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ABSTRACT 
This project represents a first step towards bridging the gap 
between HCI and cognition research.  Using functional 
near-infrared spectroscopy (fNIRS), we introduce tech-
niques to  non-invasively measure a range of cognitive 
workload states that have implications to HCI research, 
most directly usability testing. We present a set of usability 
experiments that illustrates how fNIRS brain measurement 
provides information about the cognitive demands placed 
on computer users by different interface designs.  

ACM Classification Keywords: H5.2 [Information inter-
faces and presentation]: User Interfaces. - Graphical user 
interfaces. 

Author Keywords: usability, brain, mental workload, 
fNIRS, brain-computer interaction. 
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INTRODUCTION 
Usability researchers attempt to formalize and quantify the 
process whereby an interface is evaluated, and to measure 
precisely the degree to which an interface meets the goals 
of its intended audience.  Although one can measure the 
accuracy with which users complete tasks and the time it 
takes to complete a task with a user interface (UI), measur-
ing subjective factors such as workload, frustration, and en-
joyment is more difficult.  These factors are often “meas-
ured” by qualitative observation of subjects or by adminis-
tering subjective surveys to subjects. Such surveys are in-
herently subjective and they can elicit participant biases, as 
participants often attempt to please experiment investiga-
tors in their responses. Additionally, surveys are often ad-
ministered after a task has been completed, lacking insight 
into the users’ changing experience as they work with a UI. 

Our research addresses these evaluation challenges with re-
spect to mental workload (WL). We use a non-invasive 
brain sensing technique called functional near infrared 
spectroscopy (fNIRS) to record real time, objective meas-

urements of users’ WL while working with UIs. Users can 
wear the comfortable fNIRS device (Fig. 1) in working 
conditions.  

Using brain measurement to quantify the level of WL ex-
perienced by computer users is a difficult task because 
“workload” is somewhat of an umbrella term. The brain is 
a complex structure, and there are many cognitive re-
sources that work in serial and in parallel to process infor-
mation.  Indeed, when we compute arithmetic, compose a 
poem, or chat with a friend, we are experiencing some form 
of WL. 

 
Figure 1: A participant wears the comfortable fNIRS. 

However, for each task that we take part in, we may use 
different (and often overlapping) cognitive resources. 
While there are many definitions in the literature describing 
WL [13, 14, 33], for the purposes of this paper we define  it 
in functional terms as: The load placed on various cogni-
tive resources in the brain in order to complete a task that 
involves the processing of information.  

Since the processing of information is a key element in us-
ers’ interactions with computers, the field of human-
computer interaction (HCI) is derived from and heavily in-
fluenced by cognitive psychology. We seek a thorough un-
derstanding of the effects that a new UI will have on users’ 
mental resources.  Ideally, a UI will be easy to use, allow-
ing users to focus their mental resources on the task at 
hand. However, there remains a large gap between the 
high-level references made to these mental resources in 
HCI research and the low-level ability to pin point and 
measure these resources in human users.  For this reason, 
Czerwinski and Larson [9] discuss the need to tie together 
cognition research and HCI design principles. They note 
that this is not an easy task, as most cognitive research fo-
cuses on task manipulations that are on a low-level, with a 
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cognitive load that is small, and the jump from these spe-
cific cognitive tasks to UI tasks administered in real world 
settings is large.  

With these challenges in mind, our work provides two pri-
mary research contributions to the field of HCI: 

1) We attempt to bridge the gap between HCI and cognition 
research. We introduce techniques to measure via non-
invasive means a range of cognitive WL states that have 
implications to HCI research.  We describe several cogni-
tive resources at a low-level, as they pertain to the brain, 
and at a high-level, as they relate to the field of HCI.  

2) We demonstrate ways that fNIRS brain measurement 
can be used to complement usability testing by measuring a 
range of WL states objectively and in real time.  This addi-
tional information can yield a more thorough, comprehen-
sive understanding about a UI design than can be achieved 
with standard usability testing.  

We begin this paper by describing related work on the 
fNIRS device and the human brain and go on to describe an 
experiment protocol designed to measure the level of load 
placed on users’ low-level cognitive resources while work-
ing with a UI.  We then present a series of usability ex-
periments that apply this protocol to the evaluation of de-
sign choices of UIs. Finally, we describe our results and 
analysis, as well as avenues for future work in this area. 

RELATED WORK 
Our interdisciplinary research builds on work in biomedical 
engineering, cognitive psychology, and HCI.  

Measuring the Human Brain with fNIRS 
EEG has been used in the HCI and Human Factors domains 
to measure various aspects of mental workload [4, 12, 24, 
28, 34]. While a promising tool for non-invasive brain 
measurements, EEG has several drawbacks such as low 
spatial resolution, susceptibility to noise, and long set-up 
time which can make EEG challenging to use in realistic 
human-computer interactions. fNIRS has recently been in-
troduced [8] to overcome many of the drawbacks of the 
EEG and other brain monitoring techniques. The tool, still 
a research modality, uses light sources in the near infrared 
wavelength range (650-850 nm) and optical detectors to 
probe brain activity, as depicted in Figure 2. Deoxygenated 
(Hb) and oxygenated hemoglobin (HbO) are the main ab-
sorbers of near infrared light in tissues during hemody-
namic and metabolic changes associated with neural activ-
ity in the brain [8]. These changes can be detected measur-
ing the reflected light that has probed the brain cortex [8, 
19].  

Experimental Studies of Workload in the Brain   
To date, most experimental psychology studies explore 
brain functioning while people conduct simple, highly con-
trolled tasks that have been designed to target a specific 
cognitive resource, such as visual scanning and perception, 
working memory (WM), and  similar higher-order cogni-

tive functions.    Many of these resources relate directly to 
current research in HCI. 

Working Memory 
WM refers to an information processing system that tempo-
rarily stores information in order to serve higher-order cog-
nitive functions such as planning, problem solving, and un-
derstanding language [3].  One of the most common tasks 
used in cognitive psychology to elicit load on participants’ 
WM resources is the n-back task [11, 23, 30]. The n-back 
task is depicted in Figure 3.   

 
Figure 2:  Light in the near-infrared range is pulsed into the 

brain cortex and the reflected light is detected. 

A series of letters is presented to participants, one letter at a 
time, on the computer screen.  For each letter, the partici-
pant indicates whether or not that letter matches the letter 
that she saw n letters previously.  During the 3-back condi-
tion, participants must store and manipulate, three items at 
a time in WM, and for the 1-back task, they only manipu-
late and store one item at a time.  

 
Figure 3: Depiction of the 0-back and 3-back task.   

Parasuraman [27] found that WM and executive function-
ing tasks activate areas in the prefrontal cortex, and that the 
amount of activation increases as a function of the number 
of items held in WM. The presence of WL activation and 
the relative load (of holding n items in WM or of making n 
updates to WM) can be quantified using fNIRS [27].  WM 
is at the foundation of all interactions between humans and 
computers.  If we can determine that a UI design elicits 
high WM load on users, we can modify the UI to alleviate 
this load.  For example, a poorly constructed menu may re-
quire users to keep several menu items in their WM while 
searching for the correct selection.  Perhaps this menu can 
be redesigned to alleviate this load on the user’s WM. 

Visual Perception and Search 
Another WL related set of tasks involves visually searching 
for items within a set of distracter items.  There are two 
kinds of visual search; efficient and inefficient. If a target 
item is saliently different as compared to the distracter 
items surrounding the target item, it can be found immedi-
ately, regardless of the number of distracter items [2, 26, 
32].  Inefficient search occurs when the search item is not 
highly salient as compared to the distracter items.  In this 
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case, a serial visual search must be performed in order to 
locate the item of interest.   

One task that has been used to induce inefficient visual 
search is called the “finding A’s” task.  This task can be 
found, among a variety of other experimental tasks, in the 
Kit of Factor Referenced Cognitive Tests [10]. In this task, 
users are instructed to scan through a list of words and to 
cross off every word that contains the letter ‘a’. 

fNIRS has been used to measure the resources responsible 
for visual search [22, 25]. If we can determine that users 
are conducting inefficient visual searches while looking for 
items in a UI, we can modify the UI to alleviate these de-
mands.  For example, a poorly structured web page may not 
direct users’ visual attention to the relevant content that 
they are likely to search for.  The page can be restructured 
to provide salient visual cues directing people to the most 
relevant semantic content on the web page.   

Executive Processes and Response Conflict 
Pinpointing functional brain regions is difficult to do with 
our executive processes, as they are involved in high order 
processing that involves the recruitment of a number of 
overlapping cognitive resources [3]. While we still have 
much to learn about executive processing, functions related 
to response conflict have been empirically validated. Re-
sponse conflict deals with the central executive’s suppres-
sion of automatic, but incorrect responses.  We use re-
sponse conflict throughout our daily lives.  For example, 
while driving a car we may see a squirrel run across the 
road. Our initial, automatic reaction may be to swerve the 
car away from the squirrel. However, a quick look around 
may show oncoming traffic on one side of us and a cliff on 
the other side. Our central executive helps us to inhibit the 
automatic response of swerving in order to choose the re-
sponse of staying in our lane (sorry, squirrel!).   

A common test used in experimental psychology research 
to induce response inhibition in the brain is the Stroop test 
[29]. In this task, a color name, which is written in a font of 
a particular color, is presented to participants.  Participants 
must say the color that each word is written in out loud. In 
the congruent condition (Figure 4a), the name of the word 
and the color that the word is written in are one and the 
same.  In the incongruent condition (4b), the name of the 
word and the color that the word is written in are different.  
People’s ability to name a color is slightly slower than their 
semantic ability to read a word.  Thus, the incongruent 
condition of the Stroop test requires people to use their re-
sponse conflict resources, suppressing the automatic re-
sponse of saying the name of the word and answering cor-
rectly, with the color of the word. fNIRS has been used to 
measure the brain activity induced by the Stroop test [29].  

If we determine that a user has high response conflict while 
working with a UI, this may indicate that something about 
the UI is unintuitive.  For example, some un-intuitive video 

games may require the user to press awkward keys in order 
to navigate in the game;  pressing the ‘A’ key when one 
wants to turn right may cause response conflict as the user 
may automatically want to physically move the controller 
to the right, as is done with the successful Nintendo Wii.  
a) BLUE 
    RED 

b) YELLOW 
    GREEN 

Figure 4: Say the color that each word is written in out loud. 
a) congruent Stroop test, and b) incongruent Stroop test. 

TRANSITIONING FROM LOW-LEVEL EXPERIMENTAL 
PSYCHOLOGY TO HIGH-LEVEL USABILITY TESTING 
In order to enhance usability testing with fNIRS, we aim to 
measure which low-level resource(s) are being taxed and 
the level of load (i.e., high or low) that is placed on each of 
these resource(s) while users work with UIs. Although 
there is some disagreement as to the effects of multitasking 
in the brain [1, 20], most agree that combining several low-
level, simplified tasks has an additive effect in the brain.  
fNIRS has been used to measure the spatiotemporal 
changes occurring when different cognitive resources are 
recruited to complete a high-level mental task [17, 18]. 
This suggests that we can use fNIRs to measure different 
patterns of activation associated with the various cognitive 
resources targeted in this experiment.  

The brain research presented in this section shows that: 1) 
There are unique signatures of brain activation relating to 
the level of load placed on many low-level cognitive re-
sources. 2) Brain activation increases in a given region as 
the load on that resource increases. 3) Combining several 
low-level, simplified tasks has an additive effect in the 
brain, which can be measured with fNIRS. Thus, we expect 
to be able to measure different levels of load placed on us-
ers’ WM, visual search, and response inhibition resources. 

CONDUCTING USABILITY EXPERIMENTS WITH FNIRS 
To make connections between the users’ brain activity 
while completing high-level UI tasks and the low-level de-
mands placed on their cognitive resources, we developed 
an experiment protocol, described in detail in [16], for use 
in our usability tests.  The general protocol is as follows: 

Usability Experiment Protocol 
1) Researchers gather benchmark tasks from cognitive psy-
chology that elicit high and low-levels of WL on a range of 
target cognitive resource(s) such as visual search, WM, and 
response inhibition. We refer to these exercises as cognitive 
benchmark tasks. 

2)  Researchers create a set of tasks that users will complete 
with the UI to be evaluated. We refer to these as UI tasks. 

3) An experiment is run where users complete the cognitive 
benchmark tasks, yielding a measure of their brain activity 
while experiencing high and low WL levels in their various 
cognitive subsystems. Users also work with the UI tasks.  
Brain activity is measured throughout the experiment. 
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4) fNIRS data from the cognitive benchmark tasks are used 
as training data to build a machine learning classifier. The 
fNIRS data from the UI tasks is input into the machine 
learning classifier as testing data for the classifier.  The 
classifier outputs the level of cognitive load experienced by 
each user while working with a given UI task. 

USABILITY EXPERIMENTS  
We conducted a usability experiment to evaluate the design 
of two UIs and to demonstrate our experimental protocol.   

Cognitive Benchmark Tasks 
Participants completed the following benchmark tasks: 

Finding A’s 
In the Finding A’s task, participants were instructed to look 
at a matrix of words and click on those that contained the 
letter ‘a’. In one version of the task, the a’s in the words 
were highlighted. In the other version, the a’s were not hig-
hlighted. There were 14 words with a’s in them on each 
screen presented to participants. If a participant clicked on 
all of the words containing a’s, a new screen was shown, 
though there was a maximum of two screens per 50 second 
task. These two tasks induced benchmark levels of high and 
low load on users’ visual search resources. 

Stroop 
The Stroop task had two variations, an incongruent Stroop 
and a congruent Stroop, which are depicted in Figure 5. In 
both variations, adapted from previous fNIRS research 
[29], one of the words BLUE, RED, YELLOW, or GREEN 
appeared on the screen for .5 seconds before another of 
those four words was added to the screen beneath the first. 
Participants determined whether the bottom word correctly 
described the color of the top word. In the congruent ver-
sion, the top word was always colored to correspond with 
its meaning. In the incongruent version, the top word did 
not have to match its own meaning.  These tasks induced 
benchmark levels of high and low load on users’ response 
inhibition resources. 

  

Figure 5: a) congruent Stroop and b) incongruent Stroop task  

n-back 
We used the 0-back and 3-back variations of the n-back 
task. In the 0-back condition, participants were first shown 
a single letter. As the task progressed, participants were 
presented with new letters on the screen. They were asked 
to identify whether the letters they were seeing were the 
same or different than the first letter. In the 3-back task, 
they were asked to judge whether the letter they were look-
ing at was the same as the letter they saw three letters be-
fore.  These two tasks induced benchmark levels of high 
and low load on users’ WM resources. 

UI Tasks 
The first UI was a driving simulator and the second UI was 
for conducting web searches. We chose these UIs because 
the design of driving/video game [6, 21]  and web search 
UIs [5, 32] have been popular areas of HCI research.  

Car Driving Interface  
The driving tasks were completed using a software program 
called 3D Driving School (Fig. 6). The task took place in a 
parking lot where there were three lines of cones. Partici-
pants were instructed to drive around the cones in a slalom 
pattern using the arrow keys on the keyboard to navigate. 
There were two variations of the task. In the first, the 
commands associated with the arrow keys performed as 
expected. That is, pressing the ← and → arrow keys caused 
the car to turn to the left and the right, respectively. In the 
second variation, the functions of the ← and → arrow keys 
were reversed.  Pressing the ← key turned the car to the 
right, and pressing the → key turned the car to the left.  

 

Figure 6:  The Free Drive course used in the driving tasks. 

Web Search Interface  
The web search was completed using a Google search en-
gine embedded in an online site for financial news articles 
(www.fdi-magazine.com). Participants were presented with 
a question which could be answered by searching the fi-
nancial site and reading the articles (Fig. 7).  

 

Figure 7: The web search task with highlighting. 

Participants were instructed to highlight their answer using 
the mouse and then to proceed to the next question (this 
eliminated noise caused by participants speaking or writing 
their answers in the middle of the task). For each instance 
of the web search, there was a maximum of two questions. 
There were two versions of the web search task. In one ver-
sion, the user’s search terms were highlighted in the search 
results and the articles. In the other version there was no 
highlighting of search terms.  
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Completion Time 
We controlled for completion time in all experiment condi-
tions. During the nback and Stroop conditions, new ques-
tions were presented to subjects every 3 seconds. There was 
only one speed enabled when subjects moved forward dur-
ing the driving tasks, placing a limit on the number of con-
es users could access in each task. During the finding a’s 
and web search tasks, subjects only had a set number of 
task-items to complete in each 50-second period of time.  
Subjects were instructed (with the help of a progress bar 
that was visible during the experiment) to work at a rate 
that would result in the completion of all tasks by the end 
of the task period.  By controlling for time in this way, we 
were able to focus more on the difference in brain activity 
during different tasks rather than on differences caused by 
working at different paces.  

Usability Experiment Setup and Protocol 
In the rest of this paper, we use the following terminology: 

Cognitive benchmark tasks:  Experiment tasks that have 
been pulled from experimental psychology research.  In 
this experiment, these tasks target the following resources:  
low and high WM, low and high visual search, and low and 
high response inhibition tasks.  

UI tasks:  Experiment tasks that represent the UIs to be 
evaluated. These include: driving with correct mapping, 
driving with incorrect mapping, web search with highlight-
ing, and web search with no highlighting tasks. 

Methodology 
Ten participants completed the experiment. After providing 
informed consent, participants were instructed to complete 
a tutorial. Participants were instructed to keep body move-
ment to a minimum, and to only move when using the key-
board and mouse while working with the experiment tasks.  
Previous research has shown that these minimal hand 
movements do not add detrimental amounts of noise to the 
fNIRS data [31]. Experiment tasks were presented to par-
ticipants in a randomized order, with a 23 second rest pe-
riod between tasks. There were six trials and each trial con-
sisted of 10 tasks (the six benchmark tasks and the four UI 
tasks).. Each task lasted 50 seconds. As the experiment 
progressed, the answers provided by the participants were 
recorded. After the experiment was complete, participants 
completed a post-experiment survey where they rated the 
tasks on a 1-7 Likert scale, with 1 representing the lowest 
and 7 representing the highest level of difficulty. 

fNIRs Equipment and Data Analysis 
The fNIRs device is an ISS OxyplexTS frequency-domain 
tissue spectrometer with two probes. Each probe has a de-
tector and four light sources. Each light source produces 
near infrared light at two wavelengths (690nm and 830nm) 
which were sampled at 6.25Hz. 

As brain activity differs widely on a person-by- person ba-
sis, we ran all preprocessing of data separately for each par-

ticipant. We normalized the fNIRS light intensity raw data 
in each channel by their own baseline values. We then ap-
plied a moving average band pass filter to each channel and 
we use the modified Beer-Lambert Law [8, 19] to convert 
our light intensity data to measures of the change in oxy-
genated hemoglobin (∆HbO) and deoxygenated hemoglo-
bin (∆Hb) in the brain. Therefore, we had a recording of 
∆HbO and another recording of ∆Hb at four depths on the 
left side (labeled L1, L2, L3, L4) and four depths on the 
right side of the brain (R1, R2, R3, R4). Both ∆HbO and 
∆Hb contribute to what is known as the blood oxygen level 
dependent (BOLD) signal, which is correlated to brain ac-
tivity. For a review on the BOLD signal see [7] and for a 
review on the measurement patterns seen in ∆HbO and 
∆Hb in fNIRS studies see [15].  We cut off the first 4 sec-
onds of each task, as blood takes several seconds to move 
to areas of activation. Next, we extracted the following fea-
tures from our preprocessed fNIRS data: largest value, 
smallest value, average, slope, time to peak, and full width 
at half maximum; for the first and second half of each task. 
We used a cross validation scheme that takes into account 
the block design of the experiment, as traditional cross 
validation produces higher classification accuracy that is 
not representative of real world HCI-relevant applications 
[12]. Once we had partitioned our data into training and 
testing data, we used CfsSubsetEval(), a feature subset se-
lection algorithm from the Weka open source toolkit [35]  
on our training data. The function selects feature subsets 
that are highly correlated with the class and have a low cor-
relation to one another. We used these features to classify 
our test data. 

USABILITY EXPERIMENT RESULTS AND ANALYSIS 
We used the usability experiment protocol described above 
in our usability studies.  Our results and analyses are in-
tended to (in)validate the following research hypotheses: 

Experiment Hypotheses 
1) We can distinguish between three cognitive resources 

(visual search, WM, and response inhibition). 
2) Not only can we determine which resource is being 

taxed, but within a given cognitive resource, we can 
distinguish between high and low-levels of load placed 
on that resource.  

3) We can use our benchmark cognition tasks as training 
data to build a machine learning classifier. We can use 
this classifier to determine the user’s workload while 
working with a driving UI and a web search UI.   

4) The accuracy and survey results will support the re-
sults from the fNIRS data analysis, and the fNIRS re-
sults will provide information above and beyond the 
information provided by the more traditional usability 
metrics of accuracy and survey data. 

In the rest of this section we describe our analysis tech-
niques and we relate our results to each hypothesis. Then 
we make recommendations to the UIs based on the results. 
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Experiment Hypothesis 1: We can distinguish between 
which cognitive resource is being taxed. 
To address our first hypothesis, we used a Naïve Bayes 
classifer from Weka’s open source toolkit [35] to make 
pair-wise comparisons between the cognitive benchmark 
tasks (high WM vs high VS vs high RI). Average classifica-
tion accuracy across all subjects is reported in Fig. 8.  

 
Figure 8: Average classification accuracy across 10 subjects 

distinguishing between the cognitive benchmark tasks. 

As the figure shows, we were able to distinguish between 
WM and response inhibition (RI), WM and visual search 
(VS), and response inhibition and visual search with over 
80% average accuracy across subjects. Also, we were able 
to distinguish between the three classes of WM, response 
inhibition, and visual search with over 70% accuracy.  
These classification accuracies support our first hypothesis. 

Experiment Hypothesis 2: Not only can we determine 
which resource is being taxed, but within a given resource, 
we can distinguish between high and low-levels of load 
placed on that resource.  
To address our second hypothesis, we used our Naïve 
Bayes classifer to distinguish between the load (low or 
high) placed on each cognitive resource. Mean 
classification accuracies for all subjects are in Fig. 9. As the 
figure shows, for each resource, we were able to distinguish 
between low and high-levels of load on that resource with 
average accuracies ranging from 76-94%. These promising 
classification accuracies support our second hypothesis. 

Experiment Hypothesis 3: We can use our benchmark 
tasks as training data to build a machine learning classi-
fier. We can use this classifier to determine the user’s work-
load while working with a driving and a web search UI.   
We used the process described in our usability experiment 
protocol to predict the WM, response inhibition, and visual 
search load of the UI variations. Next we will illustrate, for 
each participant, how we built three distinct machine learn-
ing classifiers. Each of the three classifiers was responsible 
for predicting that participant’s level of 1) WM load, 2) re-
sponse inhibition load, and 3) visual search load while 
working with the driving and web search tasks.  

Construction of Classifiers 
For each participant, we built three distinct classifiers. Fig-
ure 10 depicts our process for creating a machine learning 

classifier to predict the WM load (high or low) associated 
with our driving UI tasks. First, the data from each of the 
low and high benchmark WM tasks was used as training 
data to build a Naïve Bayes classifier (see the fNIRS Data 
Analysis section for more detail).  This resulted in a WM 
classifier that predicted whether or not a given test instance 
had a high or low WM load.  

 
Figure 9: Mean classifier accuracy for 10 subjects. 

Next, the same participant’s data from the driving UI and 
web search UI tasks was fed into the classifier as testing 
data. The classifier predicted the level of WM load (high or 
low) associated with each UI task. For each subject, we re-
fer to this first classifier as the WM classifier. 

 
Figure 10: The WM classifier is built using WM benchmark 

tasks. The UI tasks are fed into the classifier as test instances.  

Next, for each participant, the low and high response inhi-
bition benchmark tasks were used as training data to build 
another Naïve Bayes classifier. The same process as that 
depicted in Figure 10 was followed, however, this time the 
training data input into the classifier were the response in-
hibition benchmark tasks rather than the WM benchmark 
tasks. This resulted in a response inhibition classifier that 
predicted the load of response inhibition (high or low) 
placed on users while working with the UI variations. For 
each subject, we refer to this second classifier as the re-
sponse inhibition classifier. 

Lastly, a third Naïve Bayes classifier was built using just 
the visual search benchmark tasks as training data. This re-
sulted in a visual search classifier that predicted the visual 
search load (high or low) placed on users while working 
with the UI variations. For each subject, we refer to this 
third classifier as the visual search classifier. 

Composition of Classifiers 
For each of our 10 subjects we built three Naïve Bayes 
classifiers; a WM classifier, a response inhibition classifier, 
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and a visual search load classifier. Thus, we built 30 dis-
tinct classifiers using 30 completely separable sets of train-
ing data. While training each classifier for each subject, we 
had eight sensor locations (four on the left side of the fore-
head and four on the right) and each sensor generated val-
ues of the rate of change of oxygenated blood (HbO) and 
deoxygenated blood (Hb). Thus, we had 16 timeseries, and 
we generated 12 features from each of these timeseries (re-
sulting in a total of 192 features that were generated from 
the raw fNIRS data).We used the CfsSubsetEval feature se-
lection algorithm to prune our features (see fNIRS Data 
Analysis section). The feature selection algorithm pruned 
the features greatly, and the number of features selected by 
each classifier ranged from two to 15 features. On average, 
7.6 features were selected for classification when building 
the WM classifiers while an average of 5.2 and 9.1 features 
were selected while building the response inhibition and 
visual search classifiers, respectively. Figure 11 displays 
the composition of the three classifier types across subjects.  

W orking M em ory Classifiers Response Inhibition Classifiers

Visual Search Classifiers

 
Figure 11: Composition of the classifier types across subjects. 

We created a WM classifier, a response inhibition classi-
fier, and a visual search classifier for each of our 10 par-
ticipants. Thus, we created 10 distinct WM classifiers 
which were suited to the individual. We tallied the features 
selected by each of these 10 classifiers and grouped the fea-
tures based on the sensor location of that feature, and on 
whether or not the feature represented ∆HbO or ∆Hb data.  
We did the same for the response inhibition and for the vis-
ual search classifiers. We made four groups to describe the 
features selected by each of  the classifiers across all sub-
jects: 1) ∆HbO on the left side of the forehead, 2) ∆HbO on 
the right side of the forehead, 3) ∆Hb on the left side of the 
forehead, and 3) ∆Hb on the right side of the forehead.  
 
As shown in the figure, each classifier type differed in 
structure from the other two classifiers.  Participants’ 
∆HbO on the right side of the head and ∆Hb on the left side 
of the head were the most predictive for the WM tasks.  
Participants’ ∆HbO and ∆Hb on the right side of the head 
were the most predictive for response inhibition tasks. The 
∆HbO and ∆Hb on the left side of the head were the most 
predictive for visual search tasks. This supports the hy-

pothesis that the benchmark WM, response inhibition, and 
visual search tasks used different (though probably over-
lapping) cognitive resources, and that these differences 
were measurable with fNIRS. 
 
Classifier Predictions Across Subjects 
We ran machine learning predictions for 10 participants x 3 
classifiers x 4 UI variations x 6 trials, which resulted in 720 
distinct machine learning predictions. We describe our 
classifier predictions for all participants next. We’ve bro-
ken down our results into four graphs (Figure 11 and Fig-
ure 12). Each graph shows a tally of the predictions made 
by each of the 10 subject’s three classifiers while each sub-
ject worked on one of the UI variations. Thus, each graph 
contains a tally of 10 subjects x 6 trials x 3 classifiers = 180 
classifier predictions. For each driving UI variation we re-
port the total number of high and low load predictions 
made by each of the three classifiers across all subjects (10 
subjects x 6 trials = 60 instances total . These results are 
depicted in Figure 12.  

 

 
Figure 12: The total number of high and low load predictions 

made by each of the three classifiers across all subjects.. 

The results show that across all subjects most of the driving 
with correct mapping instances were classified as having a 
low WM, high response inhibition, and high visual search 
load. The majority of the driving with incorrect mapping 
instances were classified as having a high WM, high re-
sponse inhibition, and high visual search load. 

It is not surprising that driving with the correct mapping 
caused users to exert lower levels of WM than driving with 
the incorrect mapping. It is likely that when using the con-
trols in the incorrect mapping condition, users had to keep 
the unusual mapping stored in their WM throughout the 
driving task. It is also not surprising that both driving con-
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ditions caused a high visual search load, as users were con-
tinually scanning the cones ahead of them while steering.  
Interestingly, both keyboard mappings (correct and incor-
rect) caused a high level of response inhibition.  We won-
der if the choice of using a keyboard (as opposed to a joy-
stick or steering wheel) placed restraints on users’ response 
inhibition by forcing them to inhibit natural steering 
movements in order to press the right keys. Post-
experiment interviews support this speculation. 

As shown in Fig. 13, the results showed that across all sub-
jects the majority of the web search with highlighting in-
stances were classified as having a high WM, high response 
inhibition, and low visual search load. The majority of the 
web search with no highlighting instances were classified 
as having a high WM, low response inhibition, and high 
visual search load. It is not surprising that both web search 
UIs caused users to have high-levels of WM.  After all, us-
ers had to remember the content of the question that was 
asked of them while they searched for the solution in the 
articles in front of them.  It is also not surprising that the 
level of visual search load was higher when highlighting of 
search terms was not available than when the highlighting 
was available for users.  We expected that users would 
have to conduct an inefficient visual search of the articles 
for the keywords when highlighting was not available.   

 

 
Figure 13: the total number of high and low load predictions 

made by each of the three classifiers across all subjects. 

We did not expect, however, the web search with highlight-
ing to be associated with a higher load of response inhibi-
tion than the web search with no highlighting.  Since the 
use of highlighting enabled our users to avoid an inefficient 
visual search of search items, they were able to spend more 
time processing the verbal information presented to them in 
the research articles than in the no highlighting condition. 

A thorough review of recent experimental psychology lit-
erature shows that people use response conflict resources 
while processing sentences and semantic information [36].  
Therefore, we conjecture that the highlighting of search 
terms enabled users to minimize their visual search load 
and focus on processing the text in front of them.  

This resulted in users having a higher level of response in-
hibition that reflected the added load that they were able to 
place on semantic, task related, processing. We hypothesize 
that the added effort that users were able to place on se-
mantic (or task related) processing rather than on syntactic 
(or UI related) processing resulted in the higher accuracy 
that users achieved in the web search with highlighting 
condition. Our classification results support our third hy-
pothesis; the cognitive load classifications depicted in Fig. 
11 and 12 are in line with what we would expect users’ 
cognitive resource load to be while working with each UI. 

Experiment Hypothesis 4:  
The accuracy and survey results will support the results 
from the fNIRS data analysis, and the fNIRS results will 
provide information above and beyond the information 
provided by the more traditional usability metrics of accu-
racy and survey data. 

We recorded the number of correct and incorrect responses 
made by participants during the experiment. A repeated 
measures ANOVA was used on this accuracy data to make 
comparisons between conditions. A Kruskal-Wallis test 
was used to analyze the Likert scale survey data for each 
condition. Table 3 provides a summary of these results. 
Highlighted cells indicate significance with 95% confi-
dence.Not surprisingly, all accuracy data (except the Stroop 
tasks) and all survey data indicated that the low benchmark 
workload (WL) tasks were more difficult than the high 
benchmark WL tasks. Additionally, the accuracy data sup-
ported the fNIRS findings that driving with the correct 
mapping was easier than driving with the incorrect map-
ping, and that web searches with highlighting were easier 
than searches with no highlighting.   

Interestingly, users did not report a difference in difficulty 
between the UI tasks in the Likert survey. This is in con-
trast to the accuracy data and to the data from the fNIRS re-
sults. Some common, and well known, issues with self-
report surveys are that users may not be aware of subtle dif-
ferences in their own user experiences, and post-surveys 
may lack insight into the user’s real time experiences while 
working with a given task. One of the primary benefits of 
non-invasive brain measurement during usability studies is 
to overcome the short coming of self report surveys.  

In general, the results from the accuracy and survey data 
supported the fNIRS findings. Furthermore, the fNIRS 
findings provided information about the load placed on us-
ers’ cognitive resources that was above and beyond that 
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which could be acquired with the behavioral results alone. 
This supports our fourth hypothesis. 

Implications to UI Designs 
The work presented here would not stay true to the premise 
of a realistic usability study if it didn’t shed light on the  

particular design choices of each UI design. Therefore, 
based on the information acquired in our study, we discuss 
the implications of our findings on the design of the web 
search and driving UIs next: 

Driving UIs 
As reflected in Table 3, the driving with correct keymap-
ping appears to be a preferable UI design than the driving 
with incorrect keymapping as it is associated with fewer er-
rors. Furthermorre, the results in Figure 11 show that the 
driving with correct keymapping was associated with a 
lower level of WM load for our subjects than the driving 
with incorrect keymapping. However, the level of response 
inhibition and visual search were high for both UI varia-
tions. We would suggest using an actual driving wheel or 
joystick to alleviate the demands placed on users’ response 
inhibition resources while driving. We are currently con-
ducting a follow-on experiment to compare the level of re-
sponse inhibition exerted by users driving with the key-
board and the response inhibition exerted by users driving 
with a steering wheel. We expect to see a lower level of re-
sponse inhibition when users work with the steering wheel 
than when they use the keyboard.  

Table 3: Summary of behavioral results.  Shaded cells indicate 
significance, and we accept the stated hypothesis. 

Condition   Hypothesis Result 
Low bench-
mark tasks 

High 
benchmark 
tasks 

Users’ accuracy 
during low bench-
mark task <  accu-
racy during high 
benchmark task 

Users rated low 
benchmark task 
more difficult 
than high 
benchmark task 

Congruent 
Stroop 

Incongruent 
Stroop 

F(9, 81) = 1.589, p 
= .1324 

H = 10.41, 1 
d.f., P < .05 

0back 3back F(9,81) = 4.004, p < 
.05 

H = 14.2, 1 d.f., 
P < .05 

Finding a’s 
with high-
lighting 

Finding a’s 
with no hig-
hlighting 

F(9,81) = 84.926, p 
< .05 

H = 13.14, 1 
d.f., P < .05 

UI version 1 UI version 2 Users’ accuracy 
during UI 1 >   ac-
curacy during UI 2 

Users rated UI 
version 1 as less 
difficult than UI 
version 2 

Driving with 
correct map-
ping 

Driving with 
incorrect 
mapping 

F (9,81) = 6.409, p 
< .05 

H = 1.36, 1 d.f., 
P = .2443 

Web search 
with high-
lighting 

Web search 
with no hig-
hlighting 

F (9,81) = 2.094, p 
< .05 

H = 1.26, 1 d.f., 
P = .2643 

Web Search UIs 
As reflected in Table 3, the web search with highlighting 
UI seems to be a preferable UI design than the web search 
with no highlighting UI as it is associated with fewer er-
rors. Furthermore, the results in Figure 12 show that the 
web search with highlighting still causes high levels of 

WM and response inhibition (due most likely to the task re-
lated effort involved in reading through an article for solu-
tions to a specific query).  One possible UI enhancement 
could show the users search terms in a semi-transparent 
window that follows the users mouse across the computer 
screen. This could alleviate users’ WM demands by ena-
bling them to see their search terms within the context of 
the article they are reading instead of requiring them to re-
call the search terms while searching through articles. 

CONCLUSION  
Our experiment results showed that we were able to use 
brain measurement to measure high and low-levels of load 
experienced by users’ various cognitive resources while 
working with our driving and web search UI variations. 
The usability metrics provided by our survey and accuracy 
data yielded results that are in line with our fNIRS results. 
The protocol presented in this paper, combined with the 
fNIRS data acquired during the usability experiment, pro-
vided us with information above and beyond the knowledge 
gained by the more traditional survey and accuracy usabil-
ity metrics. With the fNIRS data, we were able not only to 
determine which tasks were ‘more difficult’ for partici-
pants, but to shed light on the low-level cognitive resources 
in the brain that were more heavily taxed by a given UI de-
sign choice.  

FUTURE WORK 
While our fNIRs device only provided measurements on 
the left and right side of the participant's forehead, there are 
devices that can acquire more measurements across partici-
pant's cortex.  In order to find regions of the brain that are 
activated while load is placed on various cognitive re-
sources, we are using a new 52-channel fNIRS device to 
explore the use of more sensor locations across the fore-
head, enabling the measurement of small spatiotemporal 
changes that occur when different cognitive resources are 
taxed.  In the future, we foresee brain data as an additional 
metric gathered in usability tests.  This cognitive state in-
formation, combined with more traditional usability metrics 
such as speed, accuracy, and survey results, can provide in-
depth evaluations of a range of UIs.  
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