, and legibility. This suggests that robots
adhering to all three of our core SRN principles also enhance
the effectiveness of each individual SRN principle.

Our results also highlight the intricate interplay between
each principle, providing evidence for the formulation of our
SRN framework, Overlapping Social Navigation Principles.
If there were no overlap, the absent principle condition would
be the only condition with lower measurements of that prin-
ciple compared to the Ideal Pass. However, this was not the
case. For example, for social norms, the No Social Norms,
No Safety, and No Legibility conditions all resulted in
statistically significant lower levels of social norms compared
to the Ideal Pass condition. Similar trends were observed for
perceived safety and legibility. This suggests that omitting
any one of our principles causes other principles to perform
worse, signaling an interdependence between principles. For
example, the absence of legibility had the smallest, yet
still significant, negative impact on other principles. Most
impactful was the absence of social norms, which was
perceived as less safe than the absence of safe behaviors
itself. This underscores the effect social norms have beyond
its own principle. As an implication of our results, robotics
engineers must adopt a holistic approach when designing
SRN systems, emphasizing all three proposed principles –
social norms, perceived safety, and legibility – while placing
particular importance on following social norms [97], [98].

VI. LIMITATIONS AND FUTURE WORK

One limitation of our approach is that participants ranked
videos based on preferences, which did not provide a quan-
titative measure of SRN quality. While our Likert-scales
demonstrated high reliability, >= .85, further testing is
needed to confirm their validity and robustness. Therefore,
future research should build on these metrics to develop
comprehensive SRN measurement tools. Another limitation
is that our study focused on evaluating each SRN principle
individually, rather than employing a full factorial design
with eight conditions. In the absence of established SRN
metrics, we adopted a more focused ranking method to
provide an initial exploration into this space. As a result,
future work is necessary to further validate the interplay
between principles, expand our framework to other potential
principles (e.g., politeness or comfort), test our system in
more dynamic or crowded settings, and integrate richer
measurements (e.g., comfort distances or eye tracking).

VII. CONCLUSION

We introduced the Overlapping Social Navigation Prin-
ciples framework, which identifies social norms, perceived
safety, and legibility as key SRN principles, with each
influencing the others. Our findings show that effective SRN
requires all three principles, with social norms having the
greatest impact, particularly on perceived safety.Hence, SRN
designers roboticists should prioritize social norms.
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