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ABSTRACT
While there has been a wealth of research on the syntax, semantics,
and pragmatics of human-robot communication, there has been
less attention paid to the acoustics of robot communication. In this
work, we define two key problems central to the acoustics of HRI:
(1) Proxemics-Guided Dyadic Acoustics, and (2) Acoustics-Guided
Dyadic Proxemics. We present an initial mathematical solution
to these problems, and present proof-of-concept validation of our
solution to the Proxemics-Guided Dyadic Acoustics problem.

1 INTRODUCTION
Language-capable robots hold substantial promise in pro-social
areas of national interest [18], including eldercare [2], education [5,
15], and disaster response [1]. While there has been a wealth of
research on the syntax, semantics, and pragmatics of human-robot
communication, there has been less attention paid to the acoustics
(i.e., the properties of how sound is transmitted) of robot com-
munication, a dimension of communication that is fundamentally
entwined with a robot’s situated, embodied nature.

Only recently have acoustic concerns begun to attract signifi-
cant attention within the human-robot interaction (HRI) commu-
nity; however, even these recent explorations have missed funda-
mental questions of robot acoustics that are most critical to real-
world human-robot interactions, such as how loudly robots need to
speak given the distance to their interlocutor and contextual factors,
such as environmental interference, individual sensory differences,
context-based acoustic norms, and privacy concerns.

In this work, we thus specifically define two key problems central
to the acoustics of HRI:

Proxemics-Guided Dyadic Acoustics: Given the distance
between the robot and its intended interactant, and how
loudly it wishes its speech to be perceived by that interac-
tant, how loudly should the robot speak?

Acoustics-Guided Dyadic Proxemics: Given how loudly a
robot plans to speak, and how loudly it wishes its speech to
be heard by an interactant, where should the robot position
itself with respect to that interactant?

2 RELATEDWORK
2.1 The Use of Sound in HRI
While there is a vast literature on natural language communication
in robotics [18], only recently has there been an active community
of researchers exploring the use of sound in HRI. Some of this work
can be seen in a 2023 special issue on Sound in HRI in the ACM
Transactions on Human-Robot Interaction [16], which focused on
design strategies, evaluation methods, and applications for sound

in HRI. For example, researchers publishing in that special issue
began to explore the detection of social presence from acoustic
features [3], designing the acoustics of robots’ nonverbal cues [14,
20], motions [4, 12] and background soundscapes [19], and the
design of sounds that communicate things about robots [7].

Also relevant to our aims is the robot proxemics work of Ross
Mead [8–11], which explored where a robot should position itself
so that it can hear interactants through its automated speech recog-
nition system (rather than where it should position itself so it can
be heard by an interactant, which is a focus of our work). Similarly
relevant to our aims is the privacy-sensitive proxemics research of
Sihui Li, who explored where a robot should position itself so that
it cannot hear interactants, for privacy reasons [6]; however, Li’s
research assumed pre-defined privacy regions around interactants,
rather than actually modeling the acoustic transmission of sound.

2.2 Relevant Acoustics Research Beyond HRI
There is a vast literature on sound design considerations outside of
HRI, especially in areas like health and safety [17], as well as studies
of issues like the impact of sound interference on conversations.
Much of this work is tailored to understanding sound design in
well-understood built environments, where factors such as sound
directivity [13], and the size and absorption parameters of that en-
vironment; however, for mobile robots traveling through dynamic
environments, these parameters might be difficult or impossible to
accurately acquire or estimate.

3 TECHNICAL APPROACH
Proxemics-Guided Dyadic Acoustics and Acoustics-Guided Dyadic
Proxemics each fundamentally involve relationships between (1)
the distance between a robot and its interactant, (2) the volume
at which the robot speaks, and (3) the volume at which the robot
wishes to be heard by its interactant.

More formally, these problems involve a relationship between
the volume setting 𝑉𝑅 of the robot’s speech output, the desired
Sound Pressure Level (SPL) of the robot’s speech at the human’s
position 𝑆𝑃𝐿𝐻 , and the distance between human and robot 𝐷𝐻,𝑅 .

To solve the Proxemics-Guided Dyadic Acoustics problem, we
must specifically ask: given the desired Sound Pressure Level 𝑆𝑃𝐿𝐻
of the robot’s speech at the human’s position, as well as the distance
between the robot and human 𝐷𝑅,𝐻 , how can we calculate 𝑉𝑅?

The first step is understanding, given 𝑆𝑃𝐿𝐻 and 𝐷𝐻,𝑅 , what
sound pressure level at the robot’s 𝑆𝑃𝐿𝑅 position will result in that
desired 𝑆𝑃𝐿𝐻 . To solve this, we can use Equation 1:

𝑆𝑃𝐿𝐻 = 𝑆𝑃𝐿𝑅 + 20𝐿𝑜𝑔10 (
𝑟2
𝑟1
) (1)
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Here, 𝑟1 is the distance at which 𝑆𝑃𝐿𝐻 is to be measured (i.e.,
𝐷𝐻,𝑅 ), and 𝑟2 is the distance at which 𝑆𝑃𝐿𝑅 was determined from
the source of the robot’s speech.

Subtracting the second term from both sides, we get:

𝑆𝑃𝐿𝑅 = 𝑆𝑃𝐿𝐻 − 20𝐿𝑜𝑔10 (
𝑟2
𝑟1
) (2)

Our next step is understanding the relationship between a se-
lected volume level 𝑉𝑅 on the robot platform, and the Sound Pres-
sure Level 𝑆𝑃𝐿𝑅 that would be measured at standard distance 𝑟2
from the robot at that volume level.

To solve this, we can use Equation 3, which calculates the 𝑆𝑃𝐿𝑅
from 𝑉𝑅 (operationalized as the percentage of the robot’s maxi-
mum volume setting 𝜔), and 𝜒𝑟2 , a coefficient determined through
calibration at standard distance 𝑟2.

𝑆𝑃𝐿𝑅 = 𝜒𝑟2 × 𝑙𝑛(𝑉𝑅) + 𝜔 (3)

Inverting Equation 3, we receive an equation for converting from
a desired 𝑆𝑃𝐿𝑅 at the robot to a volume setting𝑉𝑅 that will produce
that Sound Pressure Level:

𝑉𝑅 = 𝑒

𝑆𝑃𝐿𝑅−𝜔
𝜒𝑟2 (4)

Combining Equations 2 and 4, we thus get an equation for the
Proxemics-Guided Dyadic Acoustics problem:

𝑉𝑅 = 𝑒

𝑆𝑃𝐿𝐻 −20𝐿𝑜𝑔10 (
𝑟2
𝑟1 )−𝜔

𝜒𝑟2 (5)

Conversely and conveniently, we can rearrange the equation to
solve the Acoustics-Guided Proxemics problem:

𝑟2 =
𝑟1

10
𝑆𝑃𝐿𝐻 −𝜔−𝜒𝑟2 ×𝑙𝑛 (𝑉𝑅 )

20

(6)

4 CALIBRATION
To employ either solution, parameters 𝜒𝑟2 and𝜔 must be fit through
calibration. This can be achieved by positioning an Sound Level
Meter (SLM) at distance 𝑟2 from the robot’s speakers, running a
440 Hz tone generator at 0%, 10%, 20%, ... 100% volume, recording a
set (in our case, 20) of readings at each step, averaging the readings
at each step after removing outliers, and then solving for 𝜒𝑟2 .

Our own calibration procedures at a distance of 𝑟2 = 0.06𝑚
produced values of 𝜒𝑟2 = 31.004 and 𝜔 = 104.89 (𝑟2 = 0.9761).

5 EVALUATION
To validate our approach, we performed tests with a mobile robot
positioned at 1, 2, 3, and 4 meters from an SLM in a relatively
clear, somewhat sound-isolated, square-shaped room of about 24𝑚2.
At each position, a 440 Hz sine pattern was played by the robot,
with a desired 𝑆𝑃𝐿𝐻 set to 60 𝑑𝐵𝑆𝑃𝐿 (the approximate SPL of a
human voice). Using Equation 5, 𝑆𝑃𝐿𝑅 values of 84.4, 90.5, 94.0,
and 96.5 𝑑𝐵𝑆𝑃𝐿 were calculated, resulting in 𝑉𝑅 values of 63.3%,
72.4%, 78.4%, and 82.9%, respectively. As shown in Fig 1, results
were extremely accurate at 0 𝑚, and slightly too loud at farther
distances, with the robot overcompensating for the distance to its
ostensible interlocutor. Also of note is the non-monotonic increase
in measured SPL, indicating a potential shift in background noise
that suggests a need for future replication of our experiments.

Figure 1: Preliminary Validation Results

6 CONCLUSION
We have defined two new problems that need tackling in the field
of HRI: (1) Proxemics-Guided Dyadic Acoustics, and (2) Acoustics-
Guided Dyadic Proxemics. We have briefly presented a technical
definition of a solution to these problems, and a proof-of-concept
highlighting the success of this method for the Proxemics-Guided
Dyadic Acoustics problem. Of course, future work is needed to
expand on these preliminary investigations, as well as to explore
beyond the initial dyadic formulations of these problems to handle
multi-agent contexts.
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