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ABSTRACT
Socially-aware navigation seeks to codify the rules of human-human
and human-robot proxemics using formal planning algorithms.
However, the rules that define these proxemic systems are highly
sensitive to a variety of contextual factors. Recently, human prox-
emic norms have been heavily influenced by the COVID-19 pan-
demic, and the guidelines put forth by the CDC and WHO encour-
aging people to maintain six feet of social distance. In this paper, we
present a study of observer perceptions of a robot that not only fol-
lows this social distancing norm, but also leverages it to implicitly
communicate disapproval of norm-violating behavior. Our results
show that people can relate a robot’s social navigation behavior to
COVID safety protocols, and view robots that navigate in this way
as more socially intelligent and safe.

KEYWORDS
Social Navigation, Social Norms, Proxemics, COVID-19
ACM Reference Format:
Santosh Balajee Banisetty and TomWilliams. 2021. Implicit Communication
Through Social Distancing: Can Social Navigation Communicate Social
Norms?. In Companion of the 2021 ACM/IEEE International Conference on
Human-Robot Interaction (HRI ’21 Companion), March 8–11, 2021, Boulder, CO,
USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3434074.
3447222

1 INTRODUCTION
Human behavior and interaction are both governed by a host of
mutually agreed upon social and moral norms, which dictate what
actions are viewed as appropriate in different contexts, including
what to say, how to act, what to wear, and how to move within
and interact with the world around us generally. The COVID-19
pandemic has, for example, led to a host of new social and moral
norms, such as mask-wearing and social-distancing, which are at
once social, dictating what is polite and appropriate, and moral,
dictating what is right and wrong. However, large segments of the
population seem to have recognized these norms as more social
than moral, viewing these new requirements as social impositions
rather than guidelines for engaging with a world under plague
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Figure 1: Top-down view of a pandemic sce-
nario simulated in Gazebo. Top-left is a dedi-
cated area where a headshot of the person is
shown. The red star is the robot’s destination.

Figure 2:
Headshots
of the
simulated
humans.

morally. To help limit this pandemic’s further impact, it is thus
everyone’s moral duty to try to increase compliance with these new
norms as quickly as possible.

Recent evidence has suggested that robots wield significant so-
cial and moral influence. Not only can robots socially influence,
persuade, and coerce humans in a variety of ways [5, 9, 12, 13, 21,
26, 39, 43, 48], but recent evidence suggests that robots are capable
of exerting moral influence over humans as well, even through
highly indirect means, such as through tacit agreement with im-
moral dispositions [23, 24]. Moreover, research has shown that
robots’ influence can have “ripple effects” in which robots not only
influence others, but influence the underlying dispositions of others
so that others in turn influence wider populations [29, 44].

However, calling people out too directly can be viewed as overly
harsh [25], with the potential to backfire and reinforce the negative
behavior the robot (or human) was trying to call out [see also 27].
And in fact, researchers have observed just this phenomenon with
moral communication surrounding COVID-19 [47]. Moreover, in
our own recent work, we have shown that there may be safety
concerns with social robots using purely verbal strategies to en-
courage COVID-19 norm adherence, which may backfire due to the
ability of such robots to increase engagement among groups [31].
Accordingly, in addition to tuning the phrasing of moral language
(when used) to embody an appropriate level of tact [25], we suggest
that robots also seek to employ less direct nonverbal approaches to
persuasion, just as humans do. Instead of calling others out directly
and verbally for not wearing masks, many people currently opt
instead to simply take overly exaggerated and legibly displeased
paths around the maskless.
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But while robots can exert moral influence through nonver-
bal behaviors [22, 36, 46], it is unclear whether people will con-
sciously infer robots’ nonverbal behaviors to be generated as a
result of norm-following. Moreover, while people can infer intent
from robots’ trajectories [15] it is unclear whether people will infer
robots’ nonverbal behaviors to be intended to communicate dispo-
sitions regarding norms. In this paper, we seek to examine whether
robots can also use their proxemic and navigation behaviors to com-
municate moral and social dispositions related to social distancing
and mask-wearing norms. If so, robots could use such behavior to
exert social and moral influence to encourage pro-social ripples of
compliance with those norms.

2 RELATEDWORK
SocialNormFollowing andMoralNorm Influence: Priorwork
in social navigation suggests that robots can be programmed ei-
ther to perform or learn social norms such as not going between
two conversing people [38], social hallway maneuvers like passing,
meeting, walking together [2, 40], and avoiding activity zones [35].
Zhu et al. [49] suggest that a morally competent social robot must
be willing to communicate its objection to a violation of shared
norms by a human, even if such communication is not polite. Prior
empirical studies in HRI suggest that robots are capable of directly
influencing a human’s behavior and moral norms [9, 13, 37].

Implicit Robot Communication: In our day-to-day interac-
tions, knowingly or unknowingly, humans rely heavily on non-
verbal implicit communication. For example, while walking in a
narrow hallway, we communicate our intent of passing on the
right side by slightly veering towards the right (or gazing in the
direction). Such communication helps in avoiding hallway con-
flicts. Prior work utilized such implicit non-verbal communication
to improve human-robot teams’ task efficiency in collaborative
environments [15, 30]. In similar implicit robot communication
research, the use of the robot’s hesitant hand motions was explored
to communicate uncertainty for safe and ethical human-robot in-
teraction [32]. Another work studied implicit communication in
indoor navigation tasks where the robot actively communicated its
navigational intentions and avoided collisions [11].

Persuasive Robotics: Recent work in HRI has demonstrated
that a robot’s ability to persuade humans can play an essential role
in interaction quality. In a persuasive HRI study, participants could
better recall a story when the storytelling robot used persuasive
cues [33]. Baroni et al. [4] studied the application of persuasive HRI
as diet coach for children. Ghazali et al. [18] found that there could
be an increase in likability and decrease in reactance when the robot
exhibits persuasive behavior. Siegal et al. [41] study focused on a
robot’s behavior and appearance (gender) on its ability to persuade
an interacting partner; Concerning trustworthiness, and credibility.

The literature above broadly suggests that (1) humans can infer
the intent behind robots’ trajectories; (2) humans infer norms from
robots’ trajectories; (3) robots have the potential to impact humans’
systems of social and moral norms. However, it is not yet clear
whether humans infer not only intentions and norms, but also
norm-relevant communicative acts, such as blame and sanction,
from such simple signals as robot trajectories. In this work, we seek
to examine whether this might be the case, as, if so, it would present

a powerful modality for robots to use to exert subtle prosocial
influence on their moral ecosystems. Specifically, we investigate
the following four hypotheses:
H1 Participants will relate robots’ proxemic deviation behaviors

to social distancing norms and observed mask violations.
H2 Participants will view robots that follow exaggerated social

distancing norms in response to mask violations as more
likable.

H3 Participants will view robots that follow exaggerated social
distancing norms in response to mask violations as safer.

H4 Participants will view robots that follow exaggerated social
distancing norms as more socially intelligent.

3 METHOD
To evaluate our hypotheses, we conducted an online human subjects
experiment in which participants observed robots either (a) navi-
gating normally, (b) exaggeratedly avoiding all pedestrians, or (c)
exaggeratedly avoiding only maskless pedestrians. This experiment
was conducted using Amazon’s Mechanical Turk platform [10],
through the psiTurk framework [20]. While Mechanical Turk is not
entirely free of population bias [42], it has been more successful at
reaching a broader demographic sample of the US population [14].

Experimental Design: To study human perceptions of robot so-
cial distancing behavior, we designed a simulated environmentmim-
icking the ongoing COVID-19 pandemic situation, usingGazebo [28].
As shown in Figure 1, the setup is a quad-like environment con-
sisting of pathways leading to a set of quad-adjoining buildings.
The area inscribed between the pathways is colored green to repre-
sent a lawn, making robot trajectory deviations clearly identifiable.
Within this environment, we simulated a navigation scenario in
which people were observed traversing the environment’s paths,
some of whom were depicted as wearing masks, and some were not.
The humans in this simulated environment, designed using Make-
Human software [7, 8], included four mid-aged human characters:
a masked male and an unmasked male, and a masked female and
an unmasked female. As shown in Figure 2, these characters were
designed to avoid easy categorization into stereotypical categories
to mitigate potential effects of racial bias.

Each participant was assigned to one of three experimental con-
ditions (P1, P2, P3). For each of these categories, we created a video
filmed within our simulation environment in which a Husky robot
was shown performing a navigation task between two points (these
points were the same in all videos). The robot begins by introduc-
ing itself as Alex (a gender-neutral name) and then proceeds along
the path before passing the two pedestrians, one masked and one
unmasked. The navigation policies followed in each video depend
on the experimental condition associated with that video:

P1 No Deviation - The robot takes the shortest path possible
without any social distancing protocol.

P2 Deviation - The robot deviates from the shortest path when
it encounters a human (distancing itself from pedestrians
regardless of whether or not they are wearing masks).

P3 Social Deviation - The robot deviates from the shortest
path only when encountering an unmasked pedestrian.

In all cases, the robot was teleoperated. When the experimental
condition required the robot to deviate from its path, the robot was



(a) Percentage of participants who refer-
enced COVID norms in Q4 across navi-
gation policies 2 and 3.

(b) Frequency of references to
safety in Q3 across all three
navigation policies.

(c) Perceived social intelligence
scores across all three navigation
policies. (1. No Deviation, 2. Devia-
tion, and 3. Social Deviation). 95%
credible intervals.

teleoperated to follow a socially-aware navigation trajectory [1, 17]
parameterized to avoid the pedestrian’s proxemic zone using an
exaggerated social distancing threshold of 10 feet. Within each
experimental condition, we systematically varied the order in which
the pedestrians were encountered (masked first or unmasked first)
and the gender presented by the pedestrians encountered (both
male or both female), resulting in a total of 12 videos.

Procedure:After providing informed consent, participants com-
pleted a demographic questionnaire, including experience with ro-
botics and AI (scale of 1-7). Participants then watched a test video
to verify their video and audio were working correctly, followed
by a Negative Attitude Towards Robots (NARS) questionnaire [34].
The participants then watched the one-minute video associated
with their experimental condition. After watching this video, partic-
ipants completed the measures described in the following section.

Measures: Our quantitative measures of interest are negative
attitude towards robots [34], perceived likeability [6], perceived
safety [6], and perceived social intelligence [3]. Our qualitative
measures consisted of four open-ended questions.

Q1 In a sentence, describe the people that the robot encountered.
Q2 In a sentence, explain what was the robot doing?
Q3 Would you be comfortable with a robot like this in your

workplace or a public place? Answer with YES/NO, followed
by an explanation of your choice.

Q4 When the robot deviated from a straight-line path, why do
you think the robot deviated? (This question was only given
to participants in the P2 and P3 conditions, for whom the
robot’s path deviated.)

Participants: We recruited 112 subjects1 (38 female, 73 male,
and 1 did not report) from Amazon’s Mechanical Turk. Participants
ranged from 22 to 70 years (M=38.56, SD=9.92). Participants received
compensation of $2.01 for their time. No participants were excluded
on the basis of negative attitudes towards robots as no difference
between conditions was observed.

Data Analysis: Free-text responses to Q3 and Q4 were coded
TRUE/FALSE based on whether they contained any references to
1Participants who provided clearly unrelated data on free-response questions, espe-
cially Q1 and Q2, were identified as inauthentic participants and discarded.

safety and COVID, respectively. For example, the text “Yes, the
robot is moving away from people so that it does not run into people”
would be coded as TRUE for safety. We used a Bayesian statistical
framework to analyze our results for likeability, quantitative safety
ratings, and social intelligence, using JASP [45].

4 RESULTS
Connection with COVID Norms: Bayesian Contingency Table
Analysis of the coded results of our thematic analysis provided
extreme evidence in favor of an effect of Navigation Policy on Ref-
erences to COVID-related norms in Q4 (BF=150.524), as shown
in Figure ?? [a], with 2/28 participants reference COVID-related
norms in the Deviation condition, and 20/44 participants referenc-
ing COVID-related norms in the Social Deviation condition.

Likeability: A Bayesian ANOVA of likeability from the God-
speed questionnaire [6] indicated substantial evidence that the
robot’s navigation behavior did not influence perceived likeability
(Bayes Factor = 0.215).

Safety: A Bayesian ANOVA of safety from the Godspeed ques-
tionnaire [6] indicated substantial evidence against an effect of
Navigation Policy on perceived safety (BF=0.115). Bayesian Contin-
gency Table Analysis of the coded results of our thematic analysis
provided moderate evidence in favor of an effect of Navigation
Policy on References to Safety in Q3 (BF=6.702), as shown in Fig-
ure ?? [b]. Post-Hoc pairwise Bayesian Contingency Table Analysis
provided strong evidence in favor of a difference between the No
Deviation navigation policy (for which 6/40 participants referenced
safety) and the Social Deviation navigation policy (for which 20/44
participants referenced safety). Inconclusive evidence was found
between the Deviation condition (for which 18/28 participants ref-
erenced safety) and both the No Deviation (BF=1.693) and Social De-
viation (Bf=0.398) conditions, suggesting that more data is needed
before these pairwise effects can be confirmed or ruled out.

Social Intelligence: A Bayesian ANOVA provided substantial
evidence in favor of an effect of Navigation Policy on Perceived So-
cial Intelligence (BF=7.770), as shown in Figure ?? [c]. Post-hoc anal-
yses revealed strong evidence (BF=32.621) in favor of a difference be-
tween the No Deviation navigation policy (M=3.140, SD = 0.479) and



the Social Deviation navigation policy (M=3.507, SD=0.497), with
inconclusive evidence neither conclusively for or against a differ-
ence between the Deviation navigation policy (M=3.303, SD=0.565)
and the No Deviation (BF=0.509) and Social Deviation (BF=0.743)
navigation policies.

5 DISCUSSION
We hypothesized that participants will relate robots’ proxemic de-
viation behaviors to social distancing and mask norms (H1) and
that participants would rate the robot following exaggerated social
distancing norms in response to mask violations as more likable,
safe, attentive to safety, and socially intelligent (H2-4). Our results
partially support hypothesesH1,H3, andH4 but refute hypothesis
H2. Specifically, our results suggest three major findings: (1) Par-
ticipants were able to infer norm adherence from robots’ proxemic
behaviors but did not appear to infer norm-oriented dispositions
or communicative intent from those behaviors. (2) Participants
more frequently referenced safety in assessments of their comfort
with robots that followed exaggerated proxemic behaviors but did
not rate the robots as overall safer on numerical scales. (3) Partici-
pants inferred greater social intelligence from robots that exhibited
proxemic behaviors sensitive to social norms.

What norm-related inferences do observers draw from
robots’ proxemic deviations? Our results provided extreme ev-
idence suggesting that participants were uniquely likely to infer
dispositions related to masks and social distancing from the behav-
ior of robots that followed the Social Deviation navigation policy,
as evidenced through responses such as those shown below (from
navigation policy P3): (1) “They avoided the person who was not
wearing a mask because that person was not being responsible.” (2)
“To move around the man without a mask (due to COVID or some-
thing similar).” These observer responses clearly indicate that the
participants were able to correlate the robot’s exaggerated social
distancing with the observed violation of mask-wearing norms.

For designers of HRI and social robots who are explicitly seeking
to increase their robotic platforms’ perceived (social) intelligence,
implementing a Social Deviation navigation policymay be a straight-
forward way to achieve this benefit without the need for any verbal
capabilities. Moreover, while we did not findwidespread evidence of
participants inferring norm-related dispositions or intended moral
communication from the robot’s motion, a few isolated cases were
observed in which participants did make such inferences. For ex-
ample, consider the following participant from P3, who stated: “No.
Since for me a workplace is not applicable, in public I suppose I’d
rather not experience a robot like this, as it would be weird, along
with rude / shaming to unmasked people."

One possible explanation for this is recent evidence suggesting
that blame is more intense and differentiated from praise [19]. It is
possible that participants who noticed the behavior and condoned
it did not feel the need to mention it, whereas participants who
noticed the behavior and were displeased by it felt the need to speak
up about it. Future research will be needed to re-examine this topic
using a paradigm that explicitly asks participants about specific
inferences to overcome this asymmetry.

How do robots’ proxemic deviations impact perceptions
of robot safety? Our results provide partial support forH3. While

participants were no more likely to rate the robot as safe when it
followed the Social Deviation or Deviation policy, participants in the
Social Deviation condition were more likely to refer to the robot’s
safety when assessing their comfort in it, compared to participants
in the No Deviation condition, as evidenced by responses such as
those shown below (from navigation policy P3): (1) “Yes, because
he/she seems pretty safe and looks like they mean no harm.” (2) “YES,
it seems to avoid people to make sure it doesn’t run into people. So,
I would be very comfortable” (3) “YES, qualified. Avoiding people is
only one way to keep them safe.” It is unclear whether the impor-
tance of safety in these responses is entirely related to the robot
deviating to avoid running into people - (2) or following the new
social distancing norm - (3) or general safety - (1).

How are robots social deviations viewed? Finally, our re-
sults suggest that observers viewed robots in the Social Deviation
condition as more socially intelligent than those in the No Devia-
tion condition, partially supporting hypothesis H4. However, this
finding was tempered by substantial evidence against an effect of
navigation policy on robot likability (thus refuting H2). However,
this result may suggest that robots may be able to enact socially
aware navigation policies that adhere to pandemic-relevant social
norms without experiencing backlash from observers.

One potential concern might be if the robot was perceived as
more socially intelligent in the Social Deviation condition simply
because it followed a more complex trajectory. However, we do not
believe this to be the case since an attenuated effect was found in
the Deviation condition. That being said, the differences between
the Deviation condition and both the No Deviation and Social De-
viation conditions was inconclusive; further study will be needed
to identify whether the Deviation navigation policy truly sits be-
tween the No Deviation and Social Deviation navigation policies, or
if it is functionally equivalent to one but not the other in terms of
Perceived Social Intelligence.

6 CONCLUSION
In this work, we explore the roles of spatial communication in com-
municating social norms. We experimented with three navigation
policies (No deviation, Deviation, and Social Deviation), and the re-
sults show that observers rated the robot with Social Deviation as
socially intelligent than the other navigation policies, i.e., partic-
ipants were able to relate social awareness in navigation policy
to perceived social intelligence of the robot. Furthermore, there is
significant evidence that people could relate the robot’s deviation
from a straight-line path to COVID safety protocols, demonstrating
the importance of non-verbal spatial communication to communi-
cate social norms through social trajectories. In the future, once
the current pandemic subsides [cf. 16], we want to explore further
the importance of non-verbal communication by utilizing social
navigation on real-robots with an in-person experiment.
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