
Projecting Robot Navigation Paths:
Hardware and Software for Projected AR
Zhao Han,∗‡, Jenna Parrillo†, Alexander Wilkinson†, Holly A. Yanco† and Tom Williams∗
∗Department of Computer Science, Colorado School of Mines, Golden, Colorado, USA 80401

Email: zhaohan@mines.edu, twilliams@mines.edu
†Department of Computer Science, University of Massachusetts Lowell, Lowell, Massachusetts, USA 01854

Email: jenna parrillo@student.uml.edu, alexander wilkinson@student.uml.edu, holly@cs.uml.edu

Abstract—For mobile robots, mobile manipulators, and au-
tonomous vehicles to safely navigate around populous places
such as streets and warehouses, human observers must be able
to understand their navigation intent. One way to enable such
understanding is by visualizing this intent through projections
onto the surrounding environment. But despite the demonstrated
effectiveness of such projections, no open codebase with an
integrated hardware setup exists. In this work, we detail the
empirical evidence for the effectiveness of such directional
projections, and share a robot-agnostic implementation of such
projections, coded in C++ using the widely-used Robot Operating
System (ROS) and rviz. Additionally, we demonstrate a hardware
configuration for deploying this software, using a Fetch robot,
and briefly summarize a full-scale user study that motivates
this configuration. The code, configuration files (roslaunch and
rviz files), and documentation are freely available on GitHub at
https://github.com/umhan35/arrow projection.

Index Terms—Robot navigation, navigation intent, projected
augmented reality (AR), ROS, rviz, open science

I. INTRODUCTION

Robots are increasingly navigating around populous areas
and moving along with people. This is true for service
robots found in airports, hotels, restaurants, delivery robots
on sidewalks, mobile robots in warehouses, and autonomous
cars. For these robots to be deployed safely, humans around
them must understand their navigation intent. HRI researchers
have traditionally focused on arm movement intent [2], [3],
exploring eye gaze [4], [5] and other non-verbal means [6]
for stationary robots to better convey such intent. Recently,
however, HRI researchers have begun to explore the external-
ization or visualization of robotic navigation intent (e.g. path
plans) as well [7], [8], [9], [10], [11], [12], to enable more
understandable robot’s navigation behaviors, so as to improve
trust and acceptance.

One method for conveying navigation intent is through
directional projections [7], [9], [10], [11] such as arrow projec-
tions [7], [11], where the robot is equipped with a projector
and projects directional cues indicating which direction the
robot intends to move. These cues can take the forms of

‡Most of this work was completed while Zhao Han was affiliated with the
University of Massachusetts Lowell. This work has been supported in part by
the Office of Naval Research (N00014-18-1-2503) and the National Science
Foundation (IIS-1909864). We also thank Brian Flynn at the University of
Massachusetts Lowell NERVE Center [1] for building the projector support
with mechanical springs.

Fig. 1. A Fetch mobile manipulator navigating around a wet floor sign without
(upper) and with (lower) arrow projection (purple). Despite of the effectiveness
of arrow projection for revealing navigation path, no public code is readily
available. Here we share such code in ROS and provide hardware support.
Additional videos are available in [13], [14].

lines [9], gradient bands [10], or arrows [7], [11]. Compared
to head-mounted see-through augmented reality [15], [16],
projector-based augmented reality does not require interactants
to wear special hardware, allowing visualizations to be seen
by many observers at once, facilitating usability in group,
team, or crowd contexts [17], [18], [19]. As we will discuss in

https://github.com/umhan35/arrow_projection


Section II, a number of human-subjects studies [7], [9], [10],
[11] have shown the effectiveness of this approach [10], [11].

In this work, we share a practical solution for robotic arrow
projections, describe the nature of the implementation of this
solution, and provide access to the code for that solution.
Additionally, we provide a specific robot and off-the-shelf
projector that we have successfully used, as well as a summary
of a full-scaled user study to provide more empirical evidence.
For the implementation, we used the popular Robot Operating
System (ROS) [20] and its visualization tool, rviz [21], for
rendering the arrows. Using ROS made the implementation
robot-agnostic, as most robots used in research and devel-
opment have ROS support [22]. Even non-ROS frameworks
[23], [24], and cognitive architectures, such as DIARC [25],
typically include bridges to ROS. Using rviz as the rendering
engine eliminates the need for practitioners and researchers
to learn a tool outside of the ROS ecosystem, such as Unity.
Moreover, rviz has a GUI and does not require any computer
graphics programming.

Given the wide range of applications of arrow projection
on different robots and its proven effectiveness and efficiency,
we believe our work is highly relevant and beneficial to the
HRI community. The readily available implementation with
step-by-step documentation also allows researchers to focus on
other interesting and emerging issues under social navigation,
e.g., human navigation modeling [26], [27], [28], [29] and
robot navigation that obeys social or moral norms [30], [31].
We welcome GitHub issues for questions and pull requests.

II. RELATED WORK ON THE EFFECTIVENESS AND
IMPROVED PERCEPTION OF DIRECTION PROJECTION

There is significant empirical evidence that directional pro-
jections have numerous quantifiable benefits. However, these
previous works have not provided publicly accessible software
implementations. Originally proposed to solve the accessibility
issue caused by touch screen placement height, Park and
Kim [32]’s work was among the first attempts to equip a
projector onto a robot, projecting a graphical user interface
(GUI) onto the floor so people at different height can see the
interface.

Before using arrows, other directional projections were
proposed. Inspired by Park and Kim [32], Chadalavada et
al. [9] proposed projecting a line with a grid onto the ground
to indicate navigation path and collision avoidance range of a
robot. Even with this primitive geometry element, Chadalavada
et al. [9]’s work suggests potential for enhanced partici-
pant perception of the robot across multiple attributes when
projections were used, including communication, reliability,
predictability, transparency, and situation awareness. Although
no statistical tests were ran, their descriptive statistics provide
one of the first pieces of evidence for directional projection
effectiveness.

Instead of lines, Watanabe et al. proposed projecting a gra-
dient light band in a hallway to show the navigation trajectory
to be followed by a robotic wheelchair with a wheelchair user
[10]. The projection was compared with no projection, and

Fig. 2. Left: A destination circle in green to indicate the end of a navigation
path. Right: Arrows with a destination circle rendered in rviz.

with a projection paired with a screen. Their results suggested
that adding projections enhanced comfortability and perceived
motion intelligence.

Furthermore, Watanabe et al. [10] found that when projec-
tions were used, nearby walkers chose not to stop and stepped
away towards walls earlier. These behavioral changes are
further evidenced by Chadalavada et al. [11], who show that
projection onto a shared floor space encourages participants to
choose an alternative safer path.

Finally, Coovert et al. used arrow projection to show a
robot’s path and investigated navigation intention prediction
during different periods while the robot was avoiding traffic
cones in a hallway [7]. Their work showed that adding projec-
tions led to observable differences at a variety of time scales, as
participants were typically able to quickly identify the robot’s
navigation intent. Moreover, participants also displayed high
confidence in their identifications.

Researchers have also begun to recently compare be-
tween some of these previously presented visualizations.
Chadalavada et al. [11], for example, recently compared line
and arrow visualizations, and found that arrows are typically
preferred compared to lines and blinking arrows. In our own
work, we thus made an informed decision to use arrow
projections to visualize robot navigation intent. We also added
a solid circle to indicate navigation destination (Fig. 2 left).

III. HARDWARE SETUP: ROBOT, PROJECTOR, POWER

Before we detail the software, we first describe a hardware
configuration in which we validated our software. In this
configuration , a projector is mounted onto a Fetch robot [33],
as shown in Fig. 1. Fetch is a mobile manipulator robot with
a single 7-DOF arm mounted onto its chest. Its height ranges
from 1.096m − 1.491m (3.596ft − 4.892ft). The projector
we used is ViewSonic PA503W [34], as shown on the top of
the images in Fig. 1. It used the DLP technology in its lamp,
has a brightness of 3,800 ANSI lumens and 22,000:1 contrast
ratio, making sure the projection is still legible in indoor
environments with lights on. DLP has higher brightness than
LCDs because LCDs are transmissive and the heat generated
cannot be easily dispatched [35]. We chose this projector as
our prototype, but other projectors will also work as long as
the purchaser makes sure to consider these same three factors,
i.e., the lamp technology, ANSI lumens and contrast ratio.

Although we chose the specific robot and projector, our
implementation is robot- and projector-agnostic. The only
requirement in terms of hardware is the mounting point of a



projector must be within the projector’s throw distance range
to make sure the projection is not blurred. The range should
be available on the product specs page [34].

Because we planned to pan and tilt the projector for tabletop
projection, we attached a ScorpionX MX-64 Robot Turret
[36] to actuate the projector. This is not necessary if only
used for ground projection, for which the turret is constantly
tilted down to the maximum angle. Instead, the projector can
be mounted at a fixed position. However, if the actuation
of the projector is needed, we do recommend stabilizing the
projector, in our case, by using mechanical springs, as shown
in Fig. 1 top.

Another hardware element that might be needed is a
portable power station to power the projector as the robot will
be untethered. For ViewSonic PA503W, it needs AC power
(100−240V ±10%, 50/60Hz) and has a typical consumption
of 260W , which we found most portable power bank cannot
provide (e.g., [37]), leading to projector powered off soon after
turned on. We did find a working portable power station with
500W AC power outlet [38]. However, if another projector
is chosen under the aforementioned three considerations with
less power consumption, the power bank is no longer needed.

IV. IMPLEMENTATION IN ROS

Once a projector is mounted onto a robot and pointing
towards the front of a robot’s base, the projector’s pose relative
to the robot needs to be integrated into the robot’s transform
hierarchy using the “static transform publisher” node [39]
from the “tf” package [40]. A sample ROS launch file [41] is
provided in “tf publisher.launch”.

Note that to make our account of the implementation
beginner-friendly, we added relevant ROS learning resources
to references throughout this and following section.

To retrieve the global navigation path, we subscribed to the
ROS topic “/move base/TrajectoryPlannerROS/global plan”
exposed by the ROS navigation stack [42], [43]. The topic
encloses a Path message [44] from the nav msgs package [45],
including poses discretizing the continuous navigation path.

However, our approach uses a voxelized map, an adaptive
Monte Carlo localization [46], and an A*-based path planner
[47], and as such, the poses in the path are not evenly spaced.
Because an arrow has a physical size, the arrows may overlap
and thus obscure each other if the distance between a pair of
poses is too close. We thus created Algorithm 1 to solve this
problem. The algorithm also allows specifying a navigation
destination circle, as shown in Fig. 2 left.

Algorithm 1 iterates each point from the destination to the
starting point (Line 1, 2, and 13). The destination point is
always the first point in P ′ (Line 3) because we wanted
the destination circle bigger than an arrow. For each point
p in the path, it will skip to the point p′ when the distance
between p and p′ is bigger than the desired distance D (Line
9 before “or”). We stop iterating once the index becomes
negative and is accessed (Line 7), caught by the try-catch
block (Line 4, 10, and 11), or the distance is shorter than
D in the beginning (Line 9 after “or”). The algorithm is

Algorithm 1: Evenly Space Out ROS Nav. Path Points
Input: ROS Global Path Poses P // Unevenly spaced
Input: Double D // Distance between arrows
Input: Double � // Destination circle diameter
Output: Array[x,y,z] P ′

1 i← |P | − 1 // From destination to starting point
2 repeat
3 p← P [i], P ′ ← P ′ ∪ {p}, i′ ← i
4 try
5 repeat
6 i′ ← i′ − 1
7 p′ ← P [i′].pose.position // ROS quirk
8 d←

√
(p.x− p′.x)2 + (p.y − p′.y)2

9 until d < D or (i = |P | − 1 and d < D +�)
10 catch Array Out of Bound Exception
11 // Done. i′ < 0 now. Line 13 breaks the loop.
12 i← i′

13 until i > 0
14 return P ′ // Evenly spaced

implemented in C++ and available in the get sparse points
function in “PathProjection.cpp”.

All the logic in this section is coded in the PathProjection
ROS node [48] in “path projection node.cpp”, “PathProjec-
tion.h”, and “PathProjection.cpp”.

A. Visualizing Arrows in rviz

Once we get a list of evenly spaced-out points from the
ROS navigation path, we create an array of markers [49] as a
MarkerArray message [50] in the “visualization msgs” ROS
package [51], and publish it so it can be added to rviz [52].

In rviz, an arrow consists of a shaft and head. Under the
hood, as seen from its arrow marker.cpp [53] and arrow.cpp
[54] source code, rviz uses four parameters for an arrow –
shaft length, shaft diameter, head length, and head diameter.

However, the rviz GUI only allows for specifying three
parameters, the scale 3D vector through the Marker message
[49] interface, partly because the message was designed to
be generic to specify other shapes such as cubes, spheres,
or cylinders [49]. The generic design turned out to limit
customization of the arrow. To tackle this problem, we spent
significant time investigating rviz’s source code and directly
modified line 108 of arrow marker.cpp [53], in which the
four parameters of the arrow’s shaft and head are set, in .
Specifically, we made the shaft’s length the same as the arrow’s
head’s. A diff file is available in “arrow marker.cpp.diff”. We
hope this can help roboticists to spend more time on their
research of interest instead of on arrow customization.

B. Projecting Arrows in rviz via Projector Lens

Once the arrow list is published, we can subscribe to the
arrow list’s ROS topic in order to render the arrows in rviz
(Fig. 2 right). This renders each arrow at position, (x, y, 0),
where 0 denotes rendering on the ground plane. In theory,



Fig. 3. Three other visualizations to show the generalizability for our work:
point cloud for perceived objects [58], multiple spheres for ground obstacle,
cube for caddy section. Any rviz visualization can be projected.

if we can place a virtual camera in rivz at the pose relative
to the robot, exactly the same as where the projector is
mounted towards the ground (See Fig. 1), we can get a
2D image from the camera and it becomes the input to the
projector. This is accomplished using the “rviz camera stream”
plugin [55]. We provide a sample rviz configuration file in
“path projection.rviz”. Then we used the image view node
[56] to subscribe to that image topic, and made it full screen
in Ubuntu’s keyboard settings (Toggle full-screen mode).

Finally, to make the projection to the physical world not dis-
torted, the projector lens needs to be calibrated, which we used
the pinhole lens model, as seen in [57], [58]. A sample Cam-
eraInfo message [59] and a launch file are provided in “pro-
jector camera info.yaml” and “camera publisher.launch”.

V. EVALUATION

In this section, we describe the experimental validation of
our arrow projections in the context of human-robot commu-
nication during a collaborative mobile manipulation task [60],
where a Fetch robot projected arrows to show its detour path,
spheres to indicate obstacles, and projected point clouds [58]
to indicate mis-/recognized objects onto a table (cp. the similar
visualization strategy of Reardon et al. [61] in field navigation
contexts). In our approach, ground and tabletop projections
were compared with the following conditions: physical replay
of its past navigation path and manipulation plans (pick and
place), and/or speech describing the locations of (a) the objects
robot picked/placed and (b) the obstacles around which robots
detoured.

This experiment assessed whether our visualizations enabled
participants who were temporarily not collocated with the
robot to infer the identities and locations of obstacles and
of misrecognized or misplaced objects, and the reason for
detours. Arrow projections, specifically when paired with
sphere projections enabled 93.7% accuracy for inferring the
location of obstacles requiring detours. In contrast, speech-
based communication only afforded 83.2% accuracy.

As such, this experiment provided empirical evidence for the
benefits of our approach. Moreover, we again stress that using
our approach, any visualizations that can be added to rviz can
be projected (Fig. 3), as long as they are in the virtual camera’s
view. This includes basic shapes, such as cubes, spheres, and
cylinders (visualization msgs/Marker [49]) as well as complex

Projector

Robot

Mount 
onto 
robot

Battery

Add 
projector 

frame

ROS
nav.
stack

Space
out

path

Specify
arrow
array

Global
path

rviz
Camera
stream

Marker
Array*

Image 
viewer

2D
imageHDMI

* Any visualization in rviz (e.g., line, 
point cloud, cube, mesh) can be 
projected using this technique.

Fig. 4. High-level representation of the arrow projection implementation, with
a note on the generalizability of our technique to other forms of visualizations.

objects specified in polygon mesh (MESH RESOURCE in
Marker [49]; See [62] for its usage). However, there are a
number of remaining limitations to this approach.

VI. LIMITATIONS

Because the projector must be mounted at a fixed position,
it introduces a few limitations. First, the projector must be
mounted above the lower value of the projection throw dis-
tance range, defined as the distance between projector lens
and projection surface. Otherwise, projection onto the ground
becomes blurred. This is not a problem for a tall robot, such as
the Fetch mobile manipulator, whose height ranges 1.096m−
1.491m (3.596ft − 4.892ft), within the throw distance of
ViewSonic PA503W 0.99m − 10.98m (3.25ft − 36.02ft).
However, mobile robots without upper bodies are often lower
than 1m, such as TurtleBot or PyRobot [63]. Using such robots
thus requires building a tall structure on the robot, or selecting
a projector with a short throw distance.

Another limitation is projection size. This can be clearly
seen from Fig. 1 bottom, the slightly brighter area, which is
limited to around 55× 98cm2 in a 16 : 9 ratio. This results in
a small projection area, preventing projecting arrows farther
along a navigation path, which may lead to problems in large
spaces like warehouses. One solution is to mount another
projector lower, pointing the ground further away, similar to
the headlight of a car, so that the projection can be thrown
further to cover a long area, although this may artificially
inflate arrow size. Fortunately, because we know the distance
between arrows and the projector lens, we can shrink the size
of arrows proportionally to distance.

VII. CONCLUSIONS

We provided arrow projection software and summarized the
demonstrated benefits of this software. As shown in Fig. 4,
to project arrows, one needs to mount a projector onto a
robot with a portable power station, integrate the projector’s
pose into the robot’s transform hierarchy, space out the ROS
navigation stack’s global path, render the associated arrows in
rviz, and finally output to the calibrated projector. Additionally,
we also showed the generalization of our technique, i.e., the
capability to project any rviz visualizations.



REFERENCES

[1] “The New England Robotics Validation and Experimentation (NERVE)
Center at the University of Massachusetts Lowell,” https://www.uml.edu/
Research/NERVE/.

[2] M. J. Gielniak and A. L. Thomaz, “Generating anticipation in robot
motion,” in 2011 RO-MAN. IEEE, 2011, pp. 449–454.

[3] M. Kwon, S. H. Huang, and A. D. Dragan, “Expressing robot incapa-
bility,” in Proceedings of the 2018 ACM/IEEE International Conference
on Human-Robot Interaction, 2018, pp. 87–95.

[4] A. Moon, D. M. Troniak, B. Gleeson, M. K. Pan, M. Zheng, B. A.
Blumer, K. MacLean, and E. A. Croft, “Meet me where i’m gazing:
how shared attention gaze affects human-robot handover timing,” in
Proceedings of the 2014 ACM/IEEE international conference on Human-
robot interaction, 2014, pp. 334–341.

[5] H. Admoni and B. Scassellati, “Social eye gaze in human-robot interac-
tion: a review,” Journal of Human-Robot Interaction, vol. 6, no. 1, pp.
25–63, 2017.

[6] S. Saunderson and G. Nejat, “How robots influence humans: A survey
of nonverbal communication in social human–robot interaction,” Inter-
national Journal of Social Robotics, vol. 11, no. 4, pp. 575–608, 2019.

[7] M. D. Coovert, T. Lee, I. Shindev, and Y. Sun, “Spatial augmented reality
as a method for a mobile robot to communicate intended movement,”
Computers in Human Behavior, vol. 34, pp. 241–248, 2014.

[8] D. Szafir, B. Mutlu, and T. Fong, “Communicating directionality in
flying robots,” in 2015 10th ACM/IEEE International Conference on
Human-Robot Interaction (HRI). IEEE, 2015, pp. 19–26.

[9] R. T. Chadalavada, H. Andreasson, R. Krug, and A. J. Lilienthal, “That’s
on my mind! robot to human intention communication through on-board
projection on shared floor space,” in 2015 European Conference on
Mobile Robots (ECMR), 2015, pp. 1–6.

[10] A. Watanabe, T. Ikeda, Y. Morales, K. Shinozawa, T. Miyashita, and
N. Hagita, “Communicating robotic navigational intentions,” in 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2015, pp. 5763–5769.

[11] R. T. Chadalavada, H. Andreasson, M. Schindler, R. Palm, and A. J.
Lilienthal, “Bi-directional navigation intent communication using spatial
augmented reality and eye-tracking glasses for improved safety in
human–robot interaction,” Robotics and Computer-Integrated Manufac-
turing, vol. 61, p. 101830, 2020.

[12] T. Blenk and S. Cramer, “Lane change decision making for automated
driving,” in Proceedings of the 2021 ACM/IEEE International Confer-
ence on Human-Robot Interaction, 2021, pp. 6–15.

[13] “Accompanying video 1, with destination circle,” https://osf.io/3d8c5/
?view only=09bc6b19cb144b8e8c689f00eb59e828.

[14] “Accompanying video 2,” https://osf.io/u2g5x/?view only=
09bc6b19cb144b8e8c689f00eb59e828.

[15] T. Williams, D. Szafir, T. Chakraborti, and H. Ben Amor, “Virtual,
augmented, and mixed reality for human-robot interaction,” in Compan-
ion of the 2018 ACM/IEEE International Conference on Human-Robot
Interaction, 2018, pp. 403–404.

[16] T. Williams, N. Tran, J. Rands, and N. T. Dantam, “Augmented, mixed,
and virtual reality enabling of robot deixis,” in International Conference
on Virtual, Augmented and Mixed Reality. Springer, 2018, pp. 257–275.

[17] C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction:
Crowd-aware robot navigation with attention-based deep reinforcement
learning,” in 2019 International Conference on Robotics and Automation
(ICRA). IEEE, 2019, pp. 6015–6022.

[18] S. Sebo, B. Stoll, B. Scassellati, and M. F. Jung, “Robots in groups
and teams: a literature review,” Proceedings of the ACM on Human-
Computer Interaction, vol. 4, no. CSCW2, pp. 1–36, 2020.

[19] R. Oliveira, P. Arriaga, and A. Paiva, “Human-robot interaction in
groups: Methodological and research practices,” Multimodal Technolo-
gies and Interaction, vol. 5, no. 10, p. 59, 2021.

[20] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, A. Y. Ng et al., “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, 2009.

[21] D. Gossow, A. Leeper, D. Hershberger, and M. Ciocarlie, “Interactive
markers: 3-d user interfaces for ros applications [ros topics],” IEEE
Robotics & Automation Magazine, vol. 18, no. 4, pp. 14–15, 2011.

[22] “Official ROS robot showcase,” https://robots.ros.org/.
[23] J. Kramer and M. Scheutz, “Development environments for autonomous

mobile robots: A survey,” Autonomous Robots, vol. 22, no. 2, pp. 101–
132, 2007.

[24] A. Elkady and T. Sobh, “Robotics middleware: A comprehensive lit-
erature survey and attribute-based bibliography,” Journal of Robotics,
2012.

[25] M. Scheutz, T. Williams, E. Krause, B. Oosterveld, V. Sarathy, and
T. Frasca, “An overview of the distributed integrated cognition affect
and reflection diarc architecture,” Cognitive architectures, pp. 165–193,
2019.

[26] S. J. Guy, M. C. Lin, D. Manocha et al., “Modeling collision avoidance
behavior for virtual humans.” in AAMAS, vol. 2010, 2010, pp. 575–582.

[27] P. Ratsamee, Y. Mae, K. Ohara, M. Kojima, and T. Arai, “Social navi-
gation model based on human intention analysis using face orientation,”
in 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, 2013, pp. 1682–1687.

[28] G. Ferrer and A. Sanfeliu, “Proactive kinodynamic planning using the
extended social force model and human motion prediction in urban en-
vironments,” in 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2014, pp. 1730–1735.

[29] Y. Che, C. T. Sun, and A. M. Okamura, “Avoiding human-robot
collisions using haptic communication,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2018, pp.
5828–5834.

[30] S. B. Banisetty and T. Williams, “Implicit communication through
social distancing: Can social navigation communicate social norms?” in
Companion of the 2021 ACM/IEEE International Conference on Human-
Robot Interaction, 2021, pp. 499–504.

[31] S. B. Banisetty, S. Forer, L. Yliniemi, M. Nicolescu, and D. Feil-Seifer,
“Socially aware navigation: A non-linear multi-objective optimization
approach,” ACM Transactions on Interactive Intelligent Systems (TiiS),
vol. 11, no. 2, pp. 1–26, 2021.

[32] J. Park and G. J. Kim, “Robots with projectors: an alternative to an-
thropomorphic hri,” in Proceedings of the 4th ACM/IEEE international
conference on Human robot interaction, 2009, pp. 221–222.

[33] M. Wise, M. Ferguson, D. King, E. Diehr, and D. Dymesich, “Fetch and
freight: Standard platforms for service robot applications,” in Workshop
on autonomous mobile service robots, 2016, fetch robot webpage: https:
//fetchrobotics.com/fetch-mobile-manipulator/.

[34] “ViewSonic PA503W,” https://www.viewsonic.com/us/pa503w.html.
[35] L. J. Hornbeck, “Digital light processing for high-brightness high-

resolution applications,” in Projection Displays III, vol. 3013. Interna-
tional Society for Optics and Photonics, 1997, pp. 27–40.

[36] “ScorpionX MX-64 Robot Turret,” https://www.trossenrobotics.com/p/
ScorpionX-RX-64-robot-turret.aspx.

[37] “Jackery Portable Power Station,” https://www.amazon.com/dp/
B07D29QNMJ.

[38] “Aeiusny Portable Solar Generator,” https://www.amazon.com/dp/
B095P7QX3G/.

[39] “The static transform publisher ROS node,” https://wiki.ros.org/tf#
static transform publisher.

[40] “The tf ROS package,” https://wiki.ros.org/tf.
[41] “The roslaunch tool,” https://wiki.ros.org/roslaunch.
[42] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Kono-

lige, “The office marathon: Robust navigation in an indoor office
environment,” in 2010 IEEE international conference on robotics and
automation. IEEE, 2010, pp. 300–307.

[43] “The navigation stack in ROS,” https://wiki.ros.org/navigation.
[44] “The Path message from the nav msgs ROS package,” https://wiki.ros.

org/nav msgs.
[45] “The nav msgs ROS package,” https://wiki.ros.org/nav msgs.
[46] D. Fox, “Kld-sampling: Adaptive particle filters and mobile robot local-

ization,” Advances in Neural Information Processing Systems (NIPS),
2002.

[47] K. Konolige, “A gradient method for realtime robot control,” in Proceed-
ings. 2000 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2000), vol. 1. IEEE, 2000, pp. 639–646.

[48] “Understanding Nodes in the official ROS tutorial,” https://wiki.ros.org/
ROS/Tutorials/UnderstandingNodes.

[49] “The generic Marker message in the visualization msgs ROS package,”
https://docs.ros.org/en/api/visualization msgs/html/msg/Marker.html.

[50] “The MarkerArray message in the visualization msgs ROS package,”
https://docs.ros.org/en/api/visualization msgs/html/msg/MarkerArray.
html.

[51] “The visualization msgs ROS package,” https://ros.org/wiki/
visualization msgs.

[52] “rviz: The 3D visualization tool for ROS,” https:///wiki.ros.org/rviz.

https://www.uml.edu/Research/NERVE/
https://www.uml.edu/Research/NERVE/
https://osf.io/3d8c5/?view_only=09bc6b19cb144b8e8c689f00eb59e828
https://osf.io/3d8c5/?view_only=09bc6b19cb144b8e8c689f00eb59e828
https://osf.io/u2g5x/?view_only=09bc6b19cb144b8e8c689f00eb59e828
https://osf.io/u2g5x/?view_only=09bc6b19cb144b8e8c689f00eb59e828
https://robots.ros.org/
https://fetchrobotics.com/fetch-mobile-manipulator/
https://fetchrobotics.com/fetch-mobile-manipulator/
https://www.viewsonic.com/us/pa503w.html
https://www.trossenrobotics.com/p/ScorpionX-RX-64-robot-turret.aspx
https://www.trossenrobotics.com/p/ScorpionX-RX-64-robot-turret.aspx
https://www.amazon.com/dp/B07D29QNMJ
https://www.amazon.com/dp/B07D29QNMJ
https://www.amazon.com/dp/B095P7QX3G/
https://www.amazon.com/dp/B095P7QX3G/
https://wiki.ros.org/tf#static_transform_publisher
https://wiki.ros.org/tf#static_transform_publisher
https://wiki.ros.org/tf
https://wiki.ros.org/roslaunch
https://wiki.ros.org/navigation
https://wiki.ros.org/nav_msgs
https://wiki.ros.org/nav_msgs
https://wiki.ros.org/nav_msgs
https://wiki.ros.org/ROS/Tutorials/UnderstandingNodes
https://wiki.ros.org/ROS/Tutorials/UnderstandingNodes
https://docs.ros.org/en/api/visualization_msgs/html/msg/Marker.html
https://docs.ros.org/en/api/visualization_msgs/html/msg/MarkerArray.html
https://docs.ros.org/en/api/visualization_msgs/html/msg/MarkerArray.html
https://ros.org/wiki/visualization_msgs
https://ros.org/wiki/visualization_msgs
https:///wiki.ros.org/rviz


[53] “arrow marker.cpp file in the rviz source code,” https:
//github.com/ros-visualization/rviz/blob/melodic-devel/src/rviz/default
plugin/markers/arrow marker.cpp.

[54] “arrow.cpp file in the rviz source code,” https://github.com/
ros-visualization/rviz/blob/melodic-devel/src/rviz/ogre helpers/arrow.
cpp.

[55] “The rviz camera stream ROS package – a rviz plugin,” https://github.
com/uml-robotics/rviz camera stream.

[56] “image view: A simple viewer for ROS image topics.” https:///wiki.ros.
org/image view.

[57] D. Wang, C. Kohler, A. ten Pas, A. Wilkinson, M. Liu, H. Yanco, and
R. Platt, “Towards assistive robotic pick and place in open world envi-
ronments,” in Proceedings of the International Symposium on Robotics
Research (ISRR), 2019.

[58] Z. Han, A. Wilkinson, J. Parrillo, J. Allspaw, and H. A. Yanco,
“Projection mapping implementation: Enabling direct externalization of
perception results and action intent to improve robot explainability,” the

AI-HRI Symposium at AAAI-FSS 2020, 2020.
[59] “The CameraInfo message in sensor msg ROS package.” https://docs.

ros.org/en/api/sensor msgs/html/msg/CameraInfo.html.
[60] Z. Han and H. A. Yanco, “Explaining a robot’s past: Communicating

missing causal information by replay, speech and projection,” ACM
Transactions on Human-Robot Interaction (THRI), Under review.

[61] C. Reardon, K. Lee, and J. Fink, “Come see this! augmented reality
to enable human-robot cooperative search,” in 2018 IEEE International
Symposium on Safety, Security, and Rescue Robotics (SSRR). IEEE,
2018, pp. 1–7.

[62] “Ros wiki section for mesh resource rviz marker,” https:
//wiki.ros.org/rviz/DisplayTypes/Marker#Mesh Resource .28MESH
RESOURCE.3D10.29 .5B1.1.2B-.5D.

[63] A. Murali, T. Chen, K. V. Alwala, D. Gandhi, L. Pinto, S. Gupta, and
A. Gupta, “Pyrobot: An open-source robotics framework for research
and benchmarking,” arXiv preprint arXiv:1906.08236, 2019.

https://github.com/ros-visualization/rviz/blob/melodic-devel/src/rviz/default_plugin/markers/arrow_marker.cpp
https://github.com/ros-visualization/rviz/blob/melodic-devel/src/rviz/default_plugin/markers/arrow_marker.cpp
https://github.com/ros-visualization/rviz/blob/melodic-devel/src/rviz/default_plugin/markers/arrow_marker.cpp
https://github.com/ros-visualization/rviz/blob/melodic-devel/src/rviz/ogre_helpers/arrow.cpp
https://github.com/ros-visualization/rviz/blob/melodic-devel/src/rviz/ogre_helpers/arrow.cpp
https://github.com/ros-visualization/rviz/blob/melodic-devel/src/rviz/ogre_helpers/arrow.cpp
https://github.com/uml-robotics/rviz_camera_stream
https://github.com/uml-robotics/rviz_camera_stream
https:///wiki.ros.org/image_view
https:///wiki.ros.org/image_view
https://docs.ros.org/en/api/sensor_msgs/html/msg/CameraInfo.html
https://docs.ros.org/en/api/sensor_msgs/html/msg/CameraInfo.html
https://wiki.ros.org/rviz/DisplayTypes/Marker#Mesh_Resource_.28MESH_RESOURCE.3D10.29_.5B1.1.2B-.5D
https://wiki.ros.org/rviz/DisplayTypes/Marker#Mesh_Resource_.28MESH_RESOURCE.3D10.29_.5B1.1.2B-.5D
https://wiki.ros.org/rviz/DisplayTypes/Marker#Mesh_Resource_.28MESH_RESOURCE.3D10.29_.5B1.1.2B-.5D

	Introduction
	Related Work on The Effectiveness and Improved Perception of Direction Projection
	Hardware Setup: Robot, Projector, Power
	Implementation in ROS
	Visualizing Arrows in rviz
	Projecting Arrows in rviz via Projector Lens

	Evaluation
	Limitations
	Conclusions
	References

