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Toward Workload-Based Adaptive Automation: The Utility of fNIRS for Measuring Load 
in Multiple Resources in the Brain 
 

Abstract. We investigate the utility of functional near-infrared spectroscopy (fNIRS) 

for workload-based adaptive automation through the lens of multiple resource 

theory. We focus on the criteria of unobtrusiveness, responsiveness, load sensitivity 

(low vs high load), and load diagnosticity (differentiating types of load).  We report 

a large meta-review, in which we conclude that only a few studies were suitable for 

evaluating sensitivity and diagnosticity in complex real-world tasks. While these 

reveal that the fNIRS signal is adequately sensitive to gradations of load level 

changes (sensitivity), the diagnosticity of fNIRS to different sources of cognitive 

load remained uncertain. We manipulated mental load of a complex shape sorting 

task via working memory load (WM) and visual perceptual load (VL), while a 

secondary auditory task was present throughout. We measured the effect of these 

manipulations at the group-level using conventional secondary and eyetracking 

workload measures, as well as hemodynamic response in specific functional regions 

in the brain, including regions involved in multi-tasking (MT), VL, WM, and 

auditory load (AL). Our findings revealed that fNIRS is both sensitive and diagnostic 

to load in complex tasks, with greater sensitivity revealed by deoxyhemoglobin than 

oxyhemoglobin and the brain regions associated with diagnosticity align with 

neuroscience literature on perceptual load, WM, and goal-directed multitasking. 

Keywords: workload, fNIRS, near-infrared spectroscopy, automation, multiple resource theory 

1 Introduction 
The concept of adaptive automation (AA) has been discussed frequently in the fields of human-

computer interaction (HCI) and human factors, whereby some aspect of automation is changed in 

real time, based on an inference of human cognitive state made by an automated agent (e.g.,  Al-

Hudhud, Alqahtani, Albaity, Alsaeed, and Al-Turaiki (2019); Dorneich et al. (2015); Rouse 

(1988); C. D. Wickens, Helton, Hollands, and Banbury (2022)). More specifically, workload-

based AA is implemented by using a human operator's cognitive load to define how the agent's 

response should adapt. For example, if cognitive workload is high then the agent could automate 

some of the tasks done manually, or at least increase the degree of automation of those tasks 
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(Onnasch, Wickens, Li, & Manzey, 2014). Attractive as this concept is, AA has proven 

challenging to implement in practice, and it has been difficult to demonstrate its performance 

benefits over non-adaptive automation (e.g., Sauer, Kao, and Wastell (2012); see C. D. Wickens 

et al. (2022) for a summary). A myriad of neurophysiological techniques have been proposed to 

measure workload objectively and in real time. These techniques require no deliberative 

response from the human in order for the adaptive agent to form a workload estimate. Most 

generally, these have been categorized under the purview of physiological or neuroergonomic 

measures of mental workload (Brouwer, Zander, van Erp, Korteling, & Bronkhorst, 2015; 

Fairclough, Ewing, Burns, & Kreplin, 2019; Goshvarpour & Goshvarpour, 2023; Saikia, Kuanar, 

Borthakur, Vinti, & Tendhar, 2021; Shirzadi, Einalou, & Dadgostar, 2020) and include measures 

such as the power in certain frequency bands (e.g., alpha, theta) as measured by EEG (Gevins & 

Smith, 2003), pupil diameter (Kaber & Kim, 2011; Recarte & Nunes, 2003), or cardiac 

parameters (Backs, Lenneman, Wetzel, & Green, 2003). Many of these are covered in depth by 

H. Ayaz and Dehais (2018) and are summarized by C. D. Wickens et al. (2022). 

Of particular interest in the current paper is functional near-infrared spectroscopy 

(fNIRS), a non-invasive brain blood-flow measurement device that has seen a rapid increase in 

use across a variety of research domains since its development in the 1990s (Hasan Ayaz et al., 

2022; Chance, Zhuang, Chu, Alter, & Lipton, 1993; von Lühmann et al., 2021; M. Yücel et al., 

2021; M. A. Yücel, Selb, Huppert, Franceschini, & Boas, 2017; H. Zhao & Cooper, 2018).  

Aligned with multiple resource theory (Navon & Gopher, 1979; C. D. Wickens, 1980), we focus 

on the utility of fNIRS for addressing four key measurement challenges that have hampered 

workload-based AA accomplishments to date, unobtrusiveness of the sensors, sensitivity to 

load levels, diagnosticity of qualitatively different types of load (e.g., visual vs cognitive vs 

motor), whose importance, in the context of multiple resources within the brain, will be 

discussed below, and temporal responsiveness suitable for real-time adaptations. These four 

have been a hallmark of mental workload research for decades, first introduced by Moray (1979), 

and subsequently formalized by C. Wickens (1984). 

One of the largest challenges to the implementation of AA is to obtain an assessment of 

high mental workload (or reduced residual capacity) in a behaviorally unobtrusive fashion (e.g., 

by avoiding imposing a secondary task, or the requirement that a subjective rating be given in 

real time). We note the advantages of neurophysiological measures of mental workload in this 
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regard, in that they are passive, requiring neither vocal nor manual responses to provide 

workload estimates. In addition to unobtrusiveness, a second criterion imposed on all workload 

measures is that they are sufficiently sensitive. That is, if increases in task load are imposed of 

differing magnitude, the measure in question will also reflect those proportional differences in a 

reliable fashion. A third criterion also imposed on effective workload measures is that they be 

diagnostic, in the sense of signaling not only the amount of mental workload, but also the nature 

of that load, e.g., whether it is visual, auditory, imposed on working memory, or imposed on 

executive functioning  (C. Wickens & Tsang, 2014). This use is not to be confused with a 

clinical diagnosis of a medical condition. The importance of diagnosticity in workload measures 

emerged with the development of multiple resource theory (Navon & Gopher, 1979; C. D. 

Wickens, 1980). This development provided the realization that different “fixes” for a workload-

overload situation should depend, to some extent, on which resources were overloaded, and not 

just that “resources were overloaded.”  

Temporal responsiveness, the fourth criterion, is particularly relevant for physiological 

measures, and applies to any workload measure that is intended for adaptive automation. If 

changes to automation are to be based on an assessment of momentary capabilities of the human 

operator, and these capabilities are driven, in part, by dynamic fluctuations of the load imposed 

by the task (either on all resources, or specific resources), then it is essential that a fully reliable 

workload estimation be provided within a time interval less than the bandwidth (fluctuation rate) 

of the task demands. If data collection, workload inference, and adapting automation takes too 

long, then the environment and workload may have already changed, mitigating the need for that 

adaptation. Alternatively, if an imperfect inference of workload is made within less time, then in 

the case when the inference is wrong (and the degree of automation is lowered or raised, when it 

should have been raised or lowered respectively), trust in the AA system will rapidly erode. This 

is particularly relevant for AA, given that adaptive changes to interfaces made by intelligent 

automation agents should be guided by knowledge of which resource is overloaded.  

It is important to note that in this paper we do not examine AA directly. Instead, we evaluate 

the promising characteristics of fNIRS that may allow it to serve as a vital component of 

unobtrusive AA systems, by using group-level statistical analyses to demonstrate the utility of 

fNIRS for measuring different types of cognitive load, which is a hallmark of multiple resource 

theory. In particular, fNIRS has not been systematically evaluated in prior literature through our 
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four key criteria of unobtrusiveness, temporal responsiveness, sensitivity, and diagnosticity. This 

paper therefore makes three contributions to the workload-based adaptive automation domain: 1) 

We conducted a meta-review of the literature on fNIRS and workload in the HF and HCI realms, 

and use this literature to explore temporal responsiveness, unobtrusiveness, sensitivity and 

diagnosticity. 2) Based on the limited and inconclusive research to date on the topic of fNIRS as 

a measurement modality for workload-based AA, we describe seven standards of empirical 

studies (e.g., multiple brain regions measured, use of a complex task, multiple load levels 

manipulated, use of additional workload measures as manipulation checks, suitable N, 

investigation of both HbO and HbR) that are needed to advance the field of neuroergonomics 

with respect to workload-based AA. We describe findings from the small handful of studies in 

our meta-review that satisfy these standards. 3) We then designed an experiment to empirically 

evaluate the utility of fNIRS for further examination of sensitivity and diagnosticity. Evaluating 

the ability to measure different load levels (specificity) in different cognitive resources 

(diagnosticity) is a crucial step toward realizing the goals of workload-driven AA.   

The rest of this paper is organized as follows: First we describe the fNIRS signal in detail. 

Next, we describe our meta-review and summarize the findings. We then describe our 

experiment methodology (n = 43) and we present our results and interpretations. We interpret 

our findings in light of the meta-review findings, comparing and contrasting our results with the 

prior related work.  Finally, we describe limitations of our work and avenues for future work. 

 

2 Brain Measurement and Functional Near-Infrared Spectroscopy 
When the brain reacts to a stimulus, neurons send electrical signals down the network of 

interconnected neurons that are recruited to handle the stimuli. These electrical potentials can be 

measured with EEG with excellent temporal responsiveness. Unfortunately, EEG has poor signal 

to noise ratio and spatial resolution (Duan, Liu, & Lian, 2021; Kwon, Shin, & Im, 2020; Putze et 

al., 2014). These challenges are partially overcome by technologies like fMRI and fNIRS, which 

can measure the hemodynamic response of blood flow rushing to the area of these electrical 

potentials to support neuronal activation. While the fMRI represents the gold standard for 

spatially accurate measurement of the functional human brain, it is not practical for 

measurements in naturalistic HCI settings. fMRI restricts movement within a scanner and is cost 

prohibitive, while fNIRS is less expensive, less obtrusive, and offers information highly 
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correlated to fMRI’s BOLD signal (Cui, Bray, Bryant, Glover, & Reiss, 2011; Lai, Ho, Lim, & 

Ho, 2017). Following increased neural activity is an increase in cerebral blood flow which 

generally causes an increase in HbO and decrease in HbR (Logothetis, Pauls, Augath, Trinath, 

and Oeltermann (2001), see Figure 1). fNIRS pulses near infrared light into the brain cortex (in 

the wavelength range of 650nm – 900 nm)  and it measures the blood-flow in the cerebral cortex 

and the signal may be influenced by systemic physiological factors like respiration and Mayer 

wave oscillations. Researchers have found that the HbO signal is more affected by these 

systemic factors (hence contributing “noise” to a workload estimation) than is the HbR signal 

(Dravida, Noah, Zhang, & Hirsch, 2017; Huppert, Franceschini, & Boas, 2009; Obrig et al., 

2000; Q. Zhang, Strangman, & Ganis, 2009; Yiheng Zhang, Brooks, Franceschini, & Boas, 

2005). As shown in Figure 1, the hemodynamic response measured by fNIRS (∆HbO and ∆HbR) 

is characterized by quick steep peaks in HbO, then HbR, followed by eventual plateaus in both. 

There are approximately two seconds between HbO and HbR peaks, both happening within 

approximately eight seconds of stimulus onset (Huppert, Hoge, Diamond, Franceschini, & Boas, 

2006). Thanks to rapid developments in biotechnology in recent years, newer fNIRS devices are 

now portable, wireless, and they offer large numbers of channels across the outer cortex of the 

brain, allowing for brain measurement in naturalistic settings. Several recent papers provide an 

excellent overview of recent advances in fNIRS signal processing, analysis techniques, and 

biotechnology domains (Hasan Ayaz et al., 2022; von Lühmann et al., 2021; M. A. Yücel et al., 

2017; H. Zhao & Cooper, 2018).  

 

 
Figure 1: Typical time response of HbO and HbR after stimulus (such as completing a n-back task). HbO peaks between 6-8s 
following the stimuli and HbR dips at the same time. 

 
3 Meta-Review of fNIRS and Workload Research 
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A substantial body of work has investigated the use of this device in HCI literature. In this 

section, we present a meta-review of this work. We included two digital libraries in our review: 

The ACM digital library (for venues such as ACM Transactions on Computer Human Interaction 

(TOCHI), ACM Special Interest Group on Computer Human Interaction (SIGCHI)), and 

Frontiers digital library (for Journals such as Frontiers in Neuroscience, Frontiers in 

Neuroergonomics). To collect relevant literature across these venues, we used the search terms 

“fNIRS” OR “NIRS” OR “functional near-infrared spectroscopy” OR “near-infra-red 

spectroscopy” AND “workload”. Of the resulting articles, we reviewed the abstracts and 

removed duplicate articles and we filtered the articles and only retained papers that manipulated 

task difficulty level in some way with the goal of measuring workload (this included studies that 

looked at rest/no load vs task on/load, as well as studies with more fine-tuned levels of load, 

such as 0back, 1back, 2back tasks). This resulted in 54 published studies that examined fNIRS as 

a cognitive workload measure (see Appendix 1). In the following sections, we analyze these 

studies with respect to our key criteria of interest: unobtrusiveness, temporal responsiveness, 

sensitivity, and diagnosticity, below.   

3.1 Unobtrusiveness 
Thanks to rapid developments in biotechnology in recent years, newer fNIRS devices are now 

portable, wireless, and they offer large numbers of channels across the outer cortex of the brain 

(Pinti et al., 2020). An unobtrusive device also provides the opportunity to gain access to data 

while people perform tasks in naturalistic settings, and for longer continuous durations. The 

‘device type’ column in Appendix 1 lists the device and the ‘fNIRS Set Up’ column lists the 

number of channels and regions used in each of the studies in our meta-review. We found the 

most common and median number of channels used was 16, and the mean was 26 channels. 

There was a single study with two channels, and three studies with over 100 channels. Our 

review also found the most common device was the OxyplexTS from ISS, followed by various 

models from NIRx and Hitachi. Several fNIRS companies have developed wireless versions of 

their technology including (but not limited to) NIRx, Artinis, and Obelab. Recent work has also 

explored development of highly lightweight, wearable fNIRS systems that can be ergonomically 

developed for specific operational settings such as team crisis management (Xu, Slagle, 

Banerjee, Bracken, & Weinger, 2019). fNIRS probes have been further developed to measure 

different depths within the brain (e.g., short-distance channels). Optodes with less distance 
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between them penetrate less into the brain, measuring only the superficial layers which in turn 

can then be used as regressors in analyses such as the oft used general linear model approach 

(Wyser et al., 2020). Taken together, these advancements in biotech continue to push the 

envelope of innovation, resulting in highly unobtrusive fNIRS devices, and we expect this trend 

to continue, with future fNIRS systems being developed to meet the needs of specific use cases.  

3.2 Temporal Responsiveness 

Based on our meta-review, time durations used for fNIRS analysis vary greatly (see ‘time 

window’ column in Appendix 1), but the vast majority of papers analyze time windows of data 

that are well over that deemed acceptable for adaptive automation, given the relatively high 

bandwidth of task demand changes in most applied contexts. In fact, out of 54 papers identified 

in Appendix 1, only eleven papers include analyses that look at window sizes of ≤ 15 seconds 

(i.e., for adaptive automation, capable of estimating workload fluctuations of 2 cycles/minute; 

Girouard et al. (2009); Herff et al. (2014); L. Hirshfield et al. (2011); Nazeer et al. (2020)). 

Researchers took a thorough look at time windows existing in the literature and reported that a 

window size of 2-7s following a stimulus led to increased classification accuracy compared to 

other time windows (R. Liu, Walker, Friedman, Arrington, & Solovey, 2021; Nazeer et al., 

2020). Similar bodies of research have proposed a 0-4s window for drowsiness detection using 

fNIRS (Khan, Liu, Bhutta, & Hong, 2016). Another method for window detection with fNIRS is 

a moving window method which explores all windows to find the best window for classification. 

Researchers have used varying window lengths such as 3s (Shin et al., 2017)  and 10s (Herff et 

al., 2014). In recent work, researchers used moving windows of 5s, 10s, and 15s with 1s step size 

along with their proposed individual-based time window selection (ITWS) algorithm for group-

level classification which considers how the best window may vary between participants (R. Liu 

et al., 2021). They found a 5s window achieved the highest average accuracy (F1 score) and 

applying their ITWS algorithm to the 5s window achieved the highest performance. These 

findings throughout the literature suggest that optimal window sizes vary between participants 

and tasks and suggest that a moving window method may result in the best classification 

accuracy while using fNIRS. It is important here to realize also that the measure of 

“performance” (e.g., classification accuracy of a high vs low workload state) has a very stringent 

criterion in adaptive automation: for example, a classification accuracy of 80% would be 
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insufficient: a 20% error rate in classifying high vs. low workload could erode trust in the 

system. 

It is also important to emphasize that establishing the feasibility of temporal 

responsiveness for adaptive automation must be based on individual participant data, rather than 

group averaging effects. By averaging, the latter data will reveal a smoother and more reliable 

response curve of the workload measure than any individual response. Yet, by definition, 

adaptive automation must be based upon the responsiveness of the individual. 

Because the underlying hemodynamic response is inherently slow, several researchers 

have begun to integrate both EEG and fNIRS (Aghajani, Garbey, & Omurtag, 2017; L.-C. Chen, 

Sandmann, Thorne, Herrmann, & Debener, 2015; Y. Chen et al., 2020; L. M. Hirshfield et al., 

2009 ; Pike, Maior, Porcheron, Sharples, & Wilson, 2014; Putze et al., 2014; Yujin Zhang & 

Zhu, 2020), taking advantage of the better temporal resolution of EEG and better spatial 

resolution of fNIRS to better quantify the brain’s response to stimuli. The two modalities are 

complementary in nature as EEG measures the electrical response and fNIRS measures the 

metabolic response to brain activity (Putze et al., 2014).  

 Research on the temporal responsiveness of fNIRS has not reached a level of maturity 

where we can confidently say that responsiveness needed for realistic AA is achievable with 

fNIRS on its own. What we know about the hemodynamic responses measured by both fNIRS 

and fMRI certainly suggests that responsiveness of fNIRS is slower than needed for realistic AA 

systems, given their accuracy requirements. But the body of machine learning accomplishments 

to date on different sized sliding windows, and work on hybrid fNIRS/EEG, suggests a path 

forward for researchers to continue to explore.  

3.3 Sensitivity and Diagnosticity (in Controlled Tasks) 
Currently the literature on HbO/HbR sensitivity to measurement of workload is skewed heavily 

toward studies using tightly controlled psychological tasks (e.g., stroop, n-back tasks) to 

manipulate load. Furthermore, these studies are skewed toward evaluation of HbO over HbR, 

with many cognitive load studies using only the HbO data in the analyses. Spotlighting HbO 

makes sense in light of the strong response where oxygenated blood in the brain floods to regions 

where neurons are firing, often referred to as “watering the entire garden for the sake of one 

thirsty flower” (Malonek & Grinvald, 1996). This significant increase in HbO is due to a 

metabolic increase resulting in a flush of oxygen that exceeds the metabolic needs of the 
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neurons, resulting in overcompensation (Malonek & Grinvald, 1996). This overly amplified HbO 

response was helpful for early fNIRS studies, when devices had few channels, while exploring 

the effect of simple tasks. Undoubtedly, the HbO signal gives a stronger response to neural 

activation than HbR, and it has shown strong responses in studies with simple stimuli such as n-

back tasks (Hasan Ayaz et al., 2012) and Stroop tasks (L. Hirshfield et al., 2011). As described 

next, when the task becomes more complex, the oversaturation of HbO can result in that measure 

losing its diagnostic value. 

Herff et al. (2014) evaluated both HbO and HbR during an increasingly difficult task 

demanding working memory (the “n-back” task). In terms of sensitivity, both HbO and HbR had 

steeper slopes during the 3-back test when compared to the 1- and 2- back tests. This suggests 

that both HbO and HbR have similar sensitivities to WM in a controlled environment with a well 

calibrated task; but other studies in more complex settings found different patterns in activation 

between the two measures. One study by Dravida et al. (2017) found HbO a more reliable signal 

than HbR), in response to increasing mental workload imposed by simple motor tasks. HbR 

offers an additional benefit of being highly coordinated with fMRI Blood Oxygen Level 

Dependent (BOLD) signals (Cui et al., 2011; Foy, Runham, & Chapman, 2016; Huppert et al., 

2006; MacIntosh, Klassen, & Menon, 2003; Schroeter, Kupka, Mildner, Uludağ, & von Cramon, 

2006). Additionally, the HbO signal has shown slow variable drift over a task while the HbR 

signal did not (Unni, Ihme, Jipp, & Rieger, 2017). Because HbO is more susceptible to drift and 

systemic artifacts, HbR may be a more reliable measure of workload in complex tasks.  Because 

of the inconclusive results in literature, the current study aimed to compare the relative benefits 

that HbR has in measuring workload as compared to the HbO signal.  Another complication in 

workload-focused fNIRS research to date that leads to inconclusive sensitivity results concerns 

the correlation between task performance and cortical activation (Kimberly L Meidenbauer, 

Choe, Cardenas-Iniguez, Huppert, & Berman, 2021). While some researchers have found 

increasing brain activation with increasing task difficulty (linear effect), such as the n-back test 

(Hasan Ayaz et al., 2012; Fishburn, Norr, Medvedev, & Vaidya, 2014; Kuruvilla, Green, Ayaz, 

& Murman, 2013), others have found that increased task difficulty is not always associated with 

an increase in HbO and decrease in HbR signals (non-linear effects) (Aghajani et al., 2017; Herff 

et al., 2014; Mandrick, Chua, Causse, Perrey, & Dehais, 2016). This non-linear activation with 

task difficulty suggests that participants may reach a maximum level of activation after difficult 
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tasks (Mandrick et al., 2013), or participants may simply disengage from a task that is too 

difficult (Causse, Chua, Peysakhovich, Del Campo, & Matton, 2017).  

In terms of diagnosticity, only one paper, by Putze et al. (2014), took a close exploration 

of diagnosticity of different types of load with fNIRS in a controlled task setting. Their goal was 

to differentiate between visual and auditory load and participants were presented with movie and 

audio clips, i.e., silent movies (no sound; VIS), audiobooks (no video; AUD), and movies with 

both video and audio (MIX). They measured brain regions associated with visual and auditory 

processing and found that visual load activated regions in the occipital cortex, while auditory 

load did not engage that region. While the subject pool was relatively small (n = 12) and the 

tasks were tightly controlled, these results show promise for fNIRS as a modality for 

diagnosticity of workload.  

3.4 Seven Standards for Experiments to Advance Workload-Based AA in Neuroergonomics  
The meta-review papers described above involve simple and tightly controlled tasks such as n-

back tasks or presentation of video and audio clips to manipulate visual/auditory processing. To 

further explore sensitivity and diagnosticity for workload-based AA, there is a need to consider 

more complex study designs and task contexts. Thus, we filter the papers in Appendix 1 in light 

of what we consider to be seven standards/features that we judge to be important to evaluate (as 

seen in Table 1), as fNIRS is considered as a measurement tool for workload-based AA.  
Table 1: Seven standards for experiments needed to evaluate fNIRS for workload-based AA. 

(1) Participants should perform a complex task typical of real-world human-computer interactions. 
(2) Workload should be experimentally manipulated in a controlled manner to impose greater or lesser cognitive demands (going 
beyond just load on/off), in order to evaluate sensitivity of different load levels on a specific resource. 
(3) Studies should focus on different specific resources within a multiple resource structure, hence examining diagnosticity 
(4) The validity of experiment task manipulations  should be assured by including additional workload measures, such as self-report 
workload, response time, performance, and pupil diameter.   
(5) To further examine the diagnosticity of the measures, researchers should measure multiple functional brain regions of interest 
(ROIs), ideally mapped onto the multiple resources identified in the experimental design, in order to determine if specific ROIs are 
differentially sensitive to the workload manipulation assumed to be reflected by increased activation there. 
(6) Increased activation should be explored via the two different fNIRS measures of HbR and HbO.  
(7) Finally, studies should have adequate statistical power, with a suitable N. 

 

Of the studies examined we judged that NONE satisfied all 7 standards listed in Table 1. 

Table 2 presents the set of studies reviewed (Appendix 1) that adhered to at least three of the 

standards listed in Table 1, ordered by the number of standards adhered to. We did not rate 

adherence to the power standard as this could not be represented as a dichotomous variable and 
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applying any particular N level as a criterion seemed to us to be quite arbitrary. As shown in the 

list, most studies adhered to no more than 3 standards, and these are described in some detail in 

the appendix. Only those adhering to 4 or more are described in detail below. 

 

 
Table 2: Meta-review studies reviewed that adhered to atleast three of the seven standards, ordered by # of standards adhered to. 

Author 
# 
standards complexity 

workload 
manipulation 

diff 
resources 

convergent 
measures 

multiple 
ROI 

HBO-
HBR N 

Isbilir 3  y  y  y 14 

Chu 3 y y    y 20 

Lei 3    y y  131 

Hamann 3 y y y    35 

Izzetoglu 3 y y  y   8 

Peck 3 y  y y   16 

Solovey 4 y y  y  y 48 

McKendrick 4 y   y y y 20 

Ayaz 4 y y  y  y 16 

Durantin 4 y y  y   12 

Kerr 5 y y  y y y 7 

Putze 5  y y y y y 12 

Gateau 6 y y y y y y 28 

 
 
 

3.5 Sensitivity and Diagnosticity (as assessed in studies that align with the seven standards) 
Given the seven standards from Table 1, many papers were filtered from an in-depth review 

because they either did not explicitly manipulate (feature 2) workload of an ongoing task 

(instead comparing to a task performed with a resting state; Geng, Liu, Biswal, and Niu (2017)), 

or compared two qualitatively different tasks (Putze et al., 2014) or had what we judged to be an 

inadequate sample size (feature 7). Furthermore, many of the remaining studies were not 

included in our in-depth review because the contributions of specific functional ROIs could not 

be identified from the article text (feature 5). This included studies that focused on machine 

learning classifiers of low vs. high workload (Asgher et al., 2019). In some cases, no convergent 

workload measures were reported (feature 4); or the task was a very basic cognitive task like the 
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N-back memory task (lacking complexity feature 1), even as such tasks may indeed reflect a 

cognitive component of a complex real-world task. It is important to note that Afergan et al. 

(2014) did report the success of fNIRS to operate in an adaptive automation system with a 

complex real-world task (control of multiple unmanned vehicles), but they did not 

experimentally manipulate (feature 2) the complexity of that primary task. 

One paper by Hasan Ayaz et al. (2012) manipulated levels of workload during n-back, air 

traffic control (ATC), and unmanned air vehicles (UAV) tasks. They found that oxygenation 

increased within the prefrontal cortex (PFC) with increased task difficulty for the ATC 

experiment. They also found that data communication requires less cognitive resources than 

voice communications in the ATC simulation. During the UAV task, they found that expertise 

tends to be associated with lower brain activity in the prefrontal area. These researchers used 

oxygenation (HbO-HbR) as their fNIRS measure, rather than looking at the two values 

separately. However, they did not perform ROI analysis and focused only on the PFC with 16 

channels. Another paper by E. T. Solovey, Okerlund, Hoef, Davis, and Shaer (2015) investigated 

how stereo vision and vibrotactile feedback affect user interaction during a spatial task with 

interactive 3D displays with three levels of difficulty, although they did not systematically 

compare different workload manipulations (feature 3). They observed difficulty effects on both 

average HbO and HbR values and vibrotactile feedback on HbO only. While the number of 

fNIRS channels were limited (10), they had a simulated “real-world task,” a large N (48), 

integrated other subjective measures such as the NASA-TLX, and modified workload levels. 

Another paper by (Peck, Yuksel, Ottley, Jacob, & Chang, 2013) manipulated the visual/cognitive 

workload imposed as participants performed a data comparison task (demanding both visual 

perception and working memory) on either bar graphs (presumed to be low workload) or pie 

charts (presumed to require high workload). While finding no overall workload effects on 

fNIRS, subjective ratings, or performance, they did observe individual differences such that 

those who rated the pie graph to be more difficult, reflected this in the fNIRS measure (HbR) 

when using the pie graph whereas those who rated the bar graph to be more difficult also showed 

that same pattern (more oxygenation as reflected by HbR) when using the bar graph. The 

investigators however did not compare ROIs, nor the two fNIRS measures (HbR and HbO), nor 

did they include more than the single manipulation (graph type) of mental workload. Another 

paper by R McKendrick et al. (2016) carried out an applied study in a very real-world context 
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(natural navigation (feature 1)). They did not explicitly manipulate workload, but did compare 

navigation supported by a map on either a head mounted display (HMD; which they 

inappropriately labeled as AR) or on a hand-held display (HHD). The HHD smart phone, by 

virtue of the smaller map image and the greater requirement for scanning, was assumed to 

impose greater workload (feature 2), an assumption confirmed by convergent measure of 

secondary task performance (feature 4). The fNIRS results, measured at left and right PFC ROIs 

suggested greater sensitivity to this display manipulation of workload while performing an n-

back task (and more consistent effects across error and correct trials) for HbR than for HbO 

[(feature 6) see their Figures 4 and 3 respectively]. Also, these effects appeared to be affected by 

ROI (feature 5), being more sensitive and consistent for Left Lateral PFC (LLPFC) than for 

Right Lateral PFC (RLPFC). 20 participants provided them with adequate statistical power 

(feature 7). 

Two aviation studies provide perhaps the closest match of features to the current 

investigation. In the first study, Durantin, Gagnon, Tremblay, and Dehais (2014) employed a low 

fidelity desk top flight simulator (feature 1) with workload manipulations (feature 2) along two 

separate dimensions (feature 3): the dynamics and bandwidth the tracking task whereby the 

participant followed a target aircraft (perceptual-motor load), and the cognitive complexity of the 

rule dictating which aircraft to track (cognitive load). Convergent workload measures (feature 4) 

of subjective ratings and heart rate variability were collected; but only one ROI was measured 

and only for HbO. While both convergent measures validated the two workload manipulations, 

the findings for fNIRS were somewhat puzzling. At low cognitive load, the increase in 

perceptual/motor load did indeed produce increased oxygenation signaled by HbO; but at high 

cognitive load the reverse effect of increasing perceptual/motor load was observed. The 

investigators also reported a positive correlation (over participants) between HbO and the level 

of performance observed, signaling, presumably, the greater cognitive effort required for a 

participant to perform better. Statistical power was barely adequate (N=12; Feature 7). 

The second study by Gateau, Ayaz, and Dehais (2018) involved aircraft piloting (feature 

1).  Manipulations of workload (feature 2) were imposed along two separate dimensions (feature 

3): the working memory demands of air traffic control (ATC) communications (cognitive load) 

and whether fNIRS was recorded in a flight simulator or in the actual aircraft during flight, with 

working memory manipulated via flight parameter instructions given to participants. The 
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convergent measure of the increasing multi-tasking workload from simulator to flight is based on 

task analysis, and that from increasing ATC communications load was validated by embedded 

secondary task performance (communications errors; feature 4). Four prefrontal ROIs (feature 5) 

were assessed for both HbO and HbR (feature 6). Their data signaled a strong positive effect of 

communications load on HbO. While the increasing load from simulator to the aircraft had no 

significant main effect on HbO, the two workload manipulations did interact, in conjunction with 

ROI to suggest that the increased cognitive load had a much greater effect on HbO in flight than 

on the simulator; however, this enhanced effect was only observed at one ROI which appears, 

from their figure to be the left medial prefrontal cortex, perhaps an ROI related specifically to 

multi-tasking capabilities. The investigators collected data on HbR but did not report it; only 

stating that HbR did not show the workload X ROI interaction described above, and thereby 

suggesting HbR to be less sensitive. Statistical power was adequate (N=28; feature 7), but this 

concern was mitigated using trained pilots as participants. 

The research conducted to date suggests a complex interplay between task complexity, 

practice effects, and human performance, which all have an effect on fNIRS measures of HbO 

and HbR taken from the outer cortex of the brain. The literature outlined above suggests that 

assessing the utility of fNIRS for sensitivity measurements of workload is a complex problem, 

with more empirical work needed. In terms of diagnosticity of the fNIRS signal in response to 

different types of load (auditory, visual, memory, etc.), very little research has been performed. 

Therefore, more work is needed to evaluate the diagnosticity of fNIRS for its suitability for AA.  

 
4 Methods 

Noting the lack of research from the meta-review addressing the sensitivity and diagnosticity of 

fNIRS, we designed an experiment to address the following three research questions: 

 
RQ1: Is fNIRS sensitive to Working memory (WM) manipulations (high/low) in a complex task 
environment?   
 
RQ2: Is fNIRS sensitive to Visual Load (VL) manipulations (high/low) in a complex task 
environment? 
 
RQ3: Is fNIRS diagnostic to the type of load, specifically when considering VL versus WM? 
 
RQ4: Are HbO and HbR differentially sensitive to (and therefore diagnostic of) these two different 
workload manipulations? 
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To address these questions, we designed a testbed environment to enable us to explore sensitivity 

and diagnosticity in a study that checked off the seven standards in Table 1, where workload was 

(2) experimentally manipulated in a controlled manner to impose greater or lesser cognitive 

demands on (3) different specific resources within a multiple resource structure, and the 

validity of our manipulations was assured by (4) examining additional workload measures, to 

assure the sensitivity of our measure to demand manipulations that were also reflected in those 

other subjective, secondary task, and physiological measures.  Simple measures of performance 

on the task whose workload is manipulated are inadequate for assessing mental workload (C. 

Wickens & Tsang, 2014). Hence, we validate our workload manipulations against three 

conventional and well-established workload measures: secondary task performance, subjective 

ratings and the physiological measure of pupil diameter.  To examine the diagnosticity of our 

measure, we clearly identified (5) multiple functional regions of interest (ROIs), to determine 

if different ROIs were differentially sensitive to the workload manipulation assumed to be 

reflected by increased activation there. Within each ROI we also explicitly (6) compared the 

two different fNIRS measures, HbR and HbO. Finally, our study had a large amount of (7) 

statistical power, given its high N. 

4.1 Testbed 
The task is a shape sorting task (Fig 2) that involves sitting in front of a large monitor while 

wearing headphones.  The task was based on a previous task used by our team that facilitates 

clean manipulation of multiple types of workload while aligning with dimensions of task 

domains in which we foresee adaptive automation being employed  (N. Tran et al., 2021). 

Specifically, in other lines of our work we have been motivated by future scenarios in which 

robotic teammates collaborating with humans in mixed reality environments will adaptively 

select between communication strategies based on level and type of cognitive load. Inspired by 

this vision, we implemented a mixed reality interaction task inspired by pick-and-place tasks 

common to current industrial human-robot collaborative environments. This mixed reality 

domain was then used to prototype workload manipulations that leveraged the structure of the 

mixed reality task environment. Finally, the overall structure of this mixed reality testbed was 

used to inform the design of the 2D testbed used in this work, which aligned with the domain-
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based design objectives of the mixed reality testbed while avoiding hardware constraints and 

sources of noise that were not necessary for the purposes of the present experiment. 

 

 
Figure 2: The shape sorting testbed.  The a) instruction screen directs the participant on the primary task target shape and target 
bins. Participants then sort the correct target shape out of a list of possible shapes (b) into the correct numbered bins (c). 
Participants are assigned a callsign (d) and a secondary auditory task is presented through the right side of the headphones, where 
the information can either be ignored (g) or where it must be attended to (f). Each task session lasts 45 seconds with time being 
counted down (e), before filling out surveys and beginning a new task, with new updated instructions. 
 
Primary Task.  At the beginning of each task, the participants are shown an instructions screen 

(Fig 2a). They are instructed to search for a specific target colored shape (e.g., green circle) and 

to place that shape into bins with specific numbers (e.g. bins 3,4,5,7). When participants have 

read the instructions (Fig 2a) they click on a ‘begin task’ button. At that time, the instructions 

screen is replaced by the task screen (Fig 2b-e). When the task begins, the participant has 45 

seconds to identify every target shape and to sort it into a valid bin, while the shapes are 

continually refreshed (swapping one shape out for another) every 4 seconds. To ensure target 

shapes appear often, a timer of 6 seconds is also included in the task. If the target shape is not 

present on the screen when the time elapsed, the target shape is swapped for one of the distractor 

shapes during the next refresh cycle. The shapes and target bins are shown in Fig 2b and 1c, 

respectively. While the participants complete the tasks, some bins are randomly blacked out for a 

few seconds at a time, so that shapes cannot be placed into them (2c). Shapes are sporadically 

blacked out in such a way that there is always at least one bin accessible to the participant for 

placement into a target bin. For example, if the target bins are 5, 4, 3, 7 (Fig. 2a) there will never 

be a time when all four of those bins will be inaccessible. This is done to ensure that participants 

keep all bin numbers in working memory throughout each task. A timer on the screen (Fig 2e) 

counts down from 45 seconds while the participants sort the shapes.  
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Secondary Auditory Task. While participants do the continuous task and search for their 

specific target shape, they are simultaneously monitoring auditory information being played 

through headphones. Each participant is assigned a callsign (Fig 2d), which is Bravo. Two types 

of auditory information are randomly played through the headphones on average every 15 

seconds. Distractor audio information is played at times (Fig 2g) when the callsign does not 

match the participant’s callsign. They are told that they can ignore this information. A target 

auditory task (Fig 2f) uses the participant’s actual callsign of Bravo, and a request is made to the 

participant to place an additional shape (of a different shape/color than the primary task target 

shape) into any bin. When this target callsign of Bravo is used, the participant must quickly sort 

the secondary task shape, and then return to the primary task. 

 

Working Memory and Visual Perceptual Load Manipulations 

Working Memory Load (WM) is either low or high, depending on the number of bins needing to 

be remembered. Low WM has 2 bins, while high WM has 4 bins to be memorized. Visual 

Perceptual Load (VL) is either low or high, depending on the similarity metric between the target 

shape and the rest of the shapes available at the top of the screen (see Lavie’s foundational work 

on visual perceptual load for more detail; Lavie (1995); Lavie, Hirst, de Fockert, and Viding 

(2004)). High Similarity (high VL) is defined by a sort distractor object sharing one property 

with the sort target object in terms of their shape or color. For example, a green circle and a 

green square are considered similar as they both share the same color feature. A red circle and a 

blue square are considered dissimilar as they share neither of the color or shape features. There 

are a total of nine different sort objects defined by the combination of Color = [red, green, blue] 

and Shape = [circle, square, triangle]. Once a target shape is selected, the distractors are selected 

from a subset of that total, which matches the VL for that condition, resulting in four distractor 

objects for each type of perceptual load. Figure 3 shows an example of low VL (top) and high 

VL (bottom). In low similarity (Low VL) the target shares no features in common with the 

distractors. 
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Figure 3: Left (instructions before a task begins). Top right: An example of a search task where the VL is low because 
target and distractors share no features in common. Bottom right: an example of a search task where the VL is high: 1 
feature is shared. See (Nhan Tran et al., 2021) for an example of this task implemented in a mixed reality context. 

 

4.2 Experiment Protocol and Procedures (IRB Protocol #19-0436) 
In its simplest form, the control task in the testbed involved sorting of shapes in such a way that 

it elicited low levels of WM, VL, and AL (LwmLvlLal), which is our control task. From there, the 

testbed was configured to experimentally manipulate WM and VL between low and high levels, 

while keeping AL low. Thus, our experiment had four conditions where load levels of WM and 

VL were modulated between low and high, while AL was maintained at a continuous low level: 

 
• LwmLvl LAL(control) 
• LwmHvl  LAL (VL modulated to high) 
• HwmLvl  LAL (WM modulated to high) 
• HwmHvl  LAL (Both WM and VL modulated to high) 

 
We note that since the auditory load (AL) secondary task was always set to a low load level 

throughout all conditions, we omit that redundant item in our results section (e.g., LwmLvl LAL  

becomes LwmLvl).  Equipped with high-density fNIRS, we identified four regions of interest 

(ROIs) to measure in the brain, enabling us to specify the type of load experienced by our 

participants (diagnosticity). These four ROIs included brain regions associated with WM, VL, 

and AL, as well as a critical multitasking (MT) region that becomes engaged during complex 

multitasking scenarios, where users coordinate their short- and long-term goals and intentions 

with the immediate constraints of the task environment (Tomasi, Chang, Caparelli, & Ernst, 

2007).   
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43 participants completed this experiment (51% female, median age = 23 years). All 

participants were recruited from a population consisting of staff, faculty, and students at a large 

university in the Western United States. After providing informed consent, participants were 

equipped with the neurophysiological sensors (described below), and earbud headphones were 

placed into each ear to deliver the auditory secondary task. Next all participants went through a 

tutorial to learn how to complete the task. They did an example task and had the opportunity to 

ask questions from the researcher before beginning the experiment. There were four conditions 

in the experiment, with each combination of WM (high/low) x VL (high/low).  Participants then 

completed 24 continuous 45-second-long tasks, with the four conditions described above 

presented in a randomized block design order, while the AL secondary task continued at a low 

load level, but continuous pace, throughout the experiment. After each trial, they completed the 

mental demand item from the NASA-TLX, workload rating scale (Hart & Staveland, 1988). 

As shown in Figure 4 (left), participants were equipped with a desk-mounted eye tracker 

(Tobii 4c), and functional near-infrared spectroscopy (NIRx Sport 2) with a custom montage 

designed to measure regions of interest (ROIs). The montage included 42 measurement channels, 

as shown in Figure 7. We selected the montage to cover regions of the brain including the 

frontal, visual, and auditory cortical regions that have been implicated in prior cognitive load 

research on working memory, visual load, and auditory working memory load (Crottaz-Herbette, 

Anagnoson, & Menon, 2004; Muller-Plath, 2008; Putze et al., 2014; Suh et al., 2019; Tomasi et 

al., 2007). 

 

 
 
Figure 4: Sensor set-up included a Tobii 4c eye tracker and a NIRx Sport2 fNIRS device. 
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5     Results and Interpretation 
5.1 Conventional Workload Measures 
Of the 43 participants in the study, data from one participant were discarded because the 

behavioral data suggested that they did not participate in the task (e.g., they did not move shapes 

into bins at all). Thus, there were 42 participants used in the resulting analysis. Our conventional 

workload measures include self-report mental workload, secondary task accuracy and response 

time, and measures from eye tracking to further assess workload. 

The response time (RT) data were recorded for each participants’ response to a task. In 

both the primary and secondary tasks, the testbed recorded the number of milliseconds between 

when a target shape was presented on the screen (as was the case in the primary task) or when a 

target audio prompt was delivered (as was the case in the secondary task) to when the participant 

selected the target shape for sorting. Average sorting accuracies were calculated for both the 

primary and secondary tasks as the number of correct sorts divided by the number of total 

possible sorts. The number of total possible sorts is the sum of the number of correct sorts, 

incorrect sorts, and missed sorts. Because the RT data were skewed, prior to analysis the data 

were transformed via the inverse transform.  

The results of the primary independent variables were analyzed using a 2 x 2 ANOVA, 

for each dependent measure.  Specifically, the independent variables were (load level high|low) x 

(load type WM|VL). Results of primary task performance are shown in Figure 5. The left side of 

Figure 5 shows the data for primary task accuracy. The ANOVA revealed a significant increase 

in accuracy associated with increasing WM (F=17.075; df = 1; p<.001; eta squared = 0.016), no 

effect of VL (F=0.066), and a non-significant interaction between the two sources of load 

(F=3.774; p=.0523 eta squared  = 0.003), seen in Figure 5, whereby the increasing accuracy with 

higher WM was attenuated at higher levels of VL. 
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Figure 5:  Left: Effect of WM and VL on primary task accuracy.  Right: The effects of WM and VL on primary task RT. The 
error bars represent the unbiased one standard error as imple 
mented by the Pandas sem function. 
 
The right side of Figure 5 depicts primary task RT, where the ANOVA revealed highly 

significant increases in RT associated with both increasing WM (F=8.224, P<.01, eta squared = 

0.013) and VL (F= 25.294, p<.001, eta squared = 0.042). The former effect, coupled with the 

data in Figure 6 suggests that the influence of WM produced a speed accuracy tradeoff. Higher 

WM produced more accurate responding (Fig 5, left) but at the cost of considerably slower 

processing (Fig 5, right). There was no interaction between the two variables. 

 

  
  

 
Figure 6. Left: Effects of WM and VL on self-report mental demand. Right: Effects of WM and VL on secondary task accuracy. 
The error bars represent the unbiased one standard error as implemented by Pandas ‘sem’ function. 
 
Figure 6 depicts the effects of WM and VL on subjective mental workload as assessed by the 

mental demand sub-scale from the NASA-TLX (Hart & Staveland, 1988). There was a 

significant increase in mental load imposed by increases in both WM (F=36.868, p<0.01, eta 

squared = 0.034) and of VL (F= 4.183, p<.05, eta squared = 0.003) with no interaction. The right 

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sem.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sem.html
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side of Figure 6 shows the effect of VL and WM on secondary task accuracy. There was a 

significant decrease in secondary task accuracy associated with increasing WM (F =78.65, 

p<0.01, eta squared = 0.069). The significant interaction of WM with VL (F= 5.705, p<0.05, eta 

squared = 0.005) signaled that the accuracy decrease imposed by WM was amplified at high 

levels of VL. There was no main effect of VL. The only effect observed on secondary task RT 

was the slowing caused by increasing WM load (F = 7.424, p<0.01, eta squared = 0.0208). 

The eye tracking analysis was carried out on the data of a 36-participant subset of the 42 

described above. Unfortunately, the eyetracking acquisition computer did not function properly 

during six data collections, resulting in data loss of six participants. The eye tracking features 

were generated using Tobii Pro Lab software. For each sample, Pro Lab reports the pupil 

diameter for each eye, the mental workload measure of interest in the current analysis. A mean 

value was computed of the samples corresponding to the time the task was undergone to obtain a 

value for each eye.  

The analysis revealed that both left and right pupil diameter increased with increased 

WM load (F=9.325, p<0.01, eta squared = 0.0136) and left pupil (F=9.459, p<0.01, eta squared = 

0.013). This aligns with prior eye tracking research which has repeatedly found pupil diameter to 

be a reliable measure of workload (Duchowski et al., 2018; Lohani, Payne, & Strayer, 2019), 

especially in visual attention tasks. The VL manipulation had no effect on pupil diameter. 

In summary, the results from the conventional workload measures described above are 

conclusive: The degrading effects of increasing both WM and VL were quite pronounced; on 

response time of the primary task, and three conventional measures of workload (secondary task, 

subjective ratings and, for WM load, pupil diameter (C. Wickens & Tsang, 2014)). Furthermore, 

in general, when effect sizes are compared between the two manipulations, there was a 

considerably greater load imposed by higher WM than by the higher VL. Indeed, increasing VL 

had no effect on either pupil diameter or performance of the auditory secondary task. The only 

puzzling and unexpected effect in these data was the actual increase in primary task performance 

accuracy associated with increasing WM (Figure 5 left). We interpret this effect in terms of a 

strategic speed-accuracy tradeoff (C. D. Wickens et al., 2022) in which participants, 

encountering the need to retain more information in working memory when load is higher, are 

increasingly cautious and take significantly more time to carefully rehearse the item. 

Consequently, they are substantially slowed in their response, but accuracy is improved. The 
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mental workload imposed by this greater rehearsal processing is clearly expressed in the three 

conventional workload measures: secondary task RT, NASA-TLX, and pupil diameter. The 

dissociation between primary task performance and workload measures has been frequently 

observed (Yeh & Wickens, 1988). 

 

5.2 fNIRS Workload Measures 

In this section we look at the main effects of our independent variables, increasing visual and 

working memory load), as we did for the conventional measures. We look at these main effects 

on the fNIRS data, using two common techniques for defining regions of interest (ROIs). These 

are average-across channels ROI analysis and channel-specific ROI analysis, as detailed next.  

 
Preprocessing Pipeline. All fNIRS preprocessing was conducted in NIRS AnalyzIR Toolbox in 

MATLAB (H. Santosa, Zhai, Fishburn, & Huppert, 2018). First, the raw voltages were down 

sampled to 4Hz and converted to optical density. The Modified Beer Lambert Law (Jacques, 

2013; Strangman, Franceschini, & Boas, 2003) was then applied to convert optical density 

signals to oxygenated and deoxygenated hemoglobin concentrations using a canonical HRF basis 

set, which has been shown as the best performing basis set for longer task durations (Hendrik 

Santosa, Fishburn, Zhai, & Huppert, 2019). We then applied motion correction to the 

hemoglobin signals using the NIRS Toolbox’s autoregressor function, which adds the NIRx 

accelerometer data as auxiliary data into the regressors in the generalized linear model (GLM) 

function. The GLM was applied with the default parameters, using an autoregressive, iteratively 

reweighted least-squares model (AR-IRLS) with pre-whitening to correct for serially correlated 

errors and motion present in the fNIRS signal (J. W. Barker, Aarabi, & Huppert, 2013).  

Following preprocessing, we took the resulting ∆HbO and ∆HbR timeseries data and 

calculated subject level (first-level) statistics using a mixed-effects model (Kimberly L. 

Meidenbauer, Choe, Cardenas-Iniguez, Huppert, & Berman, 2020). The resulting first-level 

model contains the subject level regression coefficients as well as their corresponding error-

covariance matrices per subject. We then used the subject level results to conduct t-tests at the 

group level (Kimberly L. Meidenbauer et al., 2020). 
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5.2.1 Sensitivity and Diagnosticity via Average-Across Channels ROI Analyses 
Results from this analysis were then used for group-level contrasts between individual load 

levels (IVs) within specific pre-defined ROIs.  We spatially register our fNIRS channels (C. 

Holmes et al., 1998; H. Santosa et al., 2018) onto anatomical brain regions in LONI space, with 

accompanying Brodmann Area (BA) labels (Jacobs, 2011; Shattuck et al., 2008). We used that 

information to identify four functional ROIs: WM, VL, AL, and multitasking based on the 

following literature: Tomasi et al. (2007) used fMRI to measure brain activation patterns during 

two sets of tasks with graded levels of cognitive load; including verbal working memory (WM) 

and visual attention (VA) tasks. They specifically outlined networks where WM and VA were 

activated during these tasks. Based on their ROI analysis, these researchers found that for both 

tasks, increased task difficulty resulted in increased BOLD responses in the parietal, occipital, 

and fusiform gyri, which relates to sensitivity. They also found that increased load increased the 

BOLD response in the inferior, medial, and middle frontal gyrus (BA 9) more strongly during 

WM tasks than VA tasks. Finally, they found only two regions to be activated uniquely to the 

VA task: the postcentral gyrus and superior occipital gyrus, which relates to diagnosticity. This 

information was used to define the VL and WM regions shown in Figure 7. 

We expected to see interaction effects between our WM and VL condition combinations, 

so we also identified a multitasking ROI, where our goal was to focus on functional brain regions 

responsible for goal-directed multitasking. Since multitasking has been found to engage 

Brodmann Area 10 in the frontopolar region, we used that region to define our multi-tasking ROI 

(Mansouri, Koechlin, Rosa, & Buckley, 2017). Tomasi et al. (2007) found that increased WM 

caused greater activation in a frontoparietal network and was more pronounced for WM than VA 

tasks. Nevertheless, both types of tasks caused activation of this interconnected network. The 

frontoparietal network has previously been closely tied to the control of working memory 

(Wallis, Stokes, Cousijn, Woolrich, & Nobre, 2015). This is further evidence that the MT ROI 

has been implicated in both WM and VA tasks but shows more significant results for WM tasks. 

Lastly, we defined an Auditory Load (AL) region of interest (Figure 7), based on prior fMRI 

work on auditory perceptual load, to measure the effects of the WM and VL load manipulations 

on the auditory processing of the secondary auditory task.  
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Figure 7: Regions of interest overlaid over the 42-channel fNIRS montage. Red circles represent light sources, blue circles 
represent light detectors. Red, green, blue, and purple lines represent a channel of measured data that falls into the WM, VL, AL, 
and MT ROIs, respectively. In the schematic picture, Nz represents the nasion, Iz represents the inion, LPA and RPA represent 
the left and right pre-auricular regions, respectively (used in standard EEG 10-20 landmarking). 
 
We then ran contrast statements that corresponded to WM main effects (high WM – low WM) 

and VL main effects (high VL – low VL). Furthermore, for the HbO and HbR data, we 

performed ROI analysis using the ROI average function in NIRS toolbox, which averages the 

contrast statistics over the specified ROIs (more on this in H. Santosa et al. (2018); Zhai, 

Santosa, and Huppert (2020)). The result is a set of beta (ß) values and t-values for each 

contrast. ß-values are the resulting coefficients from the GLM and tell how well the data fit the 

expected hemodynamic response (canonical, in this case), which is a rise in HbO and decrease in 

HbR. While ß-values can be difficult to interpret on their own, they can be compared statistically 

through t-tests. The resulting t-values represent the results from the above two contrasts between 

conditions. Table 3 presents the effect sizes of the workload manipulations on fNIRS, showing 

HbO on the left half of the table and HbR on the right half and Figure 8 overlays the values from 

Table 3 over our ROIs on the brain. Since we employed an auditory secondary task to assess 

workload, we were also interested in the sensitivity of the auditory ROI (AL ROI) to the 

manipulations of both visual and WM, as will be discussed below. 

 
Table 3: HbO and HbR ß-values and T-values for the main effects (IV stands for independent variable) of the WM and VL 
manipulations, averaged across each ROI (bold face with a * denotes significance (p<0.05)). The contrasts run are (HwmLvl + 
HwmHvl) – (LwmLvl + LwmHvl) for the WM  load main effect (first row for each variable: ß or T)  and (LwmHvl + HwmHvl) – (LwmLvl 
+ HwmLvl)   for the VL  main effect (second row of each variable). 
HbO      HbR     

ß WM 
ROI VL ROI MT ROI AL ROI  ß WM 

ROI VL ROI MT ROI AL ROI 
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WM IV -0.65 2.59 -1.56 -0.29  WM IV -3.61* -2.60* -2.82* -1.01 

VL IV -4.26* 3.70* -5.93* -0.78  VL IV -3.52* -2.08* -1.46 0.12 

           

T WM 
ROI VL ROI MT ROI AL ROI  T WM 

ROI VL ROI MT ROI AL ROI 

WM IV -0.36 1.9 -0.67 -0.15  WM IV -5.07* -4.71* -2.48* -1.23 

VL IV -2.35* 2.70* -2.53* -0.4  VL IV -4.91* -3.76* -1.28 0.14 
 
 

 
 

 

 
 
Figure 8: T-values from Table 3, overlayed over the fNIRS ROIs of multitasking, WM, VL, and AL. For HbO (left side) the red 
spectrum indicates increased activation, with darker red indicating more increased activation. For HbR (right) blue suggests more 
activation at that region, with darker blue indicating higher levels of activation. 
 
As shown in Table 3, greater oxygenation is indicated, in the left half of the table, by more positive 

values for HbO and, in the right half, by more negative values for HbR. Within each half, the effect 

size of the manipulation is depicted in two different, but highly correlated measures, ß (upper half 

of each half) describes the size of the difference between low and high workload by the 

corresponding difference in ß, as derived from the toolbox. T (lower half of each half) describes 

the statistical significance of this effect as assessed by t-tests, also provided by the toolbox. These 

effects can be considered as equivalent to main effects of each of the two manipulations of 

workload (WM and VL). Within each of these 4 sub-tables are the critical effects of manipulating 

the two kinds of mental load (the two rows) on the activation within the four ROIs (four columns). 



   
 

28 
 

Viewing Table 3, we find support in the affirmative for RQ1 and RQ2. fNIRS is indeed 

sensitive to WM levels (RQ1) as well as to VL levels (RQ2) in complex task environments. The 

boldfaced values (signaling significance) are high, and frequently occurring. Specifically, we note:  

1. Overall, HbR (right side) appears to be more sensitive than HbO (left side) in that the values 

are both generally higher and more likely to be significant for HbR and show a consistent 

sign (negative) for the direction of the effect (increase workload) across all 8 cells, whereas 

HbO does not show such consistency, addressing RQ4. 

2. Examining the pattern of effects within HbR in particular (right side), the effect of WM is 

considerably more powerful than is the effect of VL, whether assessed by T- or by ß-values. 

The difference in power between the two manipulations is consistent with the difference in 

effect size for the more traditional measures of workload reported above by secondary task 

performance, subjective workload, and pupil diameter. It is noteworthy that this 

disproportionately higher influence of WM on HbR was particularly evident in the multi-

tasking (MT) ROI where both the T-value and the ß-value value are approximately twice 

as big for the manipulation of WM as for that of VL. This aligns with the findings of 

(Tomasi et al., 2007; Wallis et al., 2015) who found that WM is closely tied to the 

frontoparietal attention network, which encompasses regions in both of our WM and MT 

ROIs.  

3. The WM ROI (column 1) was generally more sensitive to workload manipulations than 

was the VL ROI and the MT ROI.  But the VL ROI is nevertheless somewhat sensitive to 

both manipulations. The same cannot be said for the MT ROI, which, within HbR has a 

relatively low and non-significant sensitivity to VL. 

We see little support for RQ3, that fNIRS data viewed through our four ROIs as shown in Table 3 

and Figure 8, is not diagnostic to the type of load, but the results are not straightforward. More 

specifically, viewing Table 3, the following conclusions emerge with respect to diagnosticity: 

 

4. Regarding diagnosticity, in HbR we do not see the sort of specificity that would have been 

reflected in an interaction, whereby the VL ROI was more affected by VL than WM, and 

WM ROI was more affected by WM than VL. Instead, as described above, our 

manipulation of WM is consistently more powerful than that of VL, and the working 
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memory ROI is consistently more sensitive than the VL ROI, whether ß-value differences, 

or their significance in T-values is considered. 

In an effort to quantify the differential diagnosticity of fNIRS in response to the two workload 

manipulations imposed, we asked: if a workload researcher were examining an fNIRS response, 

with no prior knowledge of the resources imposed by a manipulation, how accurately could she 

assess that the workload increase was imposed on one resource vs the other? That is, we make a 

differential diagnosis. To do this, in a quasi-Bayesian approach we approximate odds (a 

probability) by the strength of a signal, in T that represents the magnitude of a workload increase. 

In particular, we examine the ratios of T-values as follows: 

 
[WMROI  ÷  VLROI]    given that WM was increased 
 
 to the  
 
[WMROI   ÷   VLROI]    given that VL was increased 
  
That is, the ratio of two odds ratios. When this ratio is 1.0, we argue that the hemodynamic 

values reflected by the two ROIs in question are undiagnostic. In calculating diagnosticity in this 

manner, we have chosen to use HbR, because examination of Table 3 reveals that it is the more 

sensitive measure of the two. Using the values in Table 3, we calculate that this diagnosticity 

ratio as: 

 
5.07
4.71

÷
4.91
3.76

=  
1.07
1.30

=  0.82 
 
This ratio, being close to 1.0 and certainly not substantially greater than 1.0, suggests that the 

global ROI measures, averaging as they do over several separate channels are not diagnostic of 

the source of workload. In interpreting this negative result, we note that Figure 8 reveals that 

several separate channels are involved in each ROI, and hence, a better reading of diagnosticity 

may come from examining the individual channel response as we do in the following section. 

5.2.2 Sensitivity and Diagnosticity via Channel-Specific ROI Analyses 

In the last section, we discussed the average-across channel ROI analysis, in which the responses 

of individual channels in our four pre-defined ROIs were averaged together for a ‘big picture’ 

analysis. From these results, we find our ROIs to indeed be quite sensitive to manipulated 
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workload, but they are not diagnostic to the type of load. To identify important differences 

within the individual channels, in this section we discuss the Channel-Specific ROI analysis in 

which individual channels were evaluated for statistical differences. Channel-wise statistics can 

be used to identify significant activation changes in more fine-grained functional ROIs than can 

be done with averaging across multiple channels. Because the channel-wise statistical 

comparisons have a larger chance of generating Type II errors, we use q-values rather than p-

values to set our threshold of significance at .05. q-values are based on Benjamini-Hochberg 

false-discovery rate-corrected p-values (Benjamini & Hochberg, 1995). Each contrast in this 

section includes tables of the results that were significant (q<0.05) and were in the direction that 

corresponds to increased brain activation (positive values for HbO and negative values for HbR). 

We also include the corresponding LONI region and Brodmann Area that each channel covers.  

To evaluate the main effects, we ran contrast statements that corresponded to WM main effects 

(high WM – low WM) and VL main effects (high VL – low VL). Results are shown in Figure 9, 

with the full statistical results available in Appendix 2.  

 

 
Figure 9: Working Memory Main Effects (HWM – LWM) and VL Main Effects HVL – LVL, overlaid over a brain, with nasion (Nz) 
and inion (Iz) locations added for reference. Only significant channels (q < 0.05) are shown. For HbO, positive t-values (red) 
correspond to relatively larger activity for the first term in the contrast, and negative t-values (blue) correspond to larger activity 
for the second term. For HbR contrasts, negative t-values (blue) correspond to larger activation in that region. Green * indicates 
regions that are mutually exclusive (shown by one but not the other) between the WM and VL main effects tests. 
 

In Figure 9, we note that there are six distinct channels (covering five distinct anatomical 

regions) that are uniquely activated (e.g., increased HbO or decreased HbR) for either the WM 

main effect (top of Fig. 9), or for the VL main effect (bottom of Fig. 9), but not for both. These 

regions are denoted with a green * in Figure 9, showing the location on the brain of each unique 
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region, and they are listed in Table 4. For the full set of statistical results that accompany Figure 

9, please see Appendix 2.   

 
Table 4: Summary of results from Table 3, with only unique significant activation shown. 

Mutually exclusive regions activated for Working Memory main 
effects 

Mutually exclusive regions activated for VL main 
effects 

Hb Region Hb Region 

HbO L superior occipital gyrus HbO L angular gyrus (x2 channels) 

HbR L inferior frontal gyrus   

HbR R precentral gyrus     

HbR R angular gyrus     
 
 

To further evaluate the effects of load type on individual channels, we also wanted to directly 

contrast the fNIRS data when participants experienced just high WM, from times when they 

experienced just high VL. To do this we performed the following contrasts: (WMhighVLlow) - 

(VLhighWMlow) and its inverse (VLhighWMlow) - (WMhighVLlow). Results are shown in Figure 10, 

with full statistical output in Appendix 2.  

Viewing the results shown in Figures 9, 10 and Table 3, we find strong support in the 

affirmative for RQ1 and RQ2. fNIRS is indeed sensitive to WM levels (RQ1) as well as to VL 

levels (RQ2). Although these findings were already found in the four-region ROI analysis 

presented previously, the channel-wise results shown here, provide critical support in the 

affirmative for RQ3, that our fNIRS channel-wise results are indeed diagnostic to load 

levels in our complex task. More specifically, we note that: 

 

From the data presented in Figure 9 and Table 4, we can conclude that: 

1. Single-channel measures were diagnostic: one HbO channel (left superior occipital gyrus) 

and three HbR channels (left inferior frontal gyrus, right precentral gyrus, right angular 

gyrus) identified WM but not VL; activation of two HbO channels (both over left angular 

gyrus) signaled VL but not WM. These channels contribute to diagnosticity by 

differentiating markers of WM from markers of VL. 

2. It is notable that the left IFG was uniquely activated for the WM main effect, but not for 

VL. The left IFG is part of the multitasking ROI that was used in our average-across 
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channels ROI analysis above (shown in our fNIRS montage in Figure 7). Working 

memory and multitasking share resources in the brain (A. Baddeley, 1996; A.  Baddeley 

& Della Sala, 1996; Smith & Jonides, 1999), which is likely why we see this increase in 

the left IFG as more multitasking is needed to support task control when WM increases.   

Looking at Figure 9, we see further support of diagnosticity between WM and VL.  More 

specifically: 

1. Looking at the differences in HbO and HbR in Figure 10 (top), our contrast WMhigh-

VLhigh yields HbO deactivation in the frontal regions and significant activation in the 

parietal gyrus, and HbR shows activation of the left frontal gyrus and left occipital gyrus.  

2. In Figure 10 (bottom), we see a similar trend between HbO and HbR in the inverse 

contrast (VLhigh-WMlow) whereas HbO is significantly activated throughout the bilateral 

frontal gyrus and left supramarginal gyrus while HbR is activated in the right precentral 

gyrus. The differences across these two measures of hemoglobin show how they are 

inversely related to one another: when HbO shows activation in a region, HbR often 

shows deactivation in the same region and vice versa. VLhigh-WMlow shows greater HbO 

activation in the bilateral frontal regions and HbR activation in the right precentral gyrus. 

3. The above two findings suggest that WM tasks induce activation of the parietal and left 

frontal regions, while VL tasks also activate the frontal and precentral regions. We again 

conclude that there is overlap between the WM and VL activation regions, especially in 

the frontal gyrus, where much of both memory and visual processing occur.  

4.  

Figure 10: Contrasts: (WMhighVLlow) - (VLhighWMlow) and its inverse (VLhighWMlow) - (WMhighVLlow) overlaid over a brain, with 
nasion (Nz) and inion (Iz) locations added for reference. Only significant channels (q < 0.05) are shown. For HbO, positive t-
values (red) correspond to relatively larger activity for the first term in the contrast, and negative t-values (blue) correspond to 
larger activity for the second term. For HbR contrasts, negative t-values (blue) correspond to larger activation in that region.  
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6 Discussion 
The main goal of this paper was to evaluate the utility of fNIRS for workload-based adaptive 

automation through the lens of the four principles of unobtrusiveness, temporal responsiveness, 

sensitivity, and diagnosticity criteria. Table 5 summarizes our findings, which we discuss here. 

6.1 Meta-Review Goals and Findings 

We explored the four criteria via a meta-review of related workload-focused fNIRS 

literature. With respect to unobtrusiveness, we found a combination of research literature and 

commercial bio-technology developments that suggest that fNIRS is a device well- suited for 

being unobtrusive in AA. We expect future fNIRS devices to be designed for specific-use cases, 

where the number and layout of channels, comfort of the probes, quality of the signal vs. cost, 

are all considered for a specific use case. We summarize our findings in Table 5. 

With respect to temporal responsiveness, it is generally agreed upon that the underlying 

hemodynamic response is quite slow by nature throughout fNIRS literature, as most studies in 

our meta-review ran analyses on fNIRS data with tasks lasting more than 25 seconds (see 

Appendix 1). Thus, fNIRS is not ideally suited for AA because of the resulting lag induced in a 

closed loop adaptive system, and inherent instability when that lag approaches the time constant 

of workload changes within the task (C. D. Wickens et al., 2022).  
Table 5: Summary of findings collated from our experiment and the meta-review. Top: a graphic depicting our findings, with 
mappings on the suitability of fNIRS for workload-based AA based on the four criteria of temporal responsiveness, 
unobtrusiveness, diagnosticity, and sensitivity. Bottom: Text summary of our findings regarding the four criteria. 

 

Criteria Summary of Meta-Review and Experimental Findings 

Unobtrusiveness 

Meta-review findings show a strong trend toward devices continuing to be more wearable, practical, and 
specialized to specific use cases. 

Empirical results were achieved in this study using a NIRSport 2. The wireless NIRSport2 was equipped 
with probe tips specially designed for comfort on the scalp.  

Temporal 
responsiveness 

Meta-review findings suggest that like fMRI, fNIRS on its own, measures a slowly moving hemodynamic 
response, which makes its temporal responsiveness relatively slow. More work is needed, following the 
lead of researchers who have focused on exploring short sliding windows of time in ML classification and 
on hybrid EEG/fNIRS adaptive systems.  

Empirical results were generated using statistical tests on task lengths of 45 seconds in duration, which 
does not further our understanding of the temporal responsiveness of the fNIRS signal. 
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Sensitivity 

Meta-review showcased strong results of the sensitivity to workload manipulations; however with the 
majority of work focused on extremely simple, highly controlled benchmark tasks (e.g. n-back tasks), 
rather than those tasks typical of an extra-laboratory working environment.  

Empirical results indicate that fNIRS is sensitive to changes in visual) and working memory  load levels. 
HbR appeared to be more sensitive than HbO for WM, while both HbR and HbO appeared to be sensitive 
to VL manipulations (as shown in Tables 3 and 4). 

Diagnosticity 

Meta-Review found very little prior work on diagnosticity. Of that handful of work, the vast majority has 
been done on simple, highly controlled tasks. 

Empirical results indicate that fNIRS is diagnostic to type of load, specifically to visual vs WM, but these 
findings are not clear cut. In the channel-wise analysis, we found unique regions that are activated in the 
WM main effects comparison that were not activated by the VL main effects, and vice versa. Such 
diagnosticity was not revealed by the ROI analysis where we condensed the data into four ROIs. When the 
data was kept in its channel-wise form, we did see diagnosticity: For WM, we see one HbO channel and 
three HbR channels that are unique for differentiating WM (HbO: Left superior occipital gyrus, HbR: L 
inferior frontal gyrus, R precentral gyrus, R angular gyrus). For diagnosticity for VL, we see two HbO 
channels uniquely differentiating VL, both measure the L angular gyrus. 

 
 
 
 
 

To combat this issue, much recent research has focused on exploring shorter time windows for 

machine learning classification, with a sliding window approach being particularly well suited 

for the fNIRS signal (see R. Liu et al. (2021) for a thorough review of time windows used to 

date). While the fNIRS signal is bound by the nature of the hemodynamic response to be 

relatively sluggish, a number of studies have taken a multimodal approach, merging fNIRS data 

with other behavioral and physiological measurements that have higher temporal responsiveness. 

Some such approaches utilize hybrid fNIRS/EEG systems for future AA systems that combine 

the spatial resolution of fNIRS with the high temporal responsiveness of the EEG signal (Kwon 

et al., 2020; Putze et al., 2014).  

In terms of sensitivity and diagnosticity of the fNIRS signal for workload measurements, 

the findings in our meta-review were less conclusive. Research conducted to date suggests a 

complex interplay between task difficulty, practice effects, and human performance, which all 

have an unpredictable effect on fNIRS measures of HbO and HbR taken from the outer cortex of 

the brain (Herff et al., 2014; R. McKendrick, Ayaz, Olmstead, & Parasuraman, 2013; Kimberly 

L Meidenbauer et al., 2021). More work is needed in this area to better understand the 

relationship between these factors on sensitivity and diagnosticity of fNIRS signals (Herff et al., 

2014).  
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6.2 Experiment Findings and Interpretations 
As outlined below, our results lent clear, affirmative support for RQ1, RQ2 and RQ4. With 

respect to RQ3, and diagnosticity, only our channel-wise analysis lent support for our ability to 

differentiate changes in WM from changes in VL. Importantly, our findings align with prior 

neuroscience work on visual attention, WM, executive processing, and multitasking (A. 

Baddeley, 1996; A.  Baddeley & Della Sala, 1996; Smith & Jonides, 1999; Tomasi et al., 2007).   

Regarding the primary purpose of validating the use of fNIRS in AA, our findings contribute to 

the studies that have also done this in realistic tasks (e.g., Hasan Ayaz et al. (2012); Gateau et al. 

(2018)). Our conventional measures of primary and secondary task performance, subjective 

measures (NASA-TLX) and neuroergonomic measures (pupil diameter), as shown in Figures 2-

4, validated that the two workload manipulations were effective and revealed that our 

manipulation of WM was considerably more powerful than that of VL. Furthermore, our fNIRS 

results converged on and replicated these two trends. 

We ran our analyses using two different techniques for ROI mappings: Average-Across 

Channels and Channel-Specific. Both techniques yielded clear and convergent evidence of 

sensitivity of load level. Our fNIRS measure of global activation at each of our four ROIs (WM, 

VL, AL, and MT) were shown in Table 3, where we note that most of the T and ß were in the 

“expected” direction, signaling greater oxygenation (higher HbO, and, particularly, lower HbR 

and thus more sensitivity) with increased workload. They also showed greater effects for the 

manipulation of working memory than of visual workload. This differential effect of 

manipulation power on sensitivity was also reflected in the multitasking ROI. Thus, the fNIRS 

data provided a differentially sensitive measure of workload. It also became clear that these 

effects were more strongly reflected in HbR, than in the more frequently used HbO. 

Although the fNIRS analyses performed by averaging data into four ROIs did not show 

support for diagnosticity, the fNIRS results completed at the channel-level did yield clear 

findings to support diagnosticity. These results found with respect to diagnosticity unique to 

WM, both HbO and HbR make contributions toward diagnosticity. For the WM and VL main 

effects comparisons (Fig 9, Table 3), we note that one HbO channel and three HbR channels 

were unique for differentiating WM (HbO: Left superior occipital gyrus, HbR: L inferior frontal 

gyrus, R precentral gyrus, R angular gyrus).  
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These findings dovetail with literature on the WM network in complex tasks, that it engages 

an interconnected network of brain regions that work together to maintain and update working 

memory while shifting attention and executing tasks based on the changing task environment. 

Notably, the Left inferior frontal gyrus (IFG) plays a key role in the executive function behind 

working memory (Nee et al., 2013). This aligns with the prior work by Gateau et al. (2018) in 

which they found the left PFC (their ROI #2) experienced greater HbO changes during the real 

flight condition than in the simulator condition when carrying out high WM tasks. Those authors 

note that multitasking became critical when carrying out a high WM task rather than a low WM 

task while also navigating a real aircraft.  

With respect to diagnosticity unique to the VL main effect, only HbO contributes toward 

diagnosticity (as shown in Table 3, and by the green * in Figure 9). For unique diagnosticity for 

VL, there were two HbO channels uniquely differentiating VL, both of which cover the L 

angular gyrus. The angular gyrus has long been recognized as a key region involved in visual 

attention and visuospatial processing (Göbel, Walsh, & Rushworth, 2001; Studer, Cen, & Walsh, 

2014), and indeed seems to be an important region distinguishing VL manipulations (e.g., 

making our target shapes more/less like the surrounding distractors) from the WM 

manipulations. Support for diagnosticity was further found by contrasting the two conditions of 

WMhighVLlow with VlhighWMlow. The contrast results (Appendix 2, Table B) suggest that WM 

tasks induce activation of the parietal and left frontal regions, while VL tasks also activate the 

frontal and precentral regions. We again conclude that there is overlap between the WM and VL 

activation regions, especially in the frontal gyrus, where much of memory and visual processing 

occur.  

In summary, the unique brain regions identified as unique to WM and unique to VL dovetail 

with research from the fMRI domain about the brain regions involved in VL versus WM, with 

WM activating a more diverse interconnected network of brain regions that spans from the 

prefrontal cortex, back through the parietal region, and into the occipital cortex. VL, on the other 

hand, only engaged unique brain regions in the left angular gyrus, which has been repeatedly 

linked to visuospatial attention. These results align with prior literature in the neuroscience 

domain; suggesting that the brain resources engaged in visual attention and WM are highly 

overlapping, but not identical (Tomasi et al., 2007). For example, one study that evaluated verbal 

WM and spatial attention (SA) tasks using fMRI found a common activation network made of 



   
 

37 
 

the frontal, temporal, and parietal cortices, suggesting that tasks share a common dynamic 

shifting of attentional resources in these common areas (LaBar, Gitelman, Parrish, & Mesulam, 

1999). More aligned with our experiment, Tomasi et al. (2007) employed a similar paradigm to 

evaluate the effects of high and low WM and visual attention (VA) tasks. They found that 

despite the differential attentional requirements of the tasks, they both activated a common 

network including the prefrontal, parietal, and occipital cortices.  

Viewing our findings through the lens of resource theory, we expected to see increased 

load placed on brain regions responsible for multitasking, as a result of coordination of our 

complex task, with increased WM in particular placing greater demands on MT regions than VL 

increases.  Our observed pattern of effects on the MT ROI are readily interpretable. Multitasking 

is heavily supported by executive control (C. D. Wickens et al., 2022). So is working memory 

which, at higher load, involves more mental juggling of the subtasks of maintenance and 

processing (A. D. Baddeley & Hitch, 1974; Engle, 2002). In contrast, VL increases impose 

primarily input-output processing, not imposing greater multi-tasking requirements. To our 

knowledge, none of the studies reviewed above, nor the larger set contained in Appendix 1, 

examined this specific multi-tasking ROI as we do here.  

6.3 Implications for Workload Based Adaptive System Designs 

While our work revealed, as other’s also have, that fNIRS is quite sensitive to variations in visual 

and working memory load (particularly the latter), its feasibility for adaptive systems remains 

constrained by the lag in its measurement, as seen in the current experiment, and replicating 

many earlier studies. This lag is bound by the nature of the hemodynamic response (Figure 1) 

with it taking roughly 8 seconds after a stimulus onset for HbO and HbR to peak (Huppert et al., 

2006). This naturally occurring 8-second lag clearly places a lower bound that makes it 

challenging to classify load levels on fNIRS time windows. As noted previously (section 3.2 on 

temporal responsiveness), most research has found that ~25-second continuous tasks, paired with 

~25-second-long window lengths, has yielded most success to date in single trial classification of 

fNIRS workload levels.   

A lag value of this magnitude does not preclude fNIRS use in adaptive automation. 

However, it will only reliably reflect changes in workload in circumstances when the workload 

changes that AA is designed to compensate for, are themselves relatively gradual, such as the 

increased workload imposed by fading illumination at dusk, or that associated with cumulative 
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mental fatigue.  In this regard, statistically significant classification rates between low and high 

workload conditions in a shorter period of time are not sufficient to justify incorporation in 

adaptive automation, simply because even a small loss in classification accuracy (associated say 

with a 90% classification rate) will be likely to undermine user trust in the system. A promising 

option is to couple fNIRS with other unobtrusive workload assessment techniques, such as EEG 

alpha/theta ratio, or pupil diameter that may have a much faster response rate, even if those are 

less sensitive, and less diagnostic; in short, a team approach to on-line workload assessment. 

Given the meta-review and empirical findings summarized in Table 5, it is clear that 

fNIRS developers of workload-based AA systems should consider using multiple measurement 

modalities (e.g., hybrid EEG/fNIRS) to improve temporal responsiveness, and inclusion of both 

HbO and HbR in the measurement and modeling approaches will provide complementary 

measurements toward load sensitivity and diagnosticity. 

 
7 Study Limitations 
Group-Statistics vs Single-Trial Classification. In this study we have evaluated the utility of 

fNIRS for diagnosticity, sensitivity, and temporal responsiveness at the group statistical level, we 

have not run machine learning analyses per individual.  Before turning to machine learning and 

single trial analyses, we opted to take the important step of first using group-level statistics to 

establish the statistical reliability of the time-varying response and the reliability of the fNIRS 

signal to distinguish between the different forms of load. Thus, our findings can only be 

interpreted at the group level; and our ability to extrapolate findings to the individual-level, 

where adaptive systems would operate, is limited. Yet determining the statistical differences at 

this group level is essential to extending the technique to adaptive automation, where machine 

learning can classify the differences in inferred workload based on individual responses. Future 

work should extend these findings to investigate load diagnosticity, sensitivity, and temporal 

responsiveness at the individual level, and we hope that our use of cognitive load theory and 

development of a complex load manipulation testbed provides a pathway to extend this work 

toward individual level measurement and modeling.  

fNIRS Preprocessing. Of major concern within the fNIRS signal is the presence of serially 

correlated errors due to high sampling rate and heavy-tailed noise distributions (Kimberly L 

Meidenbauer et al., 2021; H. Santosa et al., 2018) due to noise in the signal. We did not use 
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short-channel regression in our preprocessing pipeline. This is a limitation of this work as short-

channel regression is the optimal technique of distinguishing task-evoked non-neuronal response 

(systemic noise) from the neuronal signal of interest (Tachtsidis & Scholkmann, 2016; M. Yücel 

et al., 2021). Our pipeline utilized both accelerometer regression and AR-IRLS pre-whitening, 

which have been applied widely throughout fNIRS literature to reduce motion and physiological-

related noise. The AR-IRLS model uses an auto-regressive filter to minimize these errors and 

iteratively down-weighs outliers in a weighted regression, and has been adapted for real-time 

filtering (J. Barker, Rosso, Sparto, & Huppert, 2016; J. W. Barker et al., 2013). However, it is 

best practice to utilize short-separation channel regression to obtain the true hemodynamic 

response signal. We encourage future work to use this technique, especially within the context of 

AA.  

 
8  Conclusions and Future Work 
 
Although the concept of workload-based adaptive automation has been discussed frequently in 

the fields of HCI and human factors, these intelligent systems have proven very difficult to 

achieve. In this paper we focused on the utility of fNIRS for addressing four measurement 

criteria that are essential to consider if we are to realize the vision of workload-based AA with 

fNIRS and described a meta-review and empirical study to explore these criteria. We found that 

fNIRS has relatively poor temporal responsiveness, but it rates highly with respect to 

unobtrusiveness.  Further, the fNIRS signal is adequately sensitive to gradations of load level 

changes (sensitivity), and when data are viewed in channel-wise format, the fNIRS device does 

appear to offer diagnosticity; whereby the type of load being modulated (in our case WM and 

VL) can be uniquely identified. Although our findings showed support for sensitivity and 

diagnosticity of the fNIRS signal, we note the strong need for more research to be conducted by 

fNIRS researchers in the HF and HCI domains, if we are to build workload-based AA using the 

fNIRS signal.  Future research should focus on diagnosticity and sensitivity of fNIRS for 

measuring workload changes in studies that utilize complex, ecologically valid tasks, with a 

suitable number of channels for differentiation of different types of workload. Also, adaptive 

systems are composed of data-hungry algorithms, which cannot be adequately trained on small 

datasets, especially given the high dimensional features space of brain data. Even if the fNIRS 

signal is suitable for differentiating between different types of load and different levels of load, 
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there is a great need for the research community to make dataset and testbed sharing a priority. 

Shared fNIRS data should contain information about the anatomical brain region measured by 

each channel, as well as access to raw data streams, so that researchers can train models on 

datasets aggregating different experiments, different devices, and different labs. These large-

scale efforts will be instrumental in order to fully realize the goals of using fNIRS as a basis for 

workload-based AA.  
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Appendix 1: Meta-Review Table 
 

Citation N 
 

fNIRS Set Up 
(# of channels, 

regions) 
Device Type Time 

Window 

Manip 
of WL 
(Y/N) 

Convergent 
Measure 
(NASA-TLX, 
pupil, 
secondary 
task) (Y/N) 

Task 

(E. T. Solovey, 
Okerlund, et 
al., 2015) 

48 10, PFC Imagent (ISS Inc.) not specified Y Y, subjective 
measures 

3D spatial 
reasoning puzzles 

(Maior, Wilson, 
& Sharples, 
2018) 

32 16, PFC 
fNIR300 

(Biopac®) 
 

30s Y 
Y, 
performance 
data 

Air Traffic control 
game 

(Asgher et al., 
2020) 15 12, PFC P-fNIRS System 

 20s Y Y, NASA-
TLX 

supervised mental 
workload 
experimentation 
with 4 varying 
MWL levels 

 
(Hasan Ayaz et 
al., 2012) 

  

24 16, PFC 

fNIR Device 
model 

1000  (NIRDevices 
LLC.) 

not specified Y 

Y, self-
reported 
rating, 
behavioral 
measures, 
NASA-TLX 

Study 1: n-back 
and ATC tasks, 
Study 2: n-back 
and UAV tasks 

(Peck, Yuksel, 
et al., 2013) 16 8, right & left PFC OxiplexTS (ISS 

Inc.) 40.7s Y 

Y. NASA-
TLX & 
performance 
data 

n-back task and 
visualizing bar 
graphs and pie 
charts 

 
(Afergan et al., 
2014) 

12 8, right & left PFC Imagent (ISS Inc.) 25s Y Y, dependent 
measures 

UAV Navigation 
Task and n-back 
task 

 
(E. T. Solovey, 
Afergan, Peck, 
Hincks, & 
Jacob, 2015) 

65 16, PFC Imagent (ISS Inc.) 
calibration 
phase: 25s 

 
Y N 

n-back and 
multitasking 
paradigms 

 
(Durantin et al., 
2014) 

12 16, PFC 
fNIR100 

(Biopac®) 
 

6 min Y 

Y, NASA-
TLX, HRV, 
and 
performance 
data 

simulation of a 
ROV where they 
followed a 
dynamic target 
with their aircraft 
under different 
levels of control 
difficulty and 
processing load 

(Gateau et al., 
2018) 28 16, PFC fNIR100 

(Biopac®) 30s Y 
Y, 
performance 
data 

flight simulator 
task with 
manipulated 
workload using 
ATC sending 
auditory messages 
and subject 
repeating them 
back 

 
(Bunce et al., 
2011) 

8 
8 optodes (# of 
channels not 

specified), DLPFC 
not specified 75s Y Y, secondary 

task 

ship-based navy 
command and 
control 
environment task 
and a secondary 
verbal task 

 
(Suh et al., 
2019) 

9 

36, Superior 
Temporal Gyrus 

(STG) and Middle 
Temporal Gyrus 

(MTG) 

FORIE-3000 
(Shimadzu Corp.,) 

 
55s Y 

Y, 
performance 
data 

rhythm game 
which offered 
visual-auditory 
stimulation with 
synchronous and 
asynchronous 
conditions 
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(Baker, Bruno, 
Gundran, 
Hosseini, & 
Reiss, 2018)  

15 

40, DLPFC, the left 
intraparietal sulcus 

(lPAR), and the right 
intraparietal sulcus 

(rPAR) 

NIRsport (NIRx) mixed 
durations Y Y. behavioral 

data 

Visuospatial 
working memory 
task and Just 
Noticeable 
Difference task 

(Herff et al., 
2014) 10 8, PFC 

Oxymon Mark III 
(Artinis Medical 

Systems) 
44s Y 

Y, post-
experiment 
questionnaire 

n-back task 

 
(L. Hirshfield et 
al., 2011) 

10 8, PFC OxiplexTS (ISS 
Inc.) 50s Y 

Y, post-
questionnaire 
survey 

Finding A’s, 
Stroop, n-back, 
driving simulator, 
conducting web 
searches 

(Putze et al., 
2014) 12 170, visual cortex 

and temporal cortex Imagent (ISS Inc.) 10-15s* N Y, mixed task 
& EEG 

visual and auditory 
stimuli 

(Pike et al., 
2014) 20 16, PFC, Brodmann 

area 10 
fNIR300 

(Biopac®) 
mixed 

durations N 
Y, EEG and 
subjective 
measurement 

mathematical 
computations 
while speaking 
aloud 

(E. Solovey et al., 
2009 ) 10 8, right & left 

anterior PFC 
OxiplexTS (ISS 

Inc.) 15s* N 
Y, 
performance 
data 

Memory task 

 
(Cakir, Çakir, 
Ayaz, & Lee, 
2015) 

27 16, PFC fNIR Devices LLC 15s* N 
Y, accuracy 
and response 
time 

math tasks 

(Friedman, 
Walker, & 
Solovey, 2018) 

12 8, PFC 8-channel fNIRS 
device (ISS, Inc.) 40s window N 

Y, behavioral 
and subjective 
data 

SART Task 

(Aranyi, 
Charles, & 
Cavazza, 2015) 

12 16, PFC fNIR400 
(Biopac®) 20-22s N Y, subjective 

measurement Anger Task 

(E. T. Solovey et 
al., 2011)  

12 8, PFC OxiplexTS (ISS 
Inc.) 40s N Y, behavioral 

data 

sort rocks and 
watch location of 
rocks 

 
(Jin, Jia, & Yu, 
2018) 

20 38, PFC LabNIRS, 
(Shimadzu Corp.) 30s N 

Y, 
performance 
data 

Solving a science 
problem 

 
(L.-C. Chen et 
al., 2015) 

24 20, temporal and 
occipital NIRScout (NIRx) 10s* N 

Y, EEG & 
subjective 
measures 

auditory and visual 
tasks 

(Aihara et al., 
2020) 20 152, bilateral frontal 

and parietal 
SMARTNIRS 

(Shimadzu Corp.) not specified N Y, fMRI 

10 min resting 
state condition and 
two-back working 
memory task 

 
(Yujin Zhang & 
Zhu, 2020) 

20 

40, frontal, 
sensimotor, 

occipital, temporal, 
pariental 

LabNIRS 
(Shimadzu Corp.) 

20, 30, and 
60 s N Y, EEG 

Resting state with 
eyes opened and 
then eyes closed 

 
(Y. Chen et al., 
2020) 

19 

105, covering the 
areas from the 
forehead to the 
occipital lobe 

NirScout (NIRx) 30s N Y, EEG 

Exp 1: two 
separate sessions, 
eyes-open (EO) 
and eyes-closed 
(EC), while 
standing, sitting, 
and supine. Exp 2: 
rest still and 
allowed to fall 
asleep during a 45-
min recording, 
while subjects laid 
supine in an 
adjustable recliner 

(E. Solovey et al., 
2012) 11 2, anterior PFC OxiplexTS (ISS 

Inc.) 40s N Y, NASA-
TLX 

Robot navigation 
task 

(Anderson et al., 
2017)  

29 16, PFC fNIRS Devices 
LLC. 50s N Y, Non-verbal 

and Verbal 

Toddlers 
underwent a 
vanilla baseline 
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Developmental 
Quotients 

recording, during 
which they 
watched two 50-s 
clips from 
children's shows, 
presented in 
audiovisual format 

(Neupane, 
Saxena, & 
Hirshfield, 2017)  

20 

46, Whole head 
(frontal, temporal, 

parietal, and 
occipital lobes) 

ETG 4000 
(Hitachi) 20s N Y, fMRI trust task for 

websites 

(Aksoy et al., 
2019) 
  

22 16, PFC fNIR Devices, 
LLC. 15s*-120s N Y, BLS scores VR learning task 

(Yamamura, 
Baldauf, & 
Kunze, 2021) 

10 not specified, PFC 
HOT-1000 

(Hitachi Medical 
Systems) 

5 min N 

Y, simulator 
sickness 
questionnaire 
(SSQ) 

VR task 

(Yamazaki, 
Kanazawa, & 
Omori, 2020)  

14 
53, Left hemisphere 
(frontal, temporal, 
and parietal lobes) 

LABNIRS 
(Shimadzu Corp.) 3-25s* N N 

Pseudoword audio 
and visual STM 

tasks 

(E. Holmes et al., 
2019) 34 20, PFC NirScout (NIRx) 2-6 min N N 

Psychomotor 
vigilance task and 
delayed match-to-
sample task  

(Geng et al., 
2017) 21 

46, Whole head 
(frontal, temporal, 

parietal, and 
occipital lobes) 

CW6, (TechEn 
Inc.) 11 min N N resting state 

 
(J. Zhao et al., 
2016) 
  

90 24, bilateral PFC 
ETG-4000 

(Hitachi Medical 
Systems) 

3s* N N 

CANTAB - 
Stockings of 
Cambridge (SOC), 
Spatial Working 
Memory (SWM), 
Spatial Span 
(SSP), and Intra-
dimensional/Extra-
dimensional Shifts 
(IED) 

(Lei, Miyoshi, 
Dan, & Sato, 
2020)  

131 22, bilateral frontal 
and temporal areas 

ETG-4000 
(Hitachi Medical 

Systems) 
18-21s N N Listening task in 

different languages 

 
(Charles, De 
Castro Martins, 
& Cavazza, 2020) 

S1:11 
S2: 
17 
S3: 
11 

16, Right & left 
DLPFC 

fNIR400 
(Biopac®) 

S1: 22s 
S2: 40s 
S3: 40s 

N N 

Expression anger, 
engaging with 
virtual character, 
and expressing 
motivation 

(Keshmiri, 
Sumioka, Okubo, 
& Ishiguro, 2019) 

S1: 
34 
S2: 
36 
S3: 
26 

4, PFC HOT-1000 
(Hitachi) 

S1: 6s* 
S2: 20 min 

S3: 50s 
N N 

verbal fluency 
task, conversation 
task, logical 
memory test 

(Novi et al., 2020) 10 

64, primary and 
secondary motor 

cortices, frontal, and 
parietal 

NirScout (NIRx) 2s* N N Right-hand finger-
tapping 

(Y. Liu & Ayaz, 
2018) 19 40, anterior PFC and 

parietal cortex 

fNIR Imager 
Model 1100; (fNIR 
Devices), LLC and 
ETG 4000 (Hitachi 
Medical Systems) 

100s task, 
25-50s 

segments for 
classification 

N N Listening to 
English stories 

(Abdullah & 
Khan, 2018) 9 

17, temporal, 
parietal, and 

occipital lobes 

forty four-channel 
NIRS device 3-5s* N N Color association 

task 

(Lee, Jung, Park, 
& Hong, 2019) 7 

20, M1, M2 and 
SMA, approx. 3 cm 

apart 

NirSport 8x8 
(NIRx) 20s N N Finger tapping task 
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Appendix 2. fNIRS Statistical Results 
 
Table A:  Channel-wise results for (WMhighVLlow)>(VLhighWMlow) contrast. With type of hemoglobin (Hb), source-detector position 
(S D), functional brain regions, and Brodmann Area (BA) listed, as well as T, p, q, power values. 
 

Contrast: (WMhighVLlow)>(VLhighWMlow) 
Hb S D; Region BA T P q power 
HbO 1 1; L anterior frontal gyrus 9, 11, 46 -2.77 0.006 0.033 0.61 
HbO 2 2; L middle frontal gyrus 45, 46 -2.82 0.005 0.029 0.63 
HbO 4 3; L superior frontal gyrus 8, 9 -2.87 0.004 0.028 0.64 
HbO 4 4; L middle frontal gyrus 6, 9, 8 -4.26 <0.001 <0.001 0.96 
HbO 6 5; R anterior frontal gyrus 8, 9 -2.66 0.008 0.043 0.56 
HbO 6 6; R middle frontal gyrus 45, 46 -4.76 <0.001 <0.001 0.99 

HbO 6 8; R middle frontal gyrus 9, 44, 46, 
45 -3.05 0.002 0.018 0.71 

HbO 8 7; R superior frontal gyrus 8, 9 -5.76 <0.001 <0.001 0.99 
HbO 11 9; R superior parietal gyrus 7 3.00 0.003 0.020 0.70 
HbO 11 12; R superior parietal gyrus 7 3.29 0.001 0.011 0.79 
HbO 12 9; L superior parietal gyrus 7 3.28 0.001 0.011 0.78 

(Peck, Afergan, 
& Jacob, 2013)  

14 8, PFC OxiplexTX 
(ISS Inc.) 25s N N 

Viewing favorite 
and least favorite 
movies 

(Volkening et al., 
2018) 

S1:5 
S2: 9 

S1: 16 channels 
S2: 10-5 layout, 

Brodmann areas 1-4 
and 6 

mofNIRS & 
NirScout (NIRx) 

S1: 2 min 
S2: 15s* N N 

Grip movements of 
the hands using 
hand-held strength 
trainers 

(Le, Xuan, & 
Aoki, 2022) 17 4, PFC 

Brain Activity 
Monitor (Astem 

Co., Ltd.) 
1s Y N Driving simulator 

(Chu et al., 2022) 20 2, PFC PORTALITE 
(Artinis) 3s Y Y 

MATB - 
monitoring task, 
tracking task, and 
oil management 
task 

(MacNeil, 
Bishop, & 
Izzetoglu, 2022) 

9 18, PFC 
fNIR Devices 
2000M (fNIR 
Devices LLC.) 

8-10s Y Y 

Simulated use of 
force training for 
federal law 
enforcement 

(İşbilir, Çakır, 
Acartürk, & 
Tekerek, 2019) 

14 16, PFC Imager 1002 (fNIR 
Devices LLC.) 100-600s N Y Military landing 

platform exercise 

 
(R McKendrick 
et al., 2016) 

20 All studies: 4, PFC fNIR Devices 
Model 1100W 60s N Y 

Route navigation 
with n-back 
secondary task 

(Kerr, Reddy, 
Shewokis, & 
Izzetoglu, 2022) 

7 18, PFC fNIR Devices 12 min Y Y 

Scanning UAV 
sensor operator 
images (Simlat C-
STAR) 

(Li, Li, Xie, & 
Chang, 2022) 26 8, PFC OctaMon  (Artinis 

Medical Systems) 180s Y Y 

Flight task with 
secondary 
subtasks: flight 
target tracking, 
meter monitoring, 
emergency 
handling, residual 
capacity 

 
(Izzetoglu, Bunce
, Onaral, 
Pourrezaei, & 
Chance, 2004) 

8 16, PFC Drexel BME 
Device 75s Y Y 

Warship 
Commander Task 
(WCT) 
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HbO 12 15; L angular gyrus 7, 19, 39 3.10 0.002 0.016 0.73 
HbO 13 14; R angular gyrus 39, 40, 7 2.59 0.010 0.049 0.54 
HbO 14 16; L supramarginal gyrus 40, 39, 48 -5.79 <0.001 <0.001 0.99 

HbR 3 2; L inferior frontal gyrus 9, 44, 45, 
46 -3.73 <0.001 0.004 0.89 

HbR 4 3; L superior frontal gyrus 8, 9 -3.65 <0.001 0.004 0.88 
HbR 7 8; R precentral gyrus 44, 6, 9 3.01 0.002 0.020 0.70 
HbR 10 13; L superior occipital gyrus 18, 19, 17 -2.62 0.009 0.047 0.55 

 
 
 
 
 
 
 
 
 
 
 
 
Table B: Channel wise results for the Working Memory Main Effects (HWM – LWM) and VL Main Effects HVL – LVL contrasts. 
With type of hemoglobin (Hb), source-detector position (S D), functional brain regions, and Brodmann Area (BA) listed, as well 
as T, p, q, power values, and uniqueness. The ‘unique?’ column in Table 3 has a ‘Y’ for all channels that are unique to the VL and 
WM main effects comparisons (present in one of VL or WM, but not present in the other).  

 
Contrast: Working Memory Main Effect (HWM – LWM)   

Hb S D; Region BA T p q power unique? 
HbO 10 13; L superior occipital gyrus 18, 19, 17 3.46 0.001 0.007 0.83 Y 

HbO 14 10; L superior parietal gyrus 40, 7, 2 3.26 0.001 0.011 0.78 N 

HbR 14 10; L superior parietal gyrus 40, 7, 2 -4.75 <0.001 <0.001 0.99 N 
HbR 2 2; L middle frontal gyrus 45, 46 -3.99 <0.001 0.002 0.93 N 
HbR 1 2; L inferior frontal gyrus 45, 46 -2.57 0.011 0.049 0.53 Y 
HbR 7 8; R precentral gyrus 44, 6, 9 -3.83 <0.001 0.003 0.91 Y 
HbR 11 14; R angular gyrus 7, 19, 39 -3.13 0.002 0.015 0.74 Y 
HbR 8 8; R middle frontal gyrus 6, 9, 8 -2.94 0.004 0.023 0.67 N 

HbR 6 6; R middle frontal gyrus 45, 46 -3.5 0.001 0.006 0.84 N 

Contrast: VL Main Effect (HVL – LVL)   

Hb S D; Region BA T P q power unique? 

HbO  14 10; L superior parietal gyrus 40, 7, 2 3.78 <0.001 0.003 0.9 N 

HbO 12 9; L superior parietal gyrus 7 3.35 0.001 0.009 0.81 N 

HbO 14 15; L angular gyrus 39, 40, 7 2.93 0.004 0.024 0.67 Y 
HbO 12 15; L angular gyrus 7, 19, 39 2.85 0.005 0.027 0.64 Y 
HbR 14 10; L superior parietal gyrus 40, 7, 2 -2.9 0.004 0.025 0.66 N 
HbR 2 2; L middle frontal gyrus 45, 46 -3.54 <0.001 0.006 0.85 N 

HbR 8 8; R middle frontal gyrus 6, 9, 8 -2.8 0.006 0.031 0.62 N 

HbR 6 7; R middle frontal gyrus 9, 46 -2.98 0.003 0.021 0.69 N 

 
 
 
Table 1: Seven standards for experiments needed to evaluate fNIRS for workload-based AA. 
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(1) Participants should perform a complex task typical of real-world human-computer interactions. 
(2) Workload should be experimentally manipulated in a controlled manner to impose greater or lesser cognitive demands (going 
beyond just load on/off), in order to evaluate sensitivity of different load levels on a specific resource. 
(3) Studies should focus on different specific resources within a multiple resource structure, hence examining diagnosticity 
(4) The validity of experiment task manipulations  should be assured by including additional workload measures, such as self-report 
workload, response time, performance, and pupil diameter.   
(5) To further examine the diagnosticity of the measures, researchers should measure multiple functional brain regions of interest 
(ROIs), ideally mapped onto the multiple resources identified in the experimental design, in order to determine if specific ROIs are 
differentially sensitive to the workload manipulation assumed to be reflected by increased activation there. 
(6) Increased activation should be explored via the two different fNIRS measures of HbR and HbO.  
(7) Finally, studies should have adequate statistical power, with a suitable N. 

 
 
 
 
 
 
 
 
 

Table 2: Meta-review studies reviewed that adhered to atleast three of the seven standards, ordered by # of standards adhered to. 

Author 
# 
standards complexity 

workload 
manipulation 

diff 
resources 

convergent 
measures 

multiple 
ROI 

HBO-
HBR N 

Isbilir 3  y  y  y 14 

Chu 3 y y    y 20 

Lei 3    y y  131 

Hamann 3 y y y    35 

Izzetoglu 3 y y  y   8 

Peck 3 y  y y   16 

Solovey 4 y y  y  y 48 

McKendrick 4 y   y y y 20 

Ayaz 4 y y  y  y 16 

Durantin 4 y y  y   12 

Kerr 5 y y  y y y 7 

Putze 5  y y y y y 12 

Gateau 6 y y y y y y 28 

 
 
Table 3: HbO and HbR ß-values and T-values for the main effects (IV stands for independent variable) of the WM and VL 
manipulations, averaged across each ROI (bold face with a * denotes significance (p<0.05)). The contrasts run are (HwmLvl + 
HwmHvl) – (LwmLvl + LwmHvl) for the WM  load main effect (first row for each variable: ß or T)  and (LwmHvl + HwmHvl) – (LwmLvl 
+ HwmLvl)   for the VL  main effect (second row of each variable). 
HbO      HbR     

ß WM 
ROI VL ROI MT ROI AL ROI  ß WM 

ROI VL ROI MT ROI AL ROI 
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WM IV -0.65 2.59 -1.56 -0.29  WM IV -3.61* -2.60* -2.82* -1.01 

VL IV -4.26* 3.70* -5.93* -0.78  VL IV -3.52* -2.08* -1.46 0.12 

           

T WM 
ROI VL ROI MT ROI AL ROI  T WM 

ROI VL ROI MT ROI AL ROI 

WM IV -0.36 1.9 -0.67 -0.15  WM IV -5.07* -4.71* -2.48* -1.23 

VL IV -2.35* 2.70* -2.53* -0.4  VL IV -4.91* -3.76* -1.28 0.14 
 
 

 
 
 
 
 
 
 
 
 

Table 4: Summary of results from Table 3, with only unique significant activation shown. 
Mutually exclusive regions activated for Working Memory main 
effects 

Mutually exclusive regions activated for VL main 
effects 

Hb Region Hb Region 

HbO L superior occipital gyrus HbO L angular gyrus (x2 channels) 

HbR L inferior frontal gyrus   

HbR R precentral gyrus     

HbR R angular gyrus     
 
 
Table 5: Summary of findings collated from our experiment and the meta-review. Top: a graphic depicting our findings, with 
mappings on the suitability of fNIRS for workload-based AA based on the four criteria of temporal responsiveness, 
unobtrusiveness, diagnosticity, and sensitivity. Bottom: Text summary of our findings regarding the four criteria. 

 

Criteria Summary of Meta-Review and Experimental Findings 

Unobtrusiveness 

Meta-review findings show a strong trend toward devices continuing to be more wearable, practical, and 
specialized to specific use cases. 

Empirical results were achieved in this study using a NIRSport 2. The wireless NIRSport2 was equipped 
with probe tips specially designed for comfort on the scalp.  

Temporal 
responsiveness 

Meta-review findings suggest that like fMRI, fNIRS on its own, measures a slowly moving hemodynamic 
response, which makes its temporal responsiveness relatively slow. More work is needed, following the 
lead of researchers who have focused on exploring short sliding windows of time in ML classification and 
on hybrid EEG/fNIRS adaptive systems.  

Empirical results were generated using statistical tests on task lengths of 45 seconds in duration, which 
does not further our understanding of the temporal responsiveness of the fNIRS signal. 
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Sensitivity 

Meta-review showcased strong results of the sensitivity to workload manipulations; however with the 
majority of work focused on extremely simple, highly controlled benchmark tasks (e.g. n-back tasks), 
rather than those tasks typical of an extra-laboratory working environment.  

Empirical results indicate that fNIRS is sensitive to changes in visual) and working memory  load levels. 
HbR appeared to be more sensitive than HbO for WM, while both HbR and HbO appeared to be sensitive 
to VL manipulations (as shown in Tables 3 and 4). 

Diagnosticity 

Meta-Review found very little prior work on diagnosticity. Of that handful of work, the vast majority has 
been done on simple, highly controlled tasks. 

Empirical results indicate that fNIRS is diagnostic to type of load, specifically to visual vs WM, but these 
findings are not clear cut. In the channel-wise analysis, we found unique regions that are activated in the 
WM main effects comparison that were not activated by the VL main effects, and vice versa. Such 
diagnosticity was not revealed by the ROI analysis where we condensed the data into four ROIs. When the 
data was kept in its channel-wise form, we did see diagnosticity: For WM, we see one HbO channel and 
three HbR channels that are unique for differentiating WM (HbO: Left superior occipital gyrus, HbR: L 
inferior frontal gyrus, R precentral gyrus, R angular gyrus). For diagnosticity for VL, we see two HbO 
channels uniquely differentiating VL, both measure the L angular gyrus. 

 
 
 
 
  

 
Figure 1: Typical time response of HbO and HbR after stimulus (such as completing a n-back task). HbO peaks between 6-8s 
following the stimuli and HbR dips at the same time. 
 

 
Figure 2: The shape sorting testbed.  The a) instruction screen directs the participant on the primary task target shape and target 
bins. Participants then sort the correct target shape out of a list of possible shapes (b) into the correct numbered bins (c). 
Participants are assigned a callsign (d) and a secondary auditory task is presented through the right side of the headphones, where 
the information can either be ignored (g) or where it must be attended to (f). Each task session lasts 45 seconds with time being 
counted down (e), before filling out surveys and beginning a new task, with new updated instructions. 
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Figure 3: Left (instructions before a task begins). Top right: An example of a search task where the VL is low because 
target and distractors share no features in common. Bottom right: an example of a search task where the VL is high: 1 
feature is shared. See (Nhan Tran et al., 2021) for an example of this task implemented in a mixed reality context. 

 

 
 
Figure 4: Sensor set-up included a Tobii 4c eye tracker and a NIRx Sport2 fNIRS device. 

  
Figure 5:  Left: Effect of WM and VL on primary task accuracy.  Right: The effects of WM and VL on primary task RT. The 
error bars represent the unbiased one standard error as imple 
mented by the Pandas sem function. 
 
 
 

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sem.html
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Figure 6. Effects of WM and VL on self-report mental demand. Bottom Right: Effects of WM and VL on secondary task 
accuracy. The error bars represent the unbiased one standard error as implemented by Pandas ‘sem’ function. 
 

 

 
 

 
Figure 7: Regions of interest overlaid over the 42-channel fNIRS montage. Red circles represent light sources, blue circles 
represent light detectors. Red, green, blue, and purple lines represent a channel of measured data that falls into the WM, VL, AL, 
and MT ROIs, respectively. In the schematic picture, Nz represents the nasion, Iz represents the inion, LPA and RPA represent 
the left and right pre-auricular regions, respectively (used in standard EEG 10-20 landmarking). 
 
 

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sem.html
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Figure 8: T-values from Table 3, overlayed over the fNIRS ROIs of multitasking, WM, VL, and AL. For HbO (left side) the red 
spectrum indicates increased activation, with darker red indicating more increased activation. For HbR (right) blue suggests more 
activation at that region, with darker blue indicating higher levels of activation. 
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Figure 9: Working Memory Main Effects (HWM – LWM) and VL Main Effects HVL – LVL, overlaid over a brain, with nasion (Nz) 
and inion (Iz) locations added for reference. Only significant channels (q < 0.05) are shown. For HbO, positive t-values (red) 
correspond to relatively larger activity for the first term in the contrast, and negative t-values (blue) correspond to larger activity 
for the second term. For HbR contrasts, negative t-values (blue) correspond to larger activation in that region. Green * indicates 
regions that are mutually exclusive (shown by one but not the other) between the WM and VL main effects tests. 
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Figure 10: Contrasts: (WMhighVLlow) - (VLhighWMlow) and its inverse (VLhighWMlow) - (WMhighVLlow) overlaid over a brain, with 
nasion (Nz) and inion (Iz) locations added for reference. Only significant channels (q < 0.05) are shown. For HbO, positive t-
values (red) correspond to relatively larger activity for the first term in the contrast, and negative t-values (blue) correspond to 
larger activity for the second term. For HbR contrasts, negative t-values (blue) correspond to larger activation in that region.  
 
Figure Captions 
Figure 1: Typical time response of HbO and HbR after stimulus (such as completing a n-back task). HbO peaks between 4-6s 
following the stimuli and HbR dips at the same time. 
 
Figure 2: The shape sorting testbed.  The a) instruction screen directs the participant on the primary task target shape and target 
bins. Participants then sort the correct target shape out of a list of possible shapes (b) into the correct numbered bins (c). 
Participants are assigned a callsign (d) and a secondary auditory task is presented through the right side of the headphones, where 
the information can either be ignored (g) or where it must be attended to (f). Each task session lasts 45 seconds with time being 
counted down (e), before filling out surveys and beginning a new task, with new updated instructions. 

 
Figure 3: Left (instructions before a task begins). Top right: An example of a search task where the VL is low because target and 
distractors share no features in common. Bottom right: an example of a search task where the VL is high: 1 feature is shared. See 
(Nhan Tran et al., 2021) for an example of this task implemented in a mixed reality context. 
 
Figure 4: Sensor set-up included a Tobii 4c eye tracker and a NIRx Sport2 fNIRS device. 
 
Figure 5:  Left: Effect of WM and VL on primary task accuracy.  Right: The effects of WM and VL on primary task RT. The 
error bars represent the unbiased one standard error as implemented by the Pandas sem function. 
 
Figure 6. Effects of WM and VL on self-report mental demand. Bottom Right: Effects of WM and VL on secondary task 
accuracy. The error bars represent the unbiased one standard error as implemented by Pandas ‘sem’ function. 
 
Figure 7: Regions of interest overlaid over the 42-channel fNIRS montage. Red circles represent light sources, blue circles 
represent light detectors. Red, green, blue, and purple lines represent a channel of measured data that falls into the WM, VL, AL, 
and MT ROIs, respectively. In the schematic picture, Nz represents the nasion, Iz represents the inion, LPA and RPA represent 
the left and right pre-auricular regions, respectively (used in standard EEG 10-20 landmarking). 
 
Figure 8: T-values from Table 3, overlayed over the fNIRS ROIs of multitasking, WM, VL, and AL. For HbO (left side) the red 
spectrum indicates increased activation, with darker red indicating more increased activation. For HbR (right) blue suggests more 
activation at that region, with darker blue indicating higher levels of activation. 
 
Figure 9: Working Memory Main Effects (HWM – LWM) and VL Main Effects HVL – LVL, overlaid over a brain, with nasion (Nz) 
and inion (Iz) locations added for reference. Only significant channels (q < 0.05) are shown. For HbO, positive t-values (red) 
correspond to relatively larger activity for the first term in the contrast, and negative t-values (blue) correspond to larger activity 
for the second term. For HbR contrasts, negative t-values (blue) correspond to larger activation in that region. Green * indicates 
regions that are mutually exclusive (shown by one but not the other) between the WM and VL main effects tests. 
 
Figure 10: Contrasts: (WMhighVLlow) - (VLhighWMlow) and its inverse (VLhighWMlow) - (WMhighVLlow) overlaid over a brain, with 
nasion (Nz) and inion (Iz) locations added for reference. Only significant channels (q < 0.05) are shown. For HbO, positive t-
values (red) correspond to relatively larger activity for the first term in the contrast, and negative t-values (blue) correspond to 
larger activity for the second term. For HbR contrasts, negative t-values (blue) correspond to larger activation in that region.  
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