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ABSTRACT
Augmented Reality (AR) is a promising mode of communication
for human-robot teaming, due in part to its ability to increase Sit-
uation Awareness. In this work, we specifically consider the role
of AR in enabling Situation Awareness in time-dominant collabo-
rative human-robot exploration tasks. We present a crowdsourced
evaluation of a set of AR visualizations in a simulated version of
such a task, and measure the Situation Awareness of experiment
participants. Our results raise key questions about the efficacy of
Situation Awareness measurement in observational (rather than
interactive) evaluation contexts.

1 INTRODUCTION AND MOTIVATION
Human-robot teams are valuable inmany high-stakes, time-dominant
contexts, due to the complimentary abilities of humans and robots
[2]. Robots can explore small or dangerous places, while humans
can better generalize and adapt. In order for human-robot teams
to be effective in time-dominant contexts, such as time-dominant
exploration tasks, robots’ human teammates need to have high
Situation Awareness (SA). That is, they must be aware of their
surroundings, be able to use that awareness to create rich mental
models of those surroundings, and must be able to use those models
to understand and make predictions about the future state of those
surroundings. Recently, a variety of researchers have been exploring
how Augmented Reality (AR) visualizations may be able to provide
such Situation Awareness, by providing enhanced transparency
regarding robots’ inner workings and intentions (thus increasing
humans’ SA with respect to those robots), and by directing team-
mates’ attention towards task-critical elements of the environment
as perceived by those robots (thus increasing humans’ SA with
respect to those task-critical environmental features).

In time-dominant contexts, however, it is important for team-
mates to have high SA not only with respect to their environment
and their team, but also with respect to their task context, especially
the aspects of their task context that relate to its time-dominant
aspects. In time-dominant collaborative exploration contexts, hu-
man teammates may have a limited amount of time to explore their
environment before needing to reconvene with their teammates.
In such contexts, it is critical for humans to maintain awareness of
those time constraints, and to understand how their actions may
interact with those constraints.

Figure 1: In this paper, we explore Augmented Reality for
human-robot communication in a simulated search task.

In this work, we explore how AR may be used to provide exactly
this sort of time-oriented SA in time-dominant collaborative ex-
ploration tasks. Specifically, we present a set of AR visualizations
that depict the interaction between a human’s current course of ac-
tion and/or possible future courses of action with the dynamic time
constraints imposed by their task context, and evaluate these visual-
izations in an observational testbed deployed using the Mechanical
Turk crowdsourcing framework. While our results do not provide
compelling evidence for the efficacy of our prototyped visualiza-
tions, we believe that this is due to the observational nature of our
evaluation, as necessitated by COVID-19, and note that this in fact
raises key questions about the assessment of SA in observational
contexts.

2 RELATEDWORK
In this section, we will begin by explaining the concept of Situation
Awareness (SA), and the role that SA plays within Human-Robot
Teaming. We will then describe the ways in which researchers
have previously considered SA in the development of Augmented
Reality (AR) technologies for Human-Robot Teaming contexts. Fi-
nally, we will discuss the different sorts of visualizations (across
many types of visual interfaces) that have been used to improve



Situation Awareness across such contexts, and highlight the need
to explore new visualizations that specifically aim to increase Sit-
uation Awareness with respect to the time-dominant aspects of
teammates’ situated task contexts.

2.1 Situation Awareness
Situation Awareness is defined as a human’s “perception of the ele-
ments in the environment within a volume of time and space, the
comprehension of their meaning, and the projection of their status
in the near future” [9]. Models of Situation Awareness were orig-
inally developed to understand people working in time-sensitive
contexts, including air traffic control [9]. Situation Awareness is
divided into three levels of increasing sophistication: perception,
comprehension, and projection. Perception (Level 1 SA) captures the
awareness of basic stimuli in the environment and their properties
(e.g., color, shape, and location). Comprehension (Level 2 SA) refers
to a human’s understanding of the meaning of such stimuli. This
level includes a human’s ability to synthesize their Level 1 observa-
tions into a holistic mental model of their environment. Projection
(Level 3 SA) captures whether a human understands the causal
implications of these stimuli (using, e.g., those mental models), in
order to form reasonable predictions regarding the near-future state
of their environment [9].

As an example, consider a driver who arrives at an intersection.
The driver’s Level 1 SA (Perception) may be assessed on the basis of
whether they perceive that a light has turned yellow. Their Level 2
SA (Comprehension) may be assessed on the basis of whether they
comprehend that this is a warning to slow down. Their Level 3 SA
(Projection) can be assessed on the basis of whether or not they are
aware that if they do not apply the brakes, they are likely to enter
the intersection after the light has turned red, risking a collision.

2.2 Augmented Reality for Human-Robot
Teaming

Augmented Reality (AR) technologies are increasingly being used
in Human-Robot Teaming contexts across a variety of task do-
mains [31], including manufacturing, assembly, and surgery [7,
22, 27]. In settings where a human and robot share a physical
workspace, AR can help communicate a robot’s intended trajectory
or action, the hypothetical future location of objects, safety warning
messages, and/or general information about the state of the human
and robot’s shared workspace [1, 3, 6, 7, 22].

As Augmented Reality and 3D Mapping technologies continue
to improve, researchers are also increasingly using AR in larger-
scale environments that are not limited to shared workspaces, such
as collaborative exploration tasks. Collaborative exploration is a
broad paradigm of interaction that arises in domains such as search
and rescue, disaster response, firefighting, driving, and military
operations [12, 18, 25, 33, 38]. These domains are defined not only
by their large scale and the focus on systematic team navigation,
but also by fundamentally different paradigms of co-location than
seen in typical small-scale HRI, with human and robot teammates
needing to explicitly and implicitly communicate with each other
even when separated by hundreds to thousands of feet.

In order to understand the role that AR (and VR) technologies
can play within Human-Robot Teaming contexts, we employ the

Reality-Virtuality Interaction Cube framework [35]. The RVIC ar-
gues that AR technologies may enhance interaction in two ways: (1)
by enhancing Flexibility of Control over humans’ robotic teammates,
and (2) by enhancing the Expressivity of View into those robotic
teammates, in order to more effectively build rich mental models.

When viewed through the lens of the RVIC, a number of previous
works on AR within large-scale Human-Robot Teaming contexts
have focused on enhancing Flexibility of Control. For example, re-
searchers have explored how AR could be used to facilitate new
means of teleoperator control over remote robots in fire surveil-
lance and extinguishing tasks [19, 29]. On the other hand, many
approaches have also focused on using AR to enhance Expressivity
of View, specifically in order to improve Situation Awareness, due
to the importance of maintaining SA within the high-stress and
dangerous contexts that typically involve collaborative exploration.
AR technologies can be particularly effective at enhancing human
SA in collaborative exploration contexts by providing increased
transparency into the beliefs and perceptions of their robotic team-
mates, thus increasing human teammates’ Level 1 SA by enhancing
the inherent perceivability of important stimuli, and increasing
human teammates’ Level 2 SA by visualizing robots’ beliefs and
perceptions in a way that directly communicates the implications of
the beliefs and perceptions that have been selected for visualization.

Indeed, in simulated search and rescue operations, researchers
have demonstrated that AR interfaces are uniquely capable for im-
proving the Situation Awareness of robot teleoperators [20]. This
has proven particularly useful in the contexts of search and res-
cue and disaster response, in which real-world human teams often
operate with one centralized ‘hub’ and several decentralized team
members [17], providing difficulties for maintaining SA between
remote teammates. Moreover, SA is especially critical when robots
are involved in such contexts, due to the disparate sensory and nav-
igational capabilities between human and robotic teammates [15].
One recent study found, for example, that many participants tele-
operating a robot in a simulated disaster response scenario missed
hazardous substances due to insufficient SA [30]. In such cases, AR
can help centralized team members to maintain SA with respect
to their human and robotic teammates, and can allow centralized
teammates to better communicate with their remote teammates in
order to enhance those remote teammates’ SA.

Moreover, when humans are physically participating in search
tasks alongside robotic teammates, AR is a valuable tool to assist
human navigation. While human and robot searchers may both
be working “in the field” as non-centralized team members, they
may in fact be quite distant from their robotic teammates, present-
ing challenges for information sharing. One study found that AR
improved the wayfinding efficiency and task-performance of fire-
fighters navigating a maze-like environment to search for targets
[12]. Similarly, in a real-world human-robot cooperative search
task, AR allowed humans to successfully navigate to a target iden-
tified by a robot [28]. Researchers have speculated that AR may be
able to assist disaster response teams by allowing team members
(both robots and humans) to share a set of visual ‘pins’ in the envi-
ronment to denote dangerous areas and the locations of possible
victims [17, 33].

However, in order for SA to be enhanced by AR visualization
of robot beliefs and perceptions, visualizations must be carefully



designed in order to selectively draw teammates’ attention to task-
relevant information that would otherwise have been unattended
to (either through passive visualizations or, as in our own work,
through active deictic communication strategies [13, 34, 36]), with-
out distracting teammates and thus causing them to ignore other
critical task-relevant information. Researchers employing AR vi-
sualizations for human-robot teaming contexts have proposed a
number of methods for ensuring that visualizations increase SA
without cognitively and perceptually overloading robots’ human
teammates [8, 14]. For example, researchers have suggested that
members of human-robot search and rescue teams be shown only
visualizations of information directly relevant to their personal
goals and circumstances [4]. Similarly, others have shown how
information displayed in maps used by UAV operators can be care-
fully filtered to facilitate better Situation Awareness by retaining
and emphasizing only the most salient information [5, 37].

Most of the approaches above, however, have focused on either
enabling new methods of control over humans’ robotic teammates,
or on visualizing information perceived by those robotic teammates.
However, a variety of information may be helpful to visualize in
time-dominant contexts that leverages but is not completely in-
formed by the robot’s own perceptions. In time-dominant explo-
ration contexts, for example, one of the key things that human
explorers must be cognizant of is the time-dominant aspects of
their task (e.g., how much time remains until they need to meet up
with their teammates). Critically, these task-oriented concerns may
interact with a human teammate’s personal situation and with the
information gathered by robotic teammates in unique ways.

In recent work [26], we proposed and prototyped four types of
visualizations that communicate information to human teammates
about (1) where they need to be when the time allotted to their
task expires; (2) how much of that allotted time remains, and the
expected proportion of that remaining time required to reach that
target location; (3) how much of that allotted time is expected to
remain if they continue exploration in a given direction, on the
basis of information collected by robot teammates; and (4) how
much of that allotted time is expected to remain if they engage with
a particular task-relevant object located by their robotic teammates.
These visualizations are thus designed with the aim of enhancing
the time-oriented SA of robots’ human teammates, by combining
information stemming from the general task context (i.e., amount of
remaining time and location of meetup point), information specific
to the human’s situation (i.e., relative to how far they currently
are from that meetup point), and information available due to the
observations of their robotic teammates (i.e., information regarding
task-relevant objects found by robotic teammates).

In the next section, we will present these four visualizations. In
the following section, we will then present the results of a human-
subject experiment designed to assess the ability of these visualiza-
tions to enhance human teammates’ SA as intended.

3 VISUALIZATION DESIGN
Before describing the four visualizations we designed to enhance
time-oriented SA, we must first describe the context in which these
visualizations were intended to be used.

3.1 Interaction Context
Our visualizations are designed to be used in time-dominant ex-
ploration tasks. To this end, we created a simulated search task in
which a human navigates a simulated environment in search of dif-
ferent task-relevant objects, such as searchable filing cabinets and
treatable victims. The human’s goal in this context is to evaluate as
many objects as possible within the constraints of the task.

This context is time-dominant due to the confluence of two fac-
tors. First, the human operating in this environment has a limited
amount of time to explore the environment, and must reach the
meet-up point by a particular time. Second, successfully interacting
with any of the targets found in the environment requires invest-
ment of a set amount of time. In addition, the time-dominance of the
task involves an element of loss that exceeds diminishing returns.
Reaching the meet-up point late may have adverse consequences,
especially in domains like emergency and disaster response.

The human exploring this environment is accompanied by a ro-
bot teammate, whose aim is to improve the human teammate’s SA
by scouting the environment and informing its human teammate of
the locations of targets and/or the amount of time required to inter-
act with them. The robot achieves this through visualizations dis-
played in the human teammate’s Augmented Reality Head-Mounted
Display (AR-HMD). In the present work, these visualizations were
simulated as overlays over a user’s perspective in a Virtual Reality
simulation designed in the Unity-based DCIST simulator developed
by the U.S. Army Research Laboratory through the Distributed and
Collaborative Intelligent Systems and Technology (DCIST) Collabo-
rative Research Alliance [16].

3.2 Interaction Design
In this section, we describe the different visualizations rendered by
the robot in its human teammate’s AR-HMD (the design process
used to prototype and implement these visualizations is described
in [26]).

Phase Line Visualization
The first visualization we developed was a phase line, which marks
the area that the human must return to by the end of their allocated
time. The phase line appears as a ring of concentric cyan circles
ascending into the sky. Its design was adapted from traditional
phase line symbols used by the US military as map annotations to
coordinate team movement [26]. While phase lines are typically
depicted as two-dimensional shapes, our phase line was also given
a verticality in order to be viewed from far away [26]. This visual-
ization is designed to increase SA by helping users to understand
how far away their team’s meet-up point is, and a frequently visible
reminder of that point, and thus of the time constraints connected
to that point.

Timebar Visualizations
The other three SA-enhancing visualizations used in our experi-
ment are all versions of a timebar, and are specifically designed to
enhance temporal rather than spatial SA. As shown in Fig. 3, time-
bars are rectangular visualizations that depict aspects of a task’s
time sensitivity using a consistent color scheme.



Figure 2: A traditional military phase line drawing on amap
(left). The 3D phase line visualization (right).

Overall task time visualizations: The overall task time vi-
sualization used is an overall task timebar 3 that appears
on the left-hand side of the human’s vision and showed in-
formation about the amount of time remaining in the task.
This visualization was intended to enhance users’ general
Situation Awareness regarding the time constraints of the
task.

Summary time-cost visualizations: The summary time-cost
visualization used is a summary time-cost timebar 3, which
appears at the entrance to buildings the robot has explored
and shows the time demands needed if one were to interact
with all targets in that building. This visualization is intended
to enhance users’ Situation Awareness surrounding the in-
teraction between those time constraints and the potential
courses of action available in a particular building.

Target time-cost visualizations: The target-specific time-cost
visualization used is a target summary timebar 3, which ap-
pears above targets the robot has found and shows the spe-
cific time requirements of interacting with those targets. This
visualization is intended to enhance users’ Situation Aware-
ness surrounding the precise causal outcomes of specific
courses of action.

Figure 3: (left to right) The task timebar, summary time-cost
timebar, and target time-cost timebar as they appear in the
task.

The colors used in all timebar visualizations sent by the robot
teammate have consistent meanings. In all cases, the red portion
represents the time elapsed in the task. The green represents re-
maining time available to evaluate targets. As time passes, the red
section grows and the green secction shrinks. In the building and
target summary time-cost timebars, the yellow section represents
the portion of remaining time that would be required for the human
to evaluate the individual target (in the case of target time-cost

timebars) or all the targets in the building (in the case of summary
time-cost timebars). The blue represents exit time, i.e., the portion
of remaining time required to navigate to the phase line (it changes
as the human gets closer to or farther from the phase line). Sum-
mary time-cost timebars do not visualize exit time because it is
unclear where a human will choose to exit a building if they choose
to search it.

Figure 4: The overall task timebar before (middle) and after
(right) interacting with a target.

4 EXPERIMENTAL METHODS
In order to assess the effectiveness of these visualizations at enhanc-
ing SA, we conducted a human-subject experiment conducted using
the aforementioned DCIST simulator. Specifically, this experiment
was designed to test the following four hypotheses.

4.1 Hypotheses
H1: The timebar visualizations that convey the time-needs and

potential time-costs of various task characteristics will pro-
mote better Situation Awareness by providing information
about the aspects of the tasks that are most critical to its
time-dominant nature.

H2a: The overall task timebar will result in higher overall Situ-
ation Awareness because it provides a constant visualization
of high-level time-dominant task characteristics, like exit
time.

H2b: The summary time-cost visualization will result in higher
level 3 Situation Awareness because visualizing the cost of
potential actions will help participants better predict the
actions of the hypothetical human teammate in the video.

H2c: The target summary time-cost visualization will result in
higher level 2 Situation Awareness because visualizing the
implications of the decision to evaluate a specific target will
help participants understand why the human teammate in
the video chooses to evaluate a target.



4.2 Experimental Design
The experiment conducted to evaluate these hypotheses followed
a 2x2x2 between-subject design. Participants observed a task in
which visualizations designed to facilitate Situation Awareness
through three strategies were either shown or not-shown.

Specifically, the Phase Line Visualization was used across all
experimental conditions to consistently emphasize the use of AR
in the experimental task, and the Overall task time visualizations,
Summary time-cost visualizations, and Target time-cost visualizations
were each either shown or not shown depending on experimental
condition.

4.3 Procedure
Due to the safety restrictions imposed by COVID-19 [10], we con-
ducted our experiment online, with participants watching videos
filmed within our experimental environment rather than navigat-
ing the environment themselves. After giving informed consent,
participants read instructions describing the meaning of the visual-
izations they would see. Then, they watched a short video recorded
in our simulation environment. This video ended before the com-
pletion of the task. After completion of this task, the participants
completed a battery of survey elements in order to assess the effects
of experimental condition on Situation Awareness.

4.4 Measures
To measure Situation Awareness, we used two sets of survey ques-
tions based on existing explicit and subjective measures.

Our first survey was comprised of explicit methods to directly
measure Situation Awareness at each level (perception, compre-
hension, projection), modified from the QASAGAT (Quantitative
Analog Situation Awareness Global Assessment Technique) which
is often used to measure SA via the freeze technique of interrupting
a task and immediately asking for answers [11]. We approximated
this by ending the video before time ran out on the task, and then
immediately administering this survey. For each Situation Aware-
ness level, participants answered two questions:

Level 1 SA: Perception
(1) Which of these locations was the human’s location at the

end of the video? (picture provided)
(2) How many targets did the human find and evaluate in the

video?
Level 2 SA: Comprehension
(1) Which of these paths did the human take to find their first

target? (picture provided)
(2) When the video ended, where was the phase line relative

to where the human was facing? (multiple choice)
Level 3 SA: Projection
(1) At the end of the video, do you think the human could

have made it to the phase line before time ran out?
(2) How many seconds do you think the human would need

to return to the phase line at the end of the video?
Our second survey was adapted from the SPASA rating scale

(Short Post-Assessment of Situation Awareness) of Likert items on
a scale of (strongly disagree, disagree, agree, strongly agree) [11].
The SPASA questions we asked were whether or not participants
agreed with each of the following statements:

𝐵𝐹𝐼𝑛𝑐𝑙 𝑂 𝑆 𝑇 𝑂𝑥𝑆 𝑆𝑥𝑇 𝑂𝑥𝑇 𝑂𝑥𝑆𝑥𝑇

Overall SA .180 .282 .671 .216 .218 .203 .304
Level 1 SA .257 .162 .629 .599 .262 .200 .388
Level 2 SA .217 .240 .153 .201 .203 .224 .310
Level 3 SA .190 .528 .365 .236 .242 .360 .237
Subjective .152 .147 .208 .208 .631 .218 .286

Table 1: Effects by visualization type(s). O: overall task time-
bar. S: time-cost summary timebar. T: target time-cost time-
bar.

(1) It was easy to keep track of the time aspects of the task.
(2) It was easy to predict what the human would choose to do

next.
(3) The information in the visualizations was provided at a rate

that I could easily perceive.
(4) I had a good overall understanding of the human’s situation

during the task.

We computed an overall Situation Awareness score based on the
number of QASAGAT questions a participant answered correctly,
as well as scores based on their correctness at each level. We also
numerically coded and averaged participants’ SPASA responses
into an overall subjective assessment score.

4.5 Participants
Data was collected from 218 participants using Amazon’s Mechani-
cal Turk platform. 136 participants identified as male, 81 identified
as female, and 1 declined to report their gender identity. The average
age of participants was 37 with a standard deviation of 10.9.

4.6 Analysis
To analyze the effects of AR visualizations on Situation Awareness,
we performed a series of Bayesian Analyses of Variance (ANOVAs),
with Level 1 SA, Level 2 SA, Level 3 SA, Overall SA, and participants’
averaged subjective scores as dependent variables, and the use of
the overall task visualization, summary time-cost visualizations,
and target time-cost visualizations as independent variables [24].
These ANOVAs were followed by calculation of Bayes Inclusion
Factors across matched models [21, 23] to determine the impact of
each visualization, with post-hoc pairwise t-test analyses performed
for any results with no more than 3:1 (𝐵𝐹𝐼𝑛𝑐𝑙 = 0.333) against an
effect. These analyses were performed using the JASP statistical
analysis software [32].

5 RESULTS
As shown in Tab. 1, our results were uniformly negative or incon-
clusive. Here, inconclusive results suggest that more data must be
collected before our hypotheses can be confirmed or refuted.

Overall SA — Our analysis of the effect of visualizations on
overall Situation Awareness provided inconclusive evidence re-
garding an effect of target time-cost visualizations on overall SA
(𝐵𝐹𝐼𝑛𝑐𝑙 = 0.671), providing sufficiently weak evidence against an ef-
fect that more data would need to be collected before confirming or



Figure 5: Visualization of Experimental Results

ruling out an effect. For all other main and interaction effects, mod-
erate evidence was found against an effect (0.1 < 𝐵𝐹𝑖𝑛𝑐𝑙 < .333) in
all cases).

Level 1 SA— Our analysis of the effect of visualizations on Level 1
SA provided inconclusive evidence regarding effects of target time-
cost visualizations on Level 1 SA (𝐵𝐹𝐼𝑛𝑐𝑙 = 0.629), and regarding
an interaction effect between overall task and summary time-cost
visualizations on Level 1 SA (𝐵𝐹𝐼𝑛𝑐𝑙 = .599). Post-hoc pairwise t-
test analyses of this potential interaction effect specifically showed
inconclusive evidence regarding a difference between simultaneous
use of overall task and summary time-cost visualizations and use of
summary time-cost visualizations (𝐵𝐹1.129) or overall task (𝐵𝐹 =

0.517) visualizations alone, and moderate evidence against all other
effects.

Level 2 SA — Our analysis of the effect of visualizations on
Level 2 SA provided moderate evidence against an effect of any
visualization type on Level 2 SA.

Level 3 SA — Our analysis of the effect of visualizations on
Level 3 SA provided inconclusive evidence regarding effects of sum-
mary time-cost visualizations (𝐵𝐹𝐼𝑛𝑐𝑙 = 0.528) and target time-cost
visualizations (𝐵𝐹𝐼𝑛𝑐𝑙 = 0.365) on Level 3 SA, and inconclusive
evidence regarding an interaction effect regarding the use of sum-
mary time-cost visualizations and target time-cost visualizations
on Level 3 SA (𝐵𝐹𝐼𝑛𝑐𝑙 = 0.360).

Subjective Self-Assessment of SA — As shown in Tab. 1, our results
were uniformly negative or inconclusive. We found inconclusive
evidence regarding the effect of the interaction between summary

time-cost and target time-cost visualizations on participants’ sub-
jective score (𝐵𝐹𝐼𝑛𝑐𝑙 = 0.631). This is sufficiently weak evidence
against an effect and would require the collection of more data.

6 DISCUSSION
The results of this study were uniformly negative or inconclusive,
meaning that the AR visualizations used in our work did not appear
to provide any benefit to SA within our experimental paradigm.
As such, our evidence fails to support hypothesis H1, that the
visualizations would promote Situation Awareness. In fact, our
inconclusive result with respect to overall SA benefits were found
in the case of the target time-cost timebar, for which if evidence of
an effect were revealed by further data, the revealed effect would
most likely be a negative impact of the target time-cost timebar on
overall SA.

Similarly, our evidence failed to support hypotheses H2a, H2b,
and H2c, which stipulated that particular visualizations would
improve specific levels of Situation Awareness. In fact, the only
inconclusive evidence which would be expected to reveal evidence
in favor of the use of any of the presented visualizations, if an effect
were found, was in the case of the overall task timebar and the
summary time-cost timebar, whichmay have had a positive impact,
but only on Level 1 SA, and only when used together.

These results likely have much to do with the fact that partic-
ipants in this study merely watched a video of a simulated task;
they were not responsible for making any decisions during the
experiment. Fundamentally, this lowers the stakes of the activity.
Participants only had to observe (and possibly speculate about)



the task environment. In this sense, Situation Awareness was less
necessary (perhaps even unnecessary) due to the passive nature
of the task. Situation Awareness is not automatically present in a
task; it is acquired and maintained [9]. Participants did not need
Situation Awareness to successfully watch a video in the way they
would need it to complete an active task. So, it is probable that
many participants did not build or maintain Situation Awareness
during the task.

These results are perhaps unsurprising when we consider that
Endsley’s three-level framework for Situation Awareness was not
designed or intended to evaluate passive observation tasks. Even
the original settings in which Situation Awareness was explored
(like air traffic control) involve active human decision making [9].
Indeed, there are fundamental differences between doing a task and
watching someone else do a task. In light of this, the results of this
study should not be used to speculate about the value of the AR
visualizations for those who may actively complete our simulation.
Due to COVID-19, it was not feasible to conduct this experiment
in-person, where participants could have done the exploration task
themselves. When it is safe to do so, it would be worthwhile to
conduct a similar experiment in which the same visualizations (and
their combinations) are presented to participants in the context
of a live, interactive, human-robot teaming scenario (even if con-
ducted within a simulator such as that used in this work). In such a
follow-up experiment, participants would need to build and rely
on Situation Awareness in a much more substantial way.

7 CONCLUSION
In this paper we presented a set of AR visualizations designed to
increase time-relevant Situation Awareness in human-robot collab-
orative exploration tasks. Moreover, we present the results of a user
study intended to evaluate the effectiveness of these visualizations
at building SA. While our results were negative or inconclusive, we
intend in future work to replicate this experiment in a live interac-
tion scenario, which we have argued would be substantially better
suitable due to our focus on Situation Awareness.
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