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ABSTRACT

For robots to be effective at collaborating with humans, they must be
able to effectively communicate about entities in open-world tasks.
Existing research on natural language generation and referring
expression generation has yet to address how gesture and cognitive
status impact how humans or robots decide how to refer to entities,
a process known as Referring Form Selection. To address these
issues we present a novel experimental testbed that leverages the
Givenness Hierarchy to produce an entity’s cognitive status. We
also discuss challenges in developing this testbed and how we
surmounted them.
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1 MOTIVATION

In the future, robots will have to offer physical assistance in care
settings [19], in the home [8, 11], and in collaborative manufactur-
ing [29]. To engage in natural and effective interactions in these
domains, robots will have to be capable of conversing with human
users about shared tasks using both verbal and non-verbal cues
to refer to elements of the task. Crucially, these tasks may take
place in open-world environments, and as such, robots will need to
have dialogue and knowledge systems capable of discussing, inter-
acting with, and referring to locations or entities that are brought
up by humans, even if those entities or locations are not known
prior. For example, while working on some task, a human might
require a robot teammate to "go and grab a screwdriver on that
table" when no screwdrivers have come up in the current context
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of the conversation. In this situation, a robot should be capable of
understanding what a screwdriver is, know which table the speaker
is referring to if there are multiple screwdrivers, and be able to clar-
ify which screwdriver to grab, either through dialogue or through
some non-verbal gesture.

Fortunately, there has been significant work done in the fields
of Natural Language Generation (NLG) and Referring expression
generation (REG), which has allowed robots to generate language
and refer to entities and locations in open-world environments [31].
However, some aspects of situated natural language generation
remain underexplored, including Referring Form Selection [15, 22],
in which a robot selects how to refer to an object. Current systems
tend to over-refer to objects in situations where it would have been
more natural to use "it" or "that" to refer to an object that had
already been introduced to the context of the current conversation.

To address this challenge, some recent work on robotic referring
form selection [15, 26] has looked to linguistic models that explain
how humans choose referring forms such as the Givenness Hier-
archy (GH) [14]. Central to the Givenness Hierarchy is the notion
of cognitive status. An entity’s cognitive status is determined by
the assumptions that a cooperative speaker can make regarding
their addressee’s knowledge of and attention to that entity. This
informs whether the entity can be referred to with words like it
and that, or if it should be described more fully [14]. While there
has been some work to accurately model or predict the cognitive
status of entities [25, 26], those previous efforts have not accounted
for non-verbal cues like gesture, which are critical tools humans
use to manipulate cognitive status.

So, in this paper, we present the design for a testbed that will
allow us to collect data about the cognitive status of entities based
on both utterances and gestures made during a task-based conver-
sation. We reflect on the challenges of designing a testbed to label
Cognitive Status in this way and describe the design decisions we
made to mitigate these challenges. Finally, we describe how this
testbed will be used in future work to work towards more natural
human-robot collaboration.

2 RELATED WORK
2.1 The Givenness Hierarchy

The Givenness Hierarchy is a cognitive science framework that
relates to the way humans refer to topics, concepts or objects dur-
ing an interaction. The Givenness Hierarchy itself is a hierarchical
mapping of cognitive statuses assigned to entities that determine
how likely and in what manner they might be referred to in con-
versation [14]. For example, an object with the cognitive status
“in-focus” may be referred to as “it,” as in “Robot, can you hand it
to me?” Specifically, the Givebness Hierarchy is comprised of six
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GH Level Description Reference Example
In Focus Objects that are "In-focus" are the focal point of the conver- | Can you hand it to me?
sation and are likely to be topics of subsequent utterances,
they are in short-term memory.
Activated Objects that are "Activated" are in short-term memory and | Can you hand me that?
are present in the context of a conversation
Familiar Objects that are "Familiar" are objects that can be uniquely | Could you get me that block?
identified either because they have been recently mentioned
or because they exist within long-term memory
Uniquely Identifiable | A "uniquely Identifiable" object can be identified based on | Pick up the rightmost green block
the nominal alone or can be identified by associating it with
a previously activated referent
Referential An object is "Referential” if it is subsequently mentioned | So there was this green block I saw in a previous
in the conversation or it is clear that the speaker meant to | quadrant. Perhaps that’s the one you need?
refer to a specific object
Type Identifiable An object is "Type Identifiable" if its description is under- | Pass me a green cube
stood

Table 1: The Givenness Hierarchy

hierarchically nested categories of cognitive status, shown in Ta-
ble 1. In this way, it can play a pivotal role in how we can generate
referring expressions for robotics [33].
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Figure 1: Setup for testing referring form selection from
“Evaluating Referring Form Selection Models in Partially-
Known Environments” [15]

2.2 The Givenness Hierarchy in HRI

HRI researchers have investigated how the Givenness Hierarchy
can inform the design of effective, natural communication for robots
doing collaborative tasks alongside humans. For example, Han et al.
[15] present a methodological approach to studying how humans
use the Givenness Hierarchy to communicate in collaborative tasks.
The task environment used in Han et al. [15]’s work (shown in
Figure 1) was partitioned into four quadrants, each containing a
variety of colored blocks. Pairs of participants (an instructor and a

learner) participated in a sequence of four building tasks in which
one participant instructed the other in how to construct a specific
“building” from the blocks. Each building task required some blocks
that were unavailable in the current quadrant, such that the instruc-
tor was required to refer to blocks that were immediately visible,
blocks that had been seen in previous quadrants, and blocks whose
locations were as-yet-unknown. In this way, Han et al. [15] present
a high-quality dataset of instances of open-world references to ob-
jects of various cognitive statuses within the Givenness Hierarchy.

2.3 Gesture & Reference in HRI

However, human references often use more than verbal language.
In addition to verbal language, humans also use gestures to aid
in generating clear, natural referring expressions [10, 21]. This
type of non-verbal communication is critical for situated inter-
action [3, 4, 23]. Therefore, understanding how to interpret and
generate gestures is a key component of multimodal human-robot
collaboration [32]. Robots that can understand and use gesture are
more likeable [20, 27] and more effective [1, 9, 12] collaborators.

Therefore, researchers have developed a variety of frameworks
to categorize and represent gestures for human robot collaboration.
Some frameworks focus on developing an exhaustive set of physical
hand and arm gestures [2, 5], while other frameworks categorize
gestures according to a small number of conversational roles [24].
HRI research shows that these frameworks can inform successful
human-robot interaction [6, 18, 28]. However, these categorization
schemes are limited in open-world environments, as open-world
communication often gives rise to gestures that blur the boundaries
between categories [7, 30]. Simple gestures in open worlds, such
as pointing, can take on more complex meaning [7], including in
open-world human-robot interactions [30].

3 METHOD

The goal of this work is to understand the ways that gestures inform,
and are informed by, cognitive status, in the context of open-world
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reference. Coming to this understanding may help us eventually
develop ways for robots to both understand and generate natural,
multimodal communication during collaborative tasks. To begin
to explore this question, we leverage the dataset of references that
resulted from Han et al. [15]’s open-world reference task, which
contains a wide variety of open-world gestures.

We analyzed twelve videos from Han et al. [15]’s video dataset, a
total of 337 minutes with an average of 28 minutes per video. From
these videos, we identified 1067 gestures in total and an average
of 89 gestures per video. In addition to identifying gestures, we
required an understanding of how gestures indicate the cognitive
status of referenced objects. Because the cognitive status an object
has in the mind of an interactant cannot directly be observed, we
needed a procedure whereby other humans could provide their in-
tuitions as to the cognitive statuses objects might hold throughout
the tasks. Therefore, the goal of our testbed was to create a platform
for online experiments for identifying and labeling the cognitive
status of objects during a collaborative task. In the following sec-
tions, we introduce a key set of challenges faced in developing such
a testbed.

3.1 Experimental Design

In our testbed, participants are asked to watch a series of videos,
complete a task, and respond to two questions following each video.
Each video follows a learner and instructor as they build one of the
structures in the four different quadrants and ends in a carefully
selected utterance that includes both verbal and non-verbal cues.
In addition to watching videos of the block-moving task, partic-
ipants are provided a virtual user interface that visualizes the 72
blocks’ exact locations in each quadrant [16], shown in Figure 3.
As participants watch people in video move blocks, they are asked
to follow along with the interface by dragging virtual blocks into
a “Pieces Moved” area. Through this task participants will have
assumed the cognitive statuses of the learner and instructor.

3.2 Design Considerations

In order to develop the testbed that would enable this experimental
design, we identified three key challenges during the design process.

3.2.1 Challenge 1- How to prompt for an accurate Cognitive status?:
While the Givenness Hierarchy describes how to model cognitive
status and how to code cognitive status [13, 14, 17], actually apply-
ing these rules to a conversation when accounting for both verbal
utterances and non-verbal gestures is a difficult task, as there has
been little research on how gesture should be considered during
manual or automatic coding. As such, there was no well-established
way to prompt a person for the cognitive status of entities in their
mind. Additionally, the nature of a virtual testbed means that the
participant does not directly participate in the block-building ex-
periment, and does not necessarily share the cognitive status of
those participating in the previous experiment [15]. While we de-
veloped the testbed to mimic this experience as closely as possible
(As described in Sections 3.3.2-3.3.3), this furthered the importance
of the prompting questions. However, constructing questions to
prompt participants for an entity’s cognitive status is also a difficult
task, and our questions required piloting to ensure they would elicit
accurate responses.
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3.2.2 Challenge 2 - Virtual Test-bed Ul challenges: To carry out a
virtual experiment that would allow us to accurately model Cogni-
tive Status in the context of a conversation, we needed the test-bed
to display videos to participants. The video medium allowed partici-
pants to watch the learner’s and instructor’s gestures, and therefore
to account for these gestures in their assessment of each block’s
cognitive status. However, the videos provided by [15] introduced
challenges as it was unclear in many situations which object was
being referred to due to issues of color, the size of blocks, and the
people in the prior experiment blocking the view of certain objects.
Addressing these challenges required substantial forethought re-
garding the presentation of our experimental testbed, and required
image processing of our videos to maximize clarity.

3.2.3 Challenge 3 - Mitigating cognitive load: In our preliminary
testing of the virtual test-bed we quickly realized that participants
could be cognitively overloaded while completing the experiment,
potentially interfering with their ability to properly complete the
experiment. This was a result of the high number of tasks our
testbed requires of a participant: they must follow along with an
unfamiliar video, watching and listening to the actions of the In-
structor and Learner, while completing their own task of moving
blocks around. The shape and color of the blocks were also difficult
to make out from the desaturated security camera videos we used,
further increasing difficulty. Addressing these challenges required
additional thought as to the organization and presentation of our
testbed, as well as further image processing.

3.3 Testbed Design

We will now describe how considering the challenges listed above
informed the design of our experimental testbed.

Quadrant 1 Quadrant 2

Video progress: 005228
Quadrant 3 Quadrant 4

° Pieces Moved
tothe Pleces Moved area.
[] f a block has been moved o not,

ove 0 play il Know thal you will not be able o pause or replay the video so

fons in the video, rag them ito the Pieces Moved area

Figure 2: One step of the experiment; users are asked to move
blocks to the location they see in the image

3.3.1 Developing the prompting questions: A key challenge in cre-
ating our test-bed was designing a way to accurately and intuitively
prompt participants about the cognitive status of different blocks.
Our goal for the prompting questions was to obtain the objects that
were “Activated” and the 0-3 objects that may be “In-focus” given
an utterance involving non-verbal gestures from [15].

We quickly realized that broad prompts were ineffective. For
example, our first attempt at developing these questions was “Please
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write down a description for the 7 blocks you think the learner is
the most focused on”” Then, the participant would be prompted with
“Please click on the 7 blocks you just described in the order you
described them.” Our hope was that this would cause participants to
write down objects starting with the “In-focus” objects, followed by
all “Activated” objects. However, it became apparent that this style
of cognitive status prompt was both unintuitive and inconsistent.
Answers did not always match our manually coded cognitive status
and did not follow the guidelines discussed in [13, 14, 17].

To improve our cognitive status prompting method we followed
an iterative process using GH guidelines [13, 14] and came up with
questions that led participants step-by-step through the cognitive
status sorting and labeling process. Instead of asking participants
a few vague questions, we developed a set of specific questions
that were smaller in scope. For example, we chose to explicitly ask
participants “If the instructor were to say "and move ’it’ over here",
please click on any objects (pick 0-3 objects ) which the instructor
could be referring to.” In this way, we mitigated the challenge of
designing intuitive cognitive status prompts by creating this modu-
lar series of precise questions that directly inform which objects
hold certain cognitive statuses.

Quadrant 1 Quadrant 2

Quadrant 3 Quadrant 4

Pieces Moved

[Drag Blocks Here]

Figure 3: A section of the test-bed which allows participants
to interact with the blocks seen in the video

3.3.2 Introduction of a virtual block-building experience: Our initial
design had participants virtually build the structures seen in the
videos, however, as discussed in 3.3.3, we found that this placed too
much cognitive load on the participant. So, we simplified this task
by including a "Pieces Moved" area that participants are required
to move blocks into as they are moved in the video.
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3.3.3 Improving the testbed to decrease cognitive load: We found we
could decrease the cognitive load imposed by the testbed by modi-
fying both tasks that participants had to undertake. To decrease the
cognitive load of the block-moving task, we simplified the process
so that all a participant had to do was move blocks into a "Pieces
Moved" area to keep track of which blocks had been moved. This
way, recalling these blocks would be easier when they are prompted
to select blocks at the end of the utterance. We also aligned the
position of the quadrants in the testbed’s user interface to match
the positions of the quadrants in the video. Then, to reduce the
cognitive load of the video-watching task, we cropped the videos
to include only information useful to the task, and increased the
saturation of the videos to boost the colors of the blocks.

4 CONCLUSION

Multimodal communication, including both speech and gesture, is
a key component of robots’ ability to competently complete shared
tasks with humans. In this paper, we present a novel method for
collecting data about the cognitive status of entities during a task-
based conversation and the challenges that came with developing
such a testbed. We describe the development process for our testbed
and how we overcame the challenges we encountered. This testbed
will allow us to conduct future research on multimodal referring
expression generation in human-robot collaboration.

In our future work, we hope to pilot our testbed online with a
large number of participants. The data from those experiments can
then be used to develop models of how robots should interpret,
represent, and generate meaningful gestures while working with
humans in shared environments. Our work can thus support the
HRI community in working towards developing more natural refer-
ring expression generation models and algorithms in open-world
task scenarios.
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