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ABSTRACT

As robots with social behaviors proliferate into a widening variety of contexts and roles, it is clear that

we have a lot to learn about how humans expect (and prefer) these robots to act, how humans perceive

different robot behaviors and judge or sanction robot misbehaviors, and how robots should fit into, shape,

and be shaped by social structures and norms. This thesis presents several studies on human-robot

interaction that focus on enabling robots to communicate effectively and appropriately through natural

language in morally sensitive contexts.

We begin by examining the concept of social agency, and constructing a new theoretical understanding of

social agency for robots. We discuss the implications of robots’ potential ontological status as social agents,

including the capacity for significant normative influence. We then examine this moral influence in the

context of clarification dialogues, and show how a failure to perform moral reasoning when generating

clarification requests can cause robots to generate utterances with unintended implied meanings that can

weaken human application of moral norms. We then present and evaluate an algorithm that fixes this

problem.

Next, we examine robot command rejections under the premise that robots should not follow immoral

human commands. We present evidence that robot command rejections should be phrased with a degree of

politeness proportional to the severity of the norm violation motivating the command rejection. Given the

importance of gender in performing and perceiving politeness, we reexamine these results with specific

attention to human gender and robot gender presentation.

We then present part of a cross-cultural study on how female presenting social robots might respond to

gendered verbal abuse from humans without propagating harmful sexist stereotypes or damaging robot

credibility. Our results highlight a couple of promising response styles.

Finally, we present the integration of a norm-aware task planner and a context recognition module into a

robot cognitive architecture. This integration establishes the capacity for multi-step task planning under

context-sensitive norms and lays the groundwork for generating more informative command rejections.
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CHAPTER 1

INTRODUCTION

This thesis explores various aspects of the unique sociotechnical ontological niche somewhere between

socially agentic community member and lifeless technological tool that social robots occupy. As robots with

social behaviors increasingly proliferate into a widening variety of contexts and roles, it is becoming clear

that we still have a lot to learn about how humans expect (and prefer) these social robots to act, how

humans perceive different robot behaviors and judge or sanction robot misbehaviors, and how robots should

fit into, shape, and be shaped by social structures and norms. The field of Human-Robot Interaction (HRI)

seeks to answer these types of questions with a broad repertoire of interdisciplinary approaches. As HRI

researchers, we combine computer science, robotics, social psychology, linguistics, moral philosophy, and

other academic disciplines to better understand the human element of human-robot interaction, so that we

may better design the robotic element.

My work in this dissertation is particularly concerned with morally relevant facets of HRI. Therefore, it

draws on theories and methods from robot ethics and moral psychology. Many of the contexts in which social

robots are currently being deployed (or developed for deployment) are very morally sensitive, including

eldercare [1, 2], mental health treatment [3], childcare [4], and military operations [5–7]. Just as robot

actions in these types of contexts could have serious moral consequences, so too could robot

(mis)communications with humans. Moral communication is thus a critical component of moral competence

[8], and much of this thesis is working towards developing autonomous moral communication.

One of the reasons why moral communication is so important in social robots is because of their unique

sociotechnical ontological status, which grants them significant persuasive capacity and normative influence

over their human interactants (see, for example, [9, 10]). Human morality is dynamic and malleable [11], and

the dynamic norms that inform human morality are defined and developed not only by human community

members, but also by the technologies with which they interact [12, 13]. However, the capacity for social

robots to be considered moral and social agents, we argue, makes their normative influence qualitatively

different than that of other technologies. With great normative influence comes great responsibility, and part

of this thesis is concerned with avoiding unintentionally altering human application of moral norms with

imprecise robot speech. However, we also believe that robots can be designed to wield their normative

influence purposefully and prosocially.

The task of carefully designing moral robot communication is made more difficult by the fact that

human-robot communication typically occurs via a particularly difficult medium, namely, natural language.
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Spoken natural language allows direct and fluid communication between robots and nearly all humans,

without requiring specialized protocols or hardware. However, to accommodate the tremendous diversity of

communicative needs in human discourse, natural language dialogue allows for a high degree of ambiguity. A

single utterance may entail or imply a wide variety of possible meanings, and these meanings may change

depending on situational and conversational context [14–16]. This enables flexible and concise

communication, but also leads to frequent miscommunication and misapprehension [17]. In morally sensitive

contexts, such miscommunications can carry real consequences, from damaging the efficacy and amicability

of human-robot teams, to implicitly condoning or encouraging immoral human behavior.

Alongside the challenges presented by natural language, there are many other challenging aspects of HRI

research that make it much more complicated than simply designing algorithms to produce some desired

robot behavior. Firstly, it is not always clear what a robot should do or what robot behavior would be most

desirable in any given situation. Of course, it is not always clear what human behavior would be best in any

given situation either, and debates on that topic have been ongoing throughout recorded history, but, even if

we could reliably discern the optimal human behavioral policy, that would not necessarily answer the same

question for robots. There is evidence that (social) robots represent a new ontological category [18], distinct

from humans, animals, and other machines. Thus, though robots may, like humans, be moral and social

agents (as we discuss at length in Chapter 2), their moral and social agencies, and, more broadly, their ways

of existing in our moral and social ecosystems, have important differences that are not yet fully understood.

For example, research has shown that that robots are more strongly expected to take an action that sacrifices

one person for the good of many (a “utilitarian” choice) than are humans, and that robots are blamed more

than humans are for not making that choice [19]. Moreover, in addition to differences between robots and

humans in making moral decisions, we also expect differences to manifest in moral communication, and much

of this thesis explores questions of how robots should communicate about their moral reasoning or in morally

fraught situations.

Even after we have determined what set of social behaviors is optimal for robots in some context, other

challenges still exist for implementing moral communication in HRI. A recurring challenge is the fact that

some behaviors, especially social or communicative behaviors, that are easy and intuitive for humans are

quite difficult to computationalize. For example, the task of referring to a physical object based on some of

its properties (e.g., “the green mug on the big table”) is so natural for humans that it rarely gives us any

difficulty as adults. However, robot designers have been working for years to create algorithms that would

give robots humanlike competence in this task. A similarly challenging problem that comes up more often in

particularly morally important situations is the task of being proportional in generating verbal responses to

norm violations. Because of social robots’ significant normative influence, we want robots to reinforce
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desirable human norms and admonish violations of standing norms (e.g., rebuking a human for a sexist

utterance towards a coworker). However, our research shows that it is important for a robot’s response to be

proportional, i.e., neither too harsh nor not harsh enough.

More generally, proportionality is “the motive for rewards and punishments to be proportionate to merit,

benefits to be calibrated to contributions, and judgments to be based on a utilitarian calculus of costs and

benefits” [20]. Scholars in anthropology and sociology studying human interactions and human relationships

maintain that proportionality is one of the fundamental and universal moral motives underlying human

social-relational psychology [20]. Responding proportionally to a norm violation in conversation is something

that humans do all the time without giving it much thought (although even humans sometimes miscalibrate

our responses or disagree about what would be appropriately proportional). However, perhaps partially

because it does not usually require much conscious deliberation for humans, designing an algorithm for social

robots to generate proportional norm violation responses is difficult. Likewise, though various aspects of

proportionality are relatively well studied in human-human interactions, we have yet to develop a

comprehensive understanding of proportionality in human-robot interactions. It is not clear that humans will

apply proportionality when judging or acting on a robot in the same way that they would if judging or acting

on another human, and it is similarly unclear whether humans will expect social robots to apply the principle

of proportionality in a strictly humanlike way to their actions and speech. Thus, several chapters of this

thesis relate to verbal proportionality in generating robot speech.

1.1 The Narrative Structure of this Thesis

When we began this work, we quickly realized that the notion of social agency was central both to our

research topics and to a significant body of preexisting and ongoing work in HRI. However, it also became

clear that, although HRI researchers frequently use the terms “social agent” and “social agency” in reference

to robots, there was not a concrete definition or theoretical framework for those notions that was well-suited

to how HRI practitioners seemed to be using the terms. In contrast, the closely related concept of moral

agency had seen considerable rigorous theoretical work to define a notion of moral agency specifically

applicable to HRI. Thus, Chapter 2 presents a theory of social agency for HRI that parallels previous work

on moral agency. One implication of this theory is that social agency, and its interaction with moral agency,

grants robots the ability to take an active and purposeful role in shaping human moral norms (or human

application of moral norms). Therefore, robots of the future could productively influence the human moral

ecosystem by reinforcing desirable norms and dissuading norm violations. However, today’s imperfect moral

reasoning and natural language dialogue systems open the door for robots to inadvertently and detrimentally

impact the human moral ecosystem through reasoning errors, miscommunications, and unintended
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implicatures. It is thus crucial to ensure moral communication and proper communication of moral reasoning

from robots, especially in morally consequential contexts. The rest of the work presented in this thesis is

geared towards enabling this type of moral communication in robots.

The next few chapters start with the idea that, in certain situations, robots cannot or should not follow

every human command that they receive. Human commands can be unclear and ambiguous, in which case a

robot would need to ask for clarification before it could follow the command. However, as we show in

Chapter 3, the previous status quo in linguistic robot clarification requesting systems meant that robots,

when presented with immoral and ambiguous commands, would imply a willingness to accede to some

disambiguated, but still immoral, version of the command, even if moral reasoning systems would prevent the

robot from actually following the command or breaking any moral norms. More worryingly, we also show

that this inadvertently implied willingness to follow norm-violating commands decreases human application

of the relevant moral norm to the current context. Having empirically demonstrated these issues via human

subjects experiments in Chapter 3, we then implement an alteration to the natural language pipeline of our

robot cognitive architecture to remedy these issues in Chapter 4. We also present another human subjects

experiment to verify that our solution was successful.

Our discussion of how robots should handle commands that are both ambiguous and morally problematic

in Chapters 3 and 4 naturally raises the issue of how robots should handle commands that are morally

problematic and unambiguous. We take the position that robots with any moral reasoning capacity should

not follow human commands that would require immoral conduct. However, the question of how best to

communicate command rejections in natural language given the myriad relevant contextual and social factors

is largely an open question in HRI. Chapter 5 presents experimental evidence that the politeness theoretic

face threat [21] in a robotic command rejection should be proportional to the severity of the human norm

violation motivating the command rejection to avoid drops in robot likeability and perceptions of the robot

as inappropriately harsh (either too harsh or not harsh enough). However, a large body of research shows

that human politeness norms, in terms of both performance and perception of politeness, are heavily

influenced by gender. Therefore, Chapter 6 again examines proportionality in robotic command rejections,

but does so with specific attention to the robot’s gender presentation, the gender of the human who gave the

morally problematic command, and the genders of the study participants who are observing the interaction

and evaluating the robot. We find several interesting gender-based effects.

Chapter 7 also takes up questions involving gendered linguistic norms and robot gender presentation as

part of a cross-cultural study investigating productively violating gender norms in HRI. Specifically, we

investigate how female presenting social robots might respond to gendered verbal abuse from humans. It is

important that such responses avoid propagating harmful sexist stereotypes and address the human’s sexism
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without damaging robot credibility or effectiveness, a goal that current commercial conversational agents

typically fall well short of. Our results show that this is possible, and point to a couple of general response

styles that show promise.

Motivated by the preceding chapters, Chapter 8 presents the integration of a norm-aware task planner

and a voxel based representation learning method for place recognition from LiDAR data (both made by

collaborators in other labs at Mines) into the Distributed, Integrated, Affect, Reflection, Cognition (DIARC)

robot architecture. This integration established the capacity for multi-step task planning sensitive to

context-sensitive norms, and laid the groundwork for generating more informative natural-language

command rejections. Finally, Chapter 9 concludes this thesis by summarizing key points from the other

chapters and delineating some promising avenues for future work, with specific attention to my personal

research goals for the immediate future.

During my PhD, I was also involved in or led research projects on designing the mapping between robot

minds, bodies, and identities in multi-robot systems [22], a Confucian ethical perspective on robots

generating blame-laden moral rebukes [23], the impact of polite robot wakewords on human-robot politeness

[24], robot social identity performance with particular attention to gender [25], the moral implications of

applying certain principles from procreative ethics to robot design [26], robot command rejection [27, 28],

and early and ongoing work to develop a system that autonomously generates proportional natural language

responses to norm violating sexist speech. These papers are not presented as chapters here because either (1)

my personal role was not significant enough to warrant inclusion within this thesis, (2) the content would be

largely redundant with the work already presented in this thesis, or (3) they do not fit well into the narrative

structure of this thesis.

1.2 Importance to Computer Science and Robotics

HRI is a highly interdisciplinary field, and, therefore, the work presented in this thesis is interdisciplinary.

The chapters of this thesis range from almost completely philosophical (e.g., Chapter 2) to psychological with

human subjects experimentation (e.g., Chapter 3 and Chapter 6) to technical computational and algorithmic

work (e.g., Chapters 4 and 8). Some of the chapters presented here contain all three of these elements to

some degree.

However, as a computer scientist, it is important to me that all of my work be motivated by the

development of novel and useful computational systems. In this thesis, the computational systems in

question are social robots. In order to design and computationalize desirable and socially beneficial behaviors

for social robots, one must first understand exactly what kinds of behaviors would be most desirable or

socially beneficial. Developing this understanding is the high level goal that motivates a huge proportion of
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HRI research, and is also the goal of much of the human subjects experimentation presented in this thesis.

For some categories of robot behavior, it is easy to see what a robot should do without requiring any

experimental work (e.g., in developing obstacle avoidance algorithms, the goal of avoiding all obstacles is

obvious). However, for other types of robot behavior, including many fundamentally social and

communicative behaviors, it is not immediately clear without collecting empirical data what the robot should

do or how it should do it (How should a robot refuse to obey a human command? Should it be able to do

that at all?). Only after experimental work has established exactly what behaviors a robot should have in a

given context (or at least established the pros and cons of the options), can algorithmic development begin to

endow robots with that behavioral capacity. An example of this relationship wherein human subjects

experimentation informs and motivates algorithmic development in this thesis is the relationship between

Chapter 3 and Chapter 4. We also note that often this type of experimentation requires some preliminary

computational reasoning and algorithmic development to appropriately scope the robot behaviors under

consideration and to allow a robot to perform those behaviors in a heavily constrained experimental context.

Another reason for including human subjects experimentation in computer science research is to evaluate

algorithms and systems after implementing them (see Chapter 4). For many problems in HRI, there do not

exist benchmark data sets or convenient quantitative performance metrics that one might find in other fields

like supervised learning. HRI contains a fundamentally human component, so it can be difficult to evaluate

HRI software without studying how it is perceived by the intended users of social robotic systems.

Chapter 2 contains neither human subjects experimentation nor computational engineering work.

However, this chapter too addresses foundational needs of the HRI research community that will allow us to

develop better robots, communicate more clearly about social robots, and reason more precisely about social

robotics. Broadly, the goal of this chapter is to develop a concrete understanding of social agency for HRI

researchers. The resulting theory of social agency will not only allow more common ground and precise

communication between HRI researchers studying robot social agency, but also will pave the way for new

avenues of empirical and algorithmic research in the immediate future.

Of course, the philosophical and human subjects research ultimately leads to computational work, which

is also represented in this thesis. In fact, the computational work presented here has been very well received

by the HRI research community, with Chapter 8 being recognized as a finalist for a Best Paper Award on

Cognitive Robotics. The inherently interdisciplinary nature of HRI research means that often various types

of research must be pooled together to answer our most interesting questions, and the heterogeneity of the

chapters of this thesis is a result of that necessity.
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CHAPTER 2

A THEORY OF SOCIAL AGENCY FOR HUMAN-ROBOT INTERACTION

Modified from a paper published in Frontiers in Robotics & AI Special Issue on Rising Stars in

Human-Robot Interaction, 20211.

Ryan Blake Jackson2 and Tom Williams3

2.1 Abstract

Motivated by inconsistent, underspecified, or otherwise problematic theories and usages of social agency

in the HRI literature, and leveraging philosophical work on moral agency, we present a theory of social

agency wherein a social agent (a thing with social agency) is any agent capable of social action at some level

of abstraction. Like previous theorists, we conceptualize agency as determined by the criteria of interactivity,

autonomy, and adaptability. We use the concept of face from politeness theory to define social action as any

action that threatens or affirms the face of a social patient. With these definitions in mind, we specify and

examine the levels of abstraction most relevant to HRI research, compare notions of social agency and the

surrounding concepts at each, and suggest new conventions for discussing social agency in our field.

2.2 Introduction and Motivation

The terms “social agency” and “social agent” appear commonly within the human-robot interaction

(HRI) research community. From 2011 to 2020, these terms appeared in at least 45 papers at the

ACM/IEEE International Conference on HRI alone4, with more instances in related conferences and journals.

Given the frequency with which these terms are used in the HRI community, one might expect the field to

have established agreed upon definitions to ensure precise communication. However, when these terms are

used, they are often not explicitly defined, and their use frequently varies in important but subtle ways, as

we will discuss below. Most HRI research is not concerned with exploring the entire philosophy of agency to

find a theory that fits their study. As we show in Section 2.2.3, it is therefore common to simply use terms

like “social agency” without espousing a particular concrete definition and move on under the assumption

that it is clear enough to the reader what is meant. This may be fine within any individual paper, but

confusion arises when different papers in the same research area use the same term with different meanings.

We seek to formalize social agency in accordance with the existing underspecified usage because (1) having a

1Reprinted with permission from Tom Williams. “A Theory of Social Agency for Human-Robot Interaction”, in Frontiers in
Robotics & AI Special Issue on Rising Stars in Human-Robot Interaction, 2021.

2Primary researcher and author, Graduate Student, Colorado School of Mines
3Assistant Professor, Colorado School of Mines
4https://dl.acm.org/action/doSearch?AllField=%22Social+agent%22+%22social+agency%22&ConceptID=119235
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rigorously specified definition for the term will help create common ground between researchers, help new

researchers understand the vernacular of the community, and provide writing guidelines for HRI publications

concerning social agency; and (2) attempting to redefine social agency in a substantially different way from

existing habits of use would greatly hamper popular acceptance of the new definition.

We present a theory of social agency for HRI research (as visualized in Figure Figure 2.1) that deliberately

aligns with and builds on other philosophical theories of robot agency. Specifically, we leverage insights from

philosophers seeking to define moral agency in HRI. Moral agency provides an excellent analog to facilitate

our discussion of social agency because it is an intimately related concept for which scholars have already

developed rigorous definitions applicable to HRI, in a way that has not yet been done for social agency.

Figure 2.1 Concept Diagram visualizing the theory of Social Agency presented in this paper, and the core
concepts combined to construct this theory.

To design and justify our theory of social agency, we will first briefly survey existing definitions of social

agency outside of HRI, and explain why those definitions are not well-suited for HRI. We will then survey

theories of social agency from within HRI, and explain why those definitions are both inconsistent with one
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another and insufficient to cover the existing casual yet shared notion of social agency within our field. To

illustrate this existing notion, we will then present a representative sample of HRI research that refers to

social agency (without focusing on developing a definition thereof) to demonstrate how the greater HRI

community’s casual use of social agency differs from the more rigorous definitions and theories found within

and beyond the field of HRI.

2.2.1 Social Agency Outside HRI

There are many different definitions of social agency from various disciplines including Psychology,

Education, Philosophy, Anthropology, and Sociology. Providing an exhaustive list of these differing

definitions is infeasible, but this section briefly summarizes a few representative definitions from different

fields to show that they are not well-suited to HRI and to illustrate the broader academic context for our

discussion of social agency.

Educational psychologists have used the term “social agency theory” to describe the idea that

computerized multimedia learning environments “can be designed to encourage learners to operate under the

assumption that their relationship with the computer is a social one, in which the conventions of

human-to-human communication apply” [29]. Essentially, social agency theory posits that the use of verbal

and visual cues, like a more humanlike than overtly artificial voice, in computer-generated messages can

encourage learners to consider their interaction with the computer to be similar to what they would expect

from a human-human conversation. Causing learner attributions of social agency is hypothesized to bring

desirable effects, including that learners will try harder to understand the presented material [29]. In contrast,

typically in HRI to be a social agent is humanlike in that humans are social agents, but more human-likeness,

particularly in morphology or voice, does not necessarily imply more social agency. This theory also seems

fundamentally concerned with social agency creating a social partnership to facilitate learning, but we also

view non-cooperative social behaviors, like competition or argument, as socially agentic [30].

Other education researchers use the term social agency differently. For example, though Billett [31] does

not explicitly define social agency (a practice that we will see is common in HRI literature as well), they

seem to view social agency as the capacity for the greater social world to influence individuals. This concept

contrasts with personal agency, which Billett defines explicitly as an individual’s intentional actions.

Personal and social agencies exert interdependent forces on the human worker as they negotiate their

professional development and lives. This is a notion of social agency that precludes it from being a property

held by a single individual, which does not seem to be how we use the term in HRI.

Scholars in education and social justice have also defined social agency as the extent to which individuals

believe that being active socio-politically to improve society is important to their lives, and the extent to
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which individuals believe that they can / ought to alter power relations and structural barriers [32, 33]. This

definition is largely centered around value placed on prosocial behavior. In contrast, in HRI we often apply

the concept of social agency regardless of whether a robot is having any nontrivial impact on society or is

trying to do so. We also ascribe social agency regardless of what a robot believes or values, or whether it can

even believe or value anything.

Much of the discussion around agency in Anglo-American philosophy has revolved around intentionality,

but some influential anthropologists have centered not only intentionality in defining agency, but also the

power, motivation, and requisite knowledge to take consequential action [34]. Social agency, then, could be

understood as agency situated within a social environment, wherein agents produce and reproduce the

structures of social life, while also being influenced by those structures (and other material conditions),

particularly through the rules, norms, and resources that they furnish. Social agency here is concerned with

structures and relationships of power between actors. Other scholars in anthropology and related fields have

criticized this notion of agency, for, among other reasons, over-emphasizing the power of the individual and

containing values particular to men in the modern “West”. Some scholars that have de-emphasized power

and capacity have stated that intentions alone are what characterize an agent and choices are the outcomes

of these intentions, without necessarily qualitatively redefining the relationship between agency and social

agency [34]. These definitions, and other similar ones, are also common in sociology and other social sciences.

For reasons that we will argue below, we avoid “internal” factors like intentionality, motivation, and

knowledge in defining social agency for HRI. We are also not concerned with whether robots have the power

to act with broad social consequences since that does not seem important to HRI researcher’s usage of the

term.

Anthropologists and archaeologists apply “social agency theory” to the study of artifactual tools and

technologies to understand the collective choices that were made during the manufacture and use of such

artifacts, the intentions behind those choices, the sociocultural underpinnings of those intentions, and the

effects that the technologies had on social structures and relations. In doing so, they commonly refer to the

social agency of technology or of technological practice to discuss the relationships between a technology and

the social structures and decisions of its manufacturers and users. For example, the choice to use inferior

local materials for tools rather than sourcing better materials through commerce given the material means to

do so can indicate constraining social structures outweighing the enabling economic structures [34, 35].

Contrastingly, in HRI robots are discussed as having social agency in and of themselves, separate from that

of the humans that make and use them. Social robots are also attributed social agency without really being

embedded in the same broader social structures as their human interactants, though it is likely that they will

be increasingly as the field progresses.
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Scholars in Sociology have also conceptualized agency as the constructed authority, responsibility, and

legitimated capacity to act in accordance with abstract moral and natural principles. Modern actors (e.g.,

individuals, organizations, and national states) have several different sorts of agency. Agency for the self

involves the tendency of an actor towards elaborating its own capacities in accordance with wider

rationalized rules that define its agency, even though such efforts are often very far removed from its

immediate raw interests. For example, organizations often develop improved information systems toward no

immediate goal. Agency for other actors involves opining, collaborating, advising, or modeling in service of

others. Agency for nonactor entities is the mobilization for culturally imagined interests of entities like

ecosystems or species. Finally, agency for cultural authority describes how, in exercising any type of agency,

the actor assumes responsibility to act in accordance with the imagined natural and moral law. At the

extreme, actors can represent pure principle rather than any recognized entity or interest. However, for the

modern actor, being an agent is held in dichotomy with being a principal, where the principal “has goals to

pursue or interests to protect, [and] the agent is charged to manage this interestedness effectively, but in tune

with general principles and truths.” In other words, the principal is concerned with immediate raw interests,

while the agent is concerned with higher ideals. For example, the goals of a university as principal are to

produce education and research at low cost, whereas the goals of the university as agent include having the

maximum number of brilliant (expensive) professors and the maximum number of prestigious programs. The

same tension manifests in individuals as classic psychological dualisms (e.g., short-term vs. long-term

interests). By this duality, highly agentic features like opinions and attitudes can be decoupled from

behaviors, actions, and decisions [36].

Social agency, within this body of sociology work, refers to the social standardization and scriptedness of

agency, and to how agency dynamics permeate and shape social structure. In a society of social agents, each

individual or organization acts in accordance with their socially prescribed and defined agency, which is akin

to the ideals defining their social role. In general terms, “the actorhood of individuals, organizations, and

national states [is] an elaborate system of social agency...” wherein actors routinely shift between agency for

the self and otherhood for the generalized agency of the social system. Individuals share in the general social

agency of the system, negotiating the bases for their own existence via the rules and definitions of the

broader system. This general social agency can function as the capacity for collective agentic action [36].

This understanding of agency as an upholding of higher ideals, principles, and truths (and social agency as

the collective version of this), often in conflict with baser self-interested principalhood, is so different from

conceptions of agency and social agency in HRI as to be essentially completely disjoint concepts. As we will

illustrate below, agency in HRI is not (to our knowledge) discussed in duality with the notion of a principal,

and social agency is not understood as a collective version of individual agency.
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In presenting the definitions in this section, we do not intend to suggest that other fields have reached

some sort of internal consensus regarding social agency or perfect consistency in its usage. Like in HRI, there

appears to be ongoing conversation and sometimes disagreement about social agency within many fields,

though the HRI-specific branch of this conversation seems relatively nascent. For example, there are ongoing

debates in anthropology about whether (social) agency is an essential property of individuals, or somehow

exists only in the relationships between individuals. Likewise, there are differing opinions within and between

social science research communities about whether nonhuman entities can have (social) agency [34].

Unfortunately, we cannot present all perspectives here, nor can we really present the full detail and nuance of

some of the perspectives that we have presented. What we hope to have indicated is that definitions of social

agency from other fields, though academically rigorous and undoubtedly useful within their respective

domains, are, for various reasons, neither intended nor suitable for the unique role of social agency in HRI,

and an HRI-specific definition is needed.

2.2.2 Theories of Social Agency in HRI

A number of theories of Social Agency have been defined within the HRI community to address the

unique perspective of our field. Many of these grew out of foundational work on Social Actors from Nass

et al. [37], which suggested that humans naturally perceive computers with certain characteristics (e.g.,

linguistic output) as social actors, despite knowing that computers do not possess feelings, “selves”, or

human motivations [37]. This perception leads people to behave socially towards machines by, for example,

applying social rules like politeness norms to them [37] (see also Chapter 5). It is perhaps unsurprising that

this human propensity to interact with and perceive computers in fundamentally social ways extends strongly

to robots, which are often deliberately designed to be prosocial and anthropomorphised. While Nass et al.’s

work establishing the theory that humans naturally view computers as social actors did not call computers

“social agents” or refer to the “social agency” of computers, it nevertheless established that the

human-computer relationship is fundamentally social, and laid the groundwork for much of the discussion of

sociality and social agency in HRI today. In this section we will discuss four rigorously defined theories of

Social Agency in HRI.

Nagao and Takeuchi

At around the same time that Nass and colleagues introduced their “Computers As Social Actors”

(CASA) paradigm [37], Nagao and Takeuchi [38] made one of the earliest references to computers as social

agents. In describing their approach to social interaction between humans and computers, Nagao and

Takeuchi argue that a computer is a social agent if it is both social and autonomous. These authors define
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socialness as multimodal communicative behavior between multiple individuals. Nagao and Takeuchi initially

define autonomy as “[having] or [making] one’s own laws,” but later clarify that “an autonomous system has

the ability to control itself and make its own decisions.” We will see throughout this paper that sociality and

autonomy remain central to our discussion of social agency today, but not necessarily as defined by these

authors.

Nagao and Takeuchi also define a social agent as “any system that can do social interaction with humans,”

where a “social interaction” (1) involves more than two participants, (2) follows social rules like turn taking,

(3) is situated and multimodal, and (4) is active (which might be better understood as mixed initiative).

Some of these requirements, including at least the involvement of more than two participants and mixed

initiativity, seem unique to this theory. Nagao and Takeuchi also differentiate their “social interactions” from

problem solving interactions, though we believe, and see in the HRI literature, that task-oriented interactions

can be social and take place among social agents.

Pollini

Pollini [39] presents a theory that is less concerned with modality of interaction or type of robot

embodiment, focusing instead on the role of human interactants in constructing a robot’s social agency. For

Pollini, robotic social agents are both physically and socially situated, with the ability to engage in complex,

dynamic, and contingent exchanges. Social agency, then, arises as the outcome of interaction with (human)

interlocutors, as “the ability to act and react in a goal-directed fashion, giving contingent feedback and

predicting the behavior of others.” We see the goal-directedness in this definition as loosely analogous to the

notion of autonomy that is centered in other theories. In contrast to those theories, however, Pollini

considers social agency as a dynamic and emergent phenomenon constructed collectively within a socially

interacting group of autonomous actors, rather than as an individual attribute separately and innately

belonging to the entities that comprise a social group. This presents a useful framing for understanding the

social agency of multi-agent organizations like groups and teams. However, this multi-agent perspective

prevents this definition from aligning with common references in HRI to the “social agency” of an individual

robot. Nonetheless, some degree of autonomous behavior, interaction, perception, and contingent reaction

must clearly remain central to our discussion of social agency.

Pollini also opines that “social agency is rooted in fantasy and imagination.” It seems that humans’

attribution of social agency may be tied to the development of imagination during childhood, leading Pollini

to argue that people can “create temporary social agents” of almost anything with which they have

significant contact, including toys like dolls, tools like axes, and places like the home. This leads them to the

question “what happens when such ‘entities-by-imagination’ also show autonomous behavior and contingent
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reactions, and when they exist as social agents with their own initiative?” However, we argue that axes, dolls,

and places actually cannot be social agents, at least not in the way that the typical HRI researcher means

when they call a robot (or human) a social agent, since robots can conditionally take interactional behavior,

which we believe is necessary for social agency.

Finally, Pollini argues that agency-specific cues embedded in robots (e.g., contingent behavior) are

insufficient by themselves for creating social agency, and that social agency, rather, is negotiated between

machines and their human interactants via a process of interpretation, attribution, and signification. This

process involves interpreting a machine’s behavior as meaningful and explicative, and then attributing social

agency based on the signification of that behavior as meaningful, which may also involve attributing internal

forces like intentions and motivations. This means that, through this process, things with simple behaviors

like cars or moving shapes on a screen can end up being ascribed social agency. Again, however, we see a

fundamental difference between these examples and social robots, which can actually deliberately manifest

meaningful and explicative behaviors. We interpret this discussion as circling the distinction between “actual”

and “perceived” social agency that we will discuss below.

Levin, Adams, Saylor, and Biswas

Though much of the HRI literature exploring the standalone concept of agency is beyond the scope of

this work as it focuses on the agency of machines without centering notions of sociality, the theory of agency

from Levin et al. [40] is relevant here because it explores attributions of agency specifically during social

human-robot interactions. Levin et al. argue that people’s first impulse is to strongly differentiate the agency

of humans and nonhumans, and that people only begin to equate the two with additional consideration (e.g.,

when prompted to do so by the robot defying initial expectations). They also describe how simple robot

behavioral cues like the naturalness of movement or gaze can influence people’s attribution of agency to

robots, as well as states and traits of the human attributor, like loneliness. Like some previous theories,

Levin et al. center goal-orientedness and intentionality in their account of agency. However, they include not

only behavioral intentionality, which we saw in other theories [39], but also intentionality in cognition. Their

example of this cognitive intentionality is drawing ontological distinctions between types of objects based on

their use rather than their perceptual features.

Alač

Finally, Alač [41] presents a theory in which multimodal interaction, situatedness, and materiality are

important to a robot’s social agency, and justifies this theory with an observational study of a robot in a

classroom. Alač frames robot agenthood as coexisting with the contrasting status of “thing,” with agentic
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features entangled in an interplay with a robot’s thing-like materiality. However, Alač moves away from

discussing a robot’s social nature as an intrinsic and categorical property that resides exclusively in the

robot’s physical body or programming, instead seeing robot sociality as enacted and emergent from how a

robot is experienced and articulated in interactions. To Alač, the socially agentic facets of a robot are evident

in the way it is treated by humans, focusing on proxemic and haptic interaction patterns and linguistic

framing (e.g., gendering the robot) in group settings. Our work can augment ethnography-based theories like

this one by exploring (1) the features of the robot’s behavior that give rise to perceptions of social agency, (2)

what concepts constitute such perceptions, and (3) exactly what such perceptions imply. In other words, we

focus on what social agency is, rather than on human behaviors that indicate ascription thereof.

2.2.3 Notions of Social Agency in HRI

While in the previous section we discussed rigorously defined theories of social agency, much of the HRI

literature that engages with social agency does not actually connect with those theories. In this section, we

will thus explore the ways in which HRI researchers casually refer to social agency without focusing on

developing or defining a formal theoretical account of it. Our goals in doing so are to (1) illustrate that

notions of social agents and agency are commonly applied within the HRI research community, (2) provide

examples of how these terms are used, and demonstrate important qualitative differences among the entities

to which these terms are applied, (3) show that the existing theories defined in the previous section do not

capture the common parlance usage of “social agency” among HRI researchers, and (4) lay the groundwork

for developing a theory that does accommodate these usages.

There are many papers that refer to robots as social agents without mentioning or dealing with social

agency per se. The term social agent is widely applied to entities that are both embodied [42–45] and

disembodied [42, 46]; remote controlled by humans [42, 43, 45] and self-controlled [42]; task-oriented [42, 43]

and purely social [46]; anthropomorphic [42, 43], zoomorphic [42, 45, 46], and mechanomorphic [42, 44];

mobile [42, 43] and immobile [42, 44]; and able to communicate with language [42, 43] and unable to do

so [44, 46]. Any theory of social agency for HRI, then, should either encompass this diversity of social agents

or account for ostensible misattributions of social agency. However, the theories we have examined, which

emphasize embodiment [38, 41], language [38], and self-control or intentionality [39, 40], exclude usages that

are apparently common in HRI research.

Of course, one could argue that casual references to robots as “social agents” are synonymous to

references to robots as “social actors,” and that such references do not actually have anything to do with the

agentic nature of the robot. By this argument, the existing theoretical work on social agency in HRI would

best be understood as investigating a completely separate topic from social agents. This reasoning, however,
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would result in a confusing state-of-affairs in which social agency is not a prerequisite for being a social agent,

with the two topics unrelated except by the general connection to social interaction. We therefore assume

that a social agent must be a thing with social agency, and that these two terms must be tightly and logically

related. A clear conception of social agency is thus a prerequisite for the study of social agents. However,

much of the work in HRI that concerns social agency does not focus on rigorously defining it. Indeed, some

of these studies do not explicitly provide their definition of social agency at all.

An illustrative example of a casually referenced “social agent” is the “Snackbot” developed by Lee et al.

[43]. The anthropomorphic Snackbot had real interactions with many humans over the course of multiple

months as a snack delivery robot. The robot’s movement was self-controlled, but a human teleoperator

hand-selected its delivery destinations. The human operator also remotely controlled the robot’s head and

mouth movements and the robot’s speech, by selecting from a number of pre-made scripts, both purely social

and task-oriented. We will refer back to this example in Section 2.3.

In their investigation of how cheating affects perceptions of social agency, Ullman et al. [47] used

perceptions of trustworthiness, intelligence, and intentionality as indicators of perceptions of social agency in

an anthropomorphic robot. Using intentionality as a proxy for social agency aligns directly with several of

the theories that we described in Section 2.2.2 [39, 40]. Intelligence and trustworthiness, however, seem less

closely related to social agency, and trustworthiness is explicitly not an aspect of social agency in theories

that discuss competition and uncooperative behavior as inherently social actions [30].

Baxter et al. [48] also study attributions of social agency to robots without explicitly defining the term,

and measure it via a different proxy: human gaze behavior. This proxy does not obviously align with any of

the theories of social agency discussed above. Although it is possible that gaze could be a good proxy for

some definition of social agency (or the ascription thereof), further empirical work would be needed to

establish that relationship.

Straub [49] adopt yet another definition of social agency in their investigation of the effects of social

presence and interaction on social agency ascription. In their study, social agents are characterized as

“having an ‘excentric positionality,’ equipped with (a) an ability to distinguish themselves, their perceptions

as well as their actions from environmental conditions (embodied agency), (b) the ability to determine their

actions and perceptions as self-generated, (c) having the ability to define and relate to other agents equipped

with the same features of (a) and (b), along with (d) defining their relationship to other agents through

reciprocal expectations toward each other (‘excentric positioned’ alter ego).”

This definition, particularly part b, is somewhat ambiguous. One interpretation is that the robot simply

needs to distinguish its own actions from the actions of others, and know that it is the cause for the effects of

its actions; if the robot moves its arm into a cup, then it is the source for both the movement of the arm and
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the movement of the cup. However, this seems more like the robot knowing that its actions’ effects are

self-generated and that it was the one that acted, rather than viewing the choice to act or the genesis of the

action itself as self-generated. Another interpretation, which is similar to some of the definitions of social

agency discussed in Section 2.2.1, is that seeing an action as self-generated requires the robot to understand

its choice to act, perceive that choice as its own, and believe that it could have acted differently. This

definition appears to require some form of consciousness or experience of free will, and is thus not well-suited

to HRI. Straub uses human behavioral proxies, like eye contact, mimicry, smiles, and utterances, to measure

ascriptions of social agency to robots (with more of these behaviors indicating more ascribed social agency),

but such behavioral proxies do not measure all components of their definition.

Ghazali et al. [50] study the effects of certain social cues (emotional intonation of voice, facial expression,

and head movement) on ascriptions of social agency. Professedly inspired by research in educational

psychology described above [29], they define social agency as “the degree to which a social agent is perceived

as being capable of social behavior that resembles human-human interaction,” and then measure it by

collecting participant assessments of the extent to which the robot was “real” and “like a living creature.”

Roubroeks et al. [51] use the exact same definition of social agency as Ghazali et al. [50] in their investigation

of psychological reactance to robots’ advice or requests, but operationalize it differently. Although they did

not attempt to measure social agency, they did seek to manipulate it by varying robot presentation,

presenting a robot’s advice as either text alone, text next to a picture of the robot, or a video of the robot

saying the advice.

This definition seems problematically circular in that it defines social agency by the degree to which a

social agent does something, without defining what it means to be a social agent. We also argue that Ghazali

et al.’s chosen measures do not clearly align with the formal definitions of social agency proposed above, nor

with Ghazali et al.’s stated definition. Moreover, this conceptualization excludes a large number of robots

that the HRI literature calls social agents, and focuses on factors that many theories de-emphasize (e.g.,

livingness and human likeness). This example in particular shows that disparate definitions of social agency

currently exist in the HRI literature, leading to confusion when authors underspecify or neglect to specify a

definition.

Other work from Ghazali et al. [52] on the relationship between social cues and psychological reactance

centers the concepts of “social agent” and “social agency” explicitly, using the terms over 100 times in

reference to robots and computers. However, the authors do not expressly provide any definition for those

terms, despite ostensibly manipulating social agency in an experiment. Implicitly, the authors appear to

follow their definition described above, with more humanlike superficial behavior (e.g., head/eye movement

and emotional voice intonation) being considered more socially agentic, while the semantic content and
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illocutionary force of all utterances was kept constant across social agency conditions. However, Ghazali et al.

[52] also seem to consider the capacity to threaten others’ autonomy as a critical feature of social agency,

since they measure perceived threat to autonomy as a manipulation check on social agency (though the

social agency manipulation did not significantly impact perceived threat to autonomy). This choice was not

extensively justified. As discussed in Section 2.3.2, perceived threat to autonomy is strongly related to

(negative) face threat, which we view as important to social agency. However, as we will discuss, the capacity

to threaten face is far broader than the capacity to threaten autonomy as measured by Ghazali et al. [52].

To summarize, we have discussed several conflicting theories and usages of social agency in HRI, which,

to varying extents: (a) exclude common uses of the term “social agency” by being too restrictive, (b) include

objects that nearly all researchers would agree are neither social nor agentic, (c) focus on factors that do not

seem relevant to social agency in most pertinent HRI work, or (d) conflate other concepts (like livingness or

human-likeness) with social agency as it seems commonly understood. In addition, we have shown examples

of the diversity of uses of the term “social agency” in the HRI research literature. We now contribute our

own theory of social agency, with the specific intention of accommodating the HRI research community’s

existing notions of social agency.

2.3 A Theory of Social Agency for HRI

In this section, we propose a formal theory of social agency for HRI to address the challenges and

limitations discussed in the previous sections. Our key arguments are: (1) social agency may be best

understood through parallels to moral agency; (2) considering various levels of abstraction (LoAs) is critical

for theorizing about any kind of agency; (3) a social agent can be understood as something with agency that

is capable of social action; (4) social action is grounded in face; and (5) social and moral agency are related

yet independent.

To best understand social agency, we draw parallels to recent work on moral agency. Not only are the

concepts centered in theories of social agency discussed in Section 2.2.2 (e.g., autonomy, contingent behavior,

and intentionality) also centered in many theories of moral agency, but the moral agency of robots and other

artificial actors has also received a more rigorous treatment than social agency in the HRI literature. The

moral agency literature thus represents a valuable resource for constructing a parallel theory of social agency.

Furthermore, the two concepts of moral and social agency are inexorably linked, representing the two halves

of interactional agency. They provide congruent relationships to (and means of understanding) moral/social

norms and are key to our most foundational understandings of interaction. Given these similarities and

connections, parallel understandings of the two concepts are not only intuitive but necessary, and we see no

reason to attempt to define moral and social agency completely separately. For our purposes, we will leverage
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the moral agency theory of Floridi and Sanders [53], but note that, as with social agency, there is not yet

consensus among scholars as to a single canonical definition of moral agency, prompting ongoing debate [54].

Key terms that are important to our understanding of social agency are summarized in Table 2.1.

Table 2.1 Summary of terms that are important to our concept of social agency.

Term Definition

Level of Abstraction (LoA) A collection of observables describing an entity [53, 55]. A user’s LoA for a
robot includes movement, speech, morphology, etc., while the developer’s LoA
also includes the algorithms controlling the robot.

Agent Anything possessing the three criteria of interactivity, autonomy, and adapt-
ability.

Interactivity The capacity to act on the environment and to be acted upon by the environment
[53].

Autonomy The capacity to change state without direct response to interaction [53].

Adaptability The capacity for interaction to change the system’s state transition rules. The
capacity to “learn” from interaction [53].

Social Agent Anything capable of taking social action at the LoA under consideration.

Social Action Any act that threatens or affirms an other’s face. Analogous to moral action
(doing harm/good to an other).

Social Patient Anything that can be a recipient of social action, i.e., anything with face.

Face The public self-concept (meaning self-concept existing in others) that all mem-
bers of society want to preserve and enhance for themselves.
Negative face: an individual’s claim to freedom of action and freedom from
imposition.
Positive face: an individual’s self-image and wants, and the desire that these be
approved of by others [21].

2.3.1 Agency and Levels of Abstraction

Because of historical difficulties in defining necessary and sufficient conditions for agenthood that are

absolute and context-independent, Floridi and Sanders [53] take analysis of levels of abstraction (LoAs) [55]

as a precondition for analysis of agenthood. A LoA consists of a collection of observables, each with a

well-defined set of possible values or outcomes. An entity may be described at a range of LoAs. For a social

robot, the observables defining an average user’s LoA might only include the robot’s behavior and other

external attributes, like robot morphology and voice. In contrast, the robot developer’s LoA would likely also

include information internal to the robot, such as the mechanisms by which it perceives the world, represents

knowledge, and selects actions.Critically, a LoA must be specified before certain properties of an entity, like

agency, can be sensibly discussed, as a failure to specify a LoA invites inconsistencies and disagreements

stemming not from differing conceptions of agency but from unspoken differences in LoA.
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The “right” LoA for discussing and defining moral agency must accommodate the general consensus that

humans are moral agents. Floridi and Sanders [53] propose a LoA with observables for the following three

criteria: interactivity (the agent and its environment can act upon each other), autonomy (the agent can

change its state without direct response to interaction), and adaptability (the agent’s interactions can change

its state transition rules; the agent can “learn” from interaction, though this could be as simple as a

thermostat being set to a new temperature at a certain LoA). For the sake of simplicity, we will consider

LoAs consisting only of observations that a typical human could make over a relatively short temporal

window. These observables encompass some concepts that were important to the theories discussed in

Section 2.2.2 (e.g., autonomy and contingent behavior), and exclude others (e.g., teleological variables like

intentionality or goal-directedness), which we discuss more below. We also consider a criterion that was not

included in many theories for social agency, namely adaptability.

At the user’s LoA, wherein the deterministic algorithms behind a robot’s behavior are unobservable, the

robot is interactive, autonomous, and adaptable, and therefore is an agent. However, at the robot developer’s

LoA (or what Floridi and Sanders [53] call the “system LoA”), which includes an awareness of the algorithms

determining the robot’s behavior, the robot loses the attribute of adaptability and is therefore not an agent.

These two LoAs will be important throughout the rest of this paper.

We argue that the distinction between these two LoAs (the user’s and the developer’s) explains why some

scholars have suggested conceptualizing and measuring “perceived moral agency” in machines as distinct

from moral agency itself. This notion of perceived moral agency would ostensibly capture “human

attribution of the status of a machine’s agency and/or morality (independent of whether it actually has

agency or morality)” [56], and these authors could easily define “perceived social agency” the same way.

Much of the impetus for defining these new concepts seems to be a desire to avoid the varied and

conflicting definitions for agency (and the social and moral variants thereof). Typically within HRI,

researchers are primarily concerned with how their robots are perceived by human interactants (the user’s

LoA), and how those interactants might ascribe social agency to those robots. In that sense, perceived social

agency as a concept seems like a good way to allow researchers to focus on what they really care about

without getting mired in discussions of their robot’s “actual” agency, though it can still leave exactly what is

perceived as (socially) agentic underspecified.

However, as we saw in Section 2.2, authors seldom refer to perceived social agency (particularly since we

just defined it as parallel to perceived moral agency, which also does not seem to have caught on), but rather

use the unqualified term “social agency”. Thus, rather than attempting to enforce a change in terminology,

we propose that “perceived moral/social agency” should be understood as moral/social agency at the robot

user’s LoA, and “actual” moral/social agency is the corresponding notion at the developer’s LoA. To
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illustrate, consider the SnackBot[43] described in Section 2.2.3. This robot was largely remotely controlled by

a human, but, at the snack orderer’s (user’s) LoA it is a social agent. At the developer’s LoA, the robot is

not an agent, but the system in aggregate might be considered socially agentic since one of its constituent

parts, the human, is a social agent in and of itself.

If SnackBot could manifest the same behavior without human input, it would still not be agentic at the

developer’s LoA insofar as its behavior is the direct result of deterministic algorithms that only act on its

state. However, it does intuitively seem more agentic, prompting us to consider another useful LoA: one

where we are aware of the general distributed system that controls a robot (in terms of software cognitive

architectural components, hardware components like cloud computing, and human teleoperators), but not

aware of the inner workings of each constituent part of that system. At this LoA, which we call the

“architecture LoA”, a robot that does its computation internally might be agentic, but a robot that is remote

controlled by either a person or another machine could not be an agent in and of itself. Hundreds of different

LoAs could be constructed with various degrees of detail regarding how a robot works, but this is largely not

constructive if humans are unlikely to ever view the robot from those LoAs. However, we believe that the

architecture LoA is realistic for many potential robot interactants, particularly those that might own their

own personal robots, or participants in laboratory HRI studies after the experimental debriefing.

At first glance, it would be easy to draw some parallels between our three main LoAs (developer’s,

architecture, and user’s) and Dennett’s three stances from which to view an entity’s behavior in terms of

mental properties (physical, design, and intentional) [57]. The user’s LoA in particular bears loose

resemblance to Dennett’s intentional stance because the user is aware only of the robot’s externally

observable behaviors, and may rationalize them by projecting internal states onto the robot. Likewise, our

architecture LoA is explicitly concerned with the parts comprising a robot’s distributed system and the

broad purpose of each constituent part, like the design stance, though it is not necessarily concerned with the

purpose of the robot itself as a whole. However, several key distinctions separate our three LoAs form

Dennett’s three stances. Most obviously, the developer’s LoA is unlike Dennett’s physical stance in that it is

concerned with the algorithms producing the robot’s behavior but not the specifics of their implementation

nor the hardware executing them.

More broadly, the three LoAs we have presented generally represent three of the sets of information that

real people are most likely to have regarding robots during HRI, but there is no reason for this set of LoAs to

be considered exhaustive, and no reason why our analysis of social agency cannot also apply to any other

LoA from which a person views a robot. In contrast, more rigidly tripartite approaches to epistemological

levelism, like Dennett’s, though readily formalized in terms of LoAs, contain an implicit ontological

commitment and corresponding presupposed epistemological commitment because they privilege
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explanations over observable information [55]. That is not to say that such approaches to multi-layered

analysis are not interesting and illustrative to HRI. For example, many researchers have explored whether

humans naturally adopt the intentional stance towards robots and other artificial entities like they do

towards other humans [58–62]. However, it seems intuitive that robot developers versus users might take the

intentional stance towards robots to different extents and under different conditions, so we posit that a

specification of LoA is helpful in considering Dennett’s stances and other attitudinal stances in HRI in much

the same way that it is to our discussion of social agency, rather than Dennett’s stances being homeomorphic

to the three LoAs most salient here.

Most current cognitive architectures are precluded from agency at the developer’s LoA because any

learning is typically a matter of updating the robot’s state by the deterministic rules of its code, rather than

an actual update to the rules for transitioning between states [53]. This includes black-box systems, like deep

neural networks, because their lack of interpretability comes from an inability to fully understand how the

state results in behavior, not from actual adaptability. However, we accept that humans have adaptability,

and see no theoretical reason why the same level of adaptability could not be implemented in future artificial

agents. Of course, particularly within the theory of causal determinism, there exists an LoA wherein humans

do not have agency if all human behavior is rooted in the physical and chemical reactions of molecules in the

brain (a “physical” LoA a la Dennett). Regardless of the veracity of this deterministic point of view, it seems

clear that no LoA precluding agency from existing in the universe as we know it is a useful LoA at which to

discuss agency in HRI.

We adopt the above notion of LoA and criteria for agenthood from [53] for our theory of social agency for

several reasons. First, different LoAs help us to account for different understandings of social agency in the

HRI literature, as we saw in our discussion of “actual” versus “perceived” social agency. Second, we can

explicitly avoid conflating moral/social agency with moral/social responsibility (i.e., worthiness of blame or

praise), which is another discussion beyond the scope of this paper. Third, avoiding internal variables like

intentionality, goal-directness, and free-will guarantees that our analysis is based only on what is observable

and not on psychological speculation, since a typical robot user cannot observe these attributes in the

internal code or cognitive processes of their robot; we thus prefer a phenomenological approach.

Having established an understanding of agency, we now need to define some notion of sociality congruent

to Floridi and Sanders’s notion of morality. However, we first want to point out that our justification for

avoiding unobservable factors in defining and assessing (moral/social) agency parallels a similar argument

from proponents of ethical behaviorism in defining and assessing the moral status of robots. Ethical

behaviorism is an application of methodological behaviorism (as opposed to ontological behaviorism) to the

ethical domain, which holds that a sufficient reason for believing that we have duties and responsibilities
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toward other entities (or that they have rights against us) can be found in their observable relations and

reactions to their environment and ourselves. In other words, robots have significant moral status if they are

roughly performatively equivalent to other entities that have significant moral status, and whatever is going

on unobservably “on the inside” does not matter. This is not to say that unobservable qualia do not exist,

nor do we deny that such qualia may be the ultimate metaphysical ground for moral status. However, the

ability to ascertain the existence of these unobservable properties ultimately depends on some inference from

a set of observable representations, so a behaviorist’s point of view is necessary to respect our epistemic

limits [63]. We agree with this reasoning. Our definition of social agency could be framed as a form of “social

behaviorism” that specifies the behavioral patterns that epistemically ground social agency and, by

considering LoAs, is sensitive to the behaviors that are actually observed, rather than the set of behaviors

that are, in principle, observable.

Of course, avoiding attributes like intentionality or goal directedness in our definitions in favor of a

behaviorist approach does not completely free us from needing to rely on some form of inference. At a

minimum, making observations from sensory input requires the inference or faith that one’s sensory inputs

correspond to some external reality. Likewise, our interactivity criterion for agency requires some causal

inference or counterfactual reasoning. For example, concluding that a robot can be acted on by the

environment requires the counterfactual inference that the robot’s “response” to a stimulus would not have

occurred absent that stimulus. Unfortunately, requiring some inference is unavoidable. In light of this, one

could argue that it is equally reasonable and necessary to infer intention and goal directedness from behavior.

For example, pulling on a door handle might signal an intent to open the door with the goal of getting into

the building, even though the same behavior could also signal mindless programming to tug on handles

without representing goals or having intentions. We argue that the sensory and causal inferences required by

our framework are lesser epistemological leaps and more necessary and common (and therefore more

justifiable) than inferences about other agent’s mental states like intentionality and goals. We also emphasize

that goals and intentions are apparently not important to social agency at the developer’s LoA, since we saw

many robots referred to as social agents by their developers in Section 2.2.3 that did not internally represent

goals or intentions, and their developers would have known that.

2.3.2 Social Action Grounded in Face

We now move on to developing a notion of sociality congruent to Floridi and Sanders’s notion of morality.

For Floridi and Sanders [53], any agent that can take moral action on another entity (e.g., do good or evil;

cause harm or benefit) is a moral agent. Any entity that can be the recipient of moral action (e.g., be

harmed or benefited) is a moral patient. Most agents (e.g., people) are both moral agents and moral patients,
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though research has indicated an inverse relationship between perceptions of moral agency and moral

patiency (e.g., neurodivergent adults are perceived more as moral patients and less as moral agents than

neurotypical adults) [64].

Just as a moral agent is any agentic source of moral action, we can define a social agent as any agentic

source of social action. We ground our definition of social action in the politeness theoretic concept of

“face” [21]. Face, which consists of positive face and negative face, is the public self-concept (meaning

self-concept existing in others) that all members of society want to preserve and enhance for themselves.

Negative face is defined as an agent’s claim to freedom of action and freedom from imposition. Positive face

consists of an agent’s self-image and wants, and the desire that these be approved of by others. A discourse

act that damages or threatens either of these components of face for the addressee or the speaker is a face

threatening act. Alongside the level of imposition in the act itself, the degree of face threat in a face

threatening act depends on the disparity in power and the social distance between the interactants. Various

linguistic politeness strategies exist to decrease face threat when threatening face is unavoidable or desirable.

Conversely, a face affirming act is one that reinforces or bolsters face for the addressee or speaker (though

our focus will be on the addressee). We define social action as any action that threatens or affirms the

addressee’s face. So, affirming and threatening face are social analogs to doing moral good and harm

respectively. In contexts where it is helpful, this definition also allows us to refer to robots with different

capacities to affect face as having different degrees of social agency, rather than viewing social agency as a

strictly binary attribute. We also propose that the term “social actor” can refer to interactive entities

capable of social action, but lacking the other criteria for agency (autonomy and/or adaptability).

Some scholars have opined that it is common to view social agents as equivalent to “communicating

agents” [30], and thus might simply say that any communicative action is a social action. Though the ability

to nontrivially communicate implies the capacity to threaten face, we choose to base our definition of social

action directly on face because it allows for a more intuitive parallel to moral agency without excluding any

meaningful communicative actions. The vast majority of communicative actions that an agent can perform

have the capacity to impact face. Just in terms of face threat, any kind of request, reminder, warning, advice,

offer, commitment, compliment, or expression of negative emotion threatens the addressee’s negative face,

and any criticism, rebuke, insult, disagreement, irreverence, boasting, non-cooperation, or raising of divisive

topics threatens the addressee’s positive face [21]. A single speech act can carry several elements that affect

face in different ways, and even the mere act of purposefully addressing someone is slightly affirming of their

positive face by acknowledging them as worth addressing, and slightly threatening of their negative face by

imposing on their time. Indeed, it is difficult to think of a meaningful communicative action that would have

no impact on face.
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Another reason to ground social action in face is because face is more concrete and computationalizable

than some other options (e.g., induced perceptions of human likeness or influence on emotional state), while

still being broad enough to encompass the whole set of actions that we would intuitively consider to be social.

There exist various parameterizations or pseudo-quantifications of face threat/affirmation, including Brown

and Levinson’s own formula which presents the weight of a face threatening act (W ) as the sum:

W = D(S,H) + P (H,S) +R where D(S,H) is the social distance between the speaker (S) and hearer (H),

P (H,S) quantifies the power that H has over S, and R represents the culturally and situationally defined

level of imposition that the face threatening act entails. For negative face threatening acts, R includes the

expenditure of time and resources. For positive face threatening acts, R is harder to determine, but it is

given by the discrepancy between H’s own desired self-image and that presented in the face threatening act.

Individual roles, obligations, preferences, and other idiosyncrasies are subsumed into R. Of course, the

constituent parts of this equation cannot be precisely quantified in any canonical way (nor can, for example,

influence on behavioral or emotional status). We do not view this as a weakness because we would not

expect to precisely quantify the magnitude of socialness in an action. Humans cannot precisely answer

questions like “How social is it to hug your grandmother?” or “Which is more social, asking a stranger for

the time or tipping a service worker?”. However, this equation nonetheless illustrates some of the concrete

underpinnings of face and shows how face connects to concepts like relational power, interpersonal

relationships, material dependence, cultural mores, etc.

Robots are valid sources of social action under this face-based definition. Typical task-oriented paradigms

of HRI involve robots either accepting or rejecting human requests (which either affirms or threatens both

positive and negative face), or making requests of humans (which threatens negative face). Even simply

informing human teammates about the environment threatens negative face by implying that the humans

ought to act based on the new information. Less task-oriented cases, like companionship robots for the

elderly [42], also require face affecting social actions, though these may tend to be more face affirming than

in task-based interaction. Again taking the SnackBot [43] as an example, bringing someone a requested snack

is face affirming, and so are dialogue behaviors like complimenting snack choice or apologizing for delays.

The SnackBot’s dialogue behavior of asking people to move out of the way is face threatening. Research

examining how robots influence human face and how humans react to robotic face threatening actions is

ongoing (see Chapters 5 and 6).

In comparison to our definition, Castelfranchi [30] define an action as either social or nonsocial depending

on its purposive effects and the mind of the actor. Their social actions must be goal-oriented and motivated

by beliefs about predicted effects in relation to some goal. Their social actions are mainly based on some

exercise of power to attempt to influence the behavior of other agents by changing their minds. They
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specifically say that social action cannot be a behavioral notion based solely on external description. This

definition is not well-suited to our purposes because these internal underpinnings are unknowable to a typical

robot user, and thus preclude the user from viewing a robot as a social agent. We saw similar reasoning in

our decision to exclude goal-orientedness as a prerequisite for agency. Even if a user chooses to adopt an

intentional stance (see [57]) toward a robot and infer goals motivating its behavior, this does not imply that

the robot actually has an internal representation of a goal or of the intended effects of its actions; the

person’s intentional stance would only allow them to take social action towards the robot, not vice versa.

Given the popular perception of robots as social and the academic tendency to call them social agents, we do

not want a definition of social action that cannot apply to robot action or that relies on factors that cannot

be observed from a user’s LoA. Furthermore, Castelfranchi’s definition excludes, for example, end-to-end

deep neural dialogue systems that may not explicitly represent goals, beliefs, causality, or interactants as

potential sources of social action, but whose actions can clearly come across as social and carry all the

corresponding externalities. Our face-based definition does not have these limitations.

To be clear, our decision to define social action via face is not an arbitrary design choice, but rather a

result of face’s integral role in all social interaction. We believe that an action’s relationship to face is,

unavoidably and fundamentally, what determines whether that action is social because face is what creates

the experience of having social needs/desires in humans. It follows that, for robots, the appearance or

attribution of face, or some relationship to others’ face, is what allows them to be social actors. Any action

that affects face is necessarily social, and any action that does not is necessarily asocial. This aligns well with

widespread intuitions about sociality and common parlance use of the term.

2.3.3 Social Patiency as Having Face

Any social action must have a recipient whose face is affected. If social agency is an agent’s capacity to

be a source of social action (to affirm or threaten face), then the corresponding notion of social patiency is

the capacity to have one’s face threatened or affirmed (i.e., having face). This is similar to the notion of

moral patiency as the capacity to be benefited or harmed by moral action. The nature and experience of the

social patient is fundamental to determining whether an action is truly social as we have defined it (an action

being intended as social by the actor is neither necessary nor sufficient for it being a social action). This

consequentialist aspect of our definition corresponds to some intuitions about what it means to act socially.

For example, speaking to a sleeping person is not social in the same way that speaking to an awake person is

social, even if the speaker is unaware that the addressee is sleeping.

Several readers of earlier versions of this paper raised the question ”what if I was the last living thing on

Earth? Do I cease to be a social agent because there are no potential social patients?”. We respond by
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emphasizing that, just as Floridi and Sanders define moral agents as the class of all entities that can in

principle qualify as sources of moral action, we are similarly concerned with the capacity for social action in

our definition of social agency. If any action that I could take towards an unconscious person (or an empty

room) I could also take towards a conscious person (with effects to their face), then I am a social agent even

if my actions at present are not social because they lack an appropriate social patient. At first glance, this

line of reasoning may be interpreted to imply that all agents are necessarily moral and social. If someone

constructed a machine that could monitor any agent and then harm somebody if that agent does any action,

then any action could have moral and social (deliberate harm is face threatening) consequences indirectly via

the machine. Thus, any agent would, in principle, have the capacity for moral and social action since one

could, in principle, construct such a machine. However, the point of having categories like “moral agent” and

“social agent” is to describe sets of things that are not already fully described by “agent”. We argue for

focusing on the proximate source of any potentially moral/social action in attributing morality/sociality.

Thus, we argue that, in this hypothetical, the machine or whoever made it is actually the source of the

moral/social action, not the agent that the machine is monitoring.

Clearly, conscious humans are simultaneously moral and social agents and patients at any reasonable LoA.

However, neither moral nor social patiency at any given LoA strictly requires moral or social agency at the

same LoA, which leads us to the question of whether our robotic moral/social agents in HRI are also

moral/social patients.

It seems clear that, at a reasonable LoA for a human interactant, it is possible to harm a robot, making

the robot a moral patient. This is especially clear for robots capable of affective displays of protest and

distress [9]. Indeed people deliberately abuse robots with surprising frequency [65]. However, at a deeper

LoA, we know that current robots cannot feel pain (or pleasure), have no true internal emotional response to

harm like fear, and lack the will towards self preservation inherent in most lifeforms. Thus, at this deeper

LoA the robot is not a moral patient.

Likewise, a robot’s social patiency depends on the LoA considered. It is feasible to program a robot to

manifest behaviors indicating face wants, like responding negatively to insults and positively to praise, in

which case it would be a social patient at the user’s LoA. However, at the developer’s LoA, the robot still has

no face.

2.3.4 Social and Moral Agencies as Independent

We now discuss the extent to which social agency and moral agency can manifest in machines

independent of one another. We believe that some machines, including some robots, are largely perceived as

asocial moral agents, while others are seen as amoral social agents. Although, for the most part, social robots
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do not fall in either of these groups, we believe that they are worth presenting as points of reference for

understanding the special moral and social niche occupied by language capable robots. We continue to

consider these technologies from the user’s LoA.

Some artificial agents are popularly ascribed some form of moral agency without behaving socially or

even possessing the capacity for communication outside of a narrow task-based scope. We call such agents

“asocial moral agents”, and use autonomous motor vehicles as the quintessential example. If we include the

likely possibility that autonomous vehicles will learn and change their behavior in response to changing road

conditions or passenger preferences, they are agentic at the passenger’s LoA by being interactive,

autonomous, and adaptive.

In terms of moral action, while autonomous motor vehicles are obligated to conform to the legal rules of

the road, they are also expected to engage in extralegal moral decision making and moral reasoning. Myriad

articles, both in popular culture and in academia, contemplate whether and how autonomous cars should

make decisions based on moral principles (e.g., [66]). Questions like “in an accident, should the car hit a

school bus to save its own passenger’s life? Or should it hit the barrier and kill its passenger to save the

school children?” have taken hold of popular imagination and proliferated wildly. Regardless of the actual

usefulness of such questions (cf. [67]), it is clear that autonomous cars are being ascribed moral agency.

We can also consider whether autonomous vehicles might be capable of social action. For example, using

a turn signal is clearly communicative, but it is also legally mandated; an autonomous vehicle would signal

an impending turn regardless of whether any other driver was present to see the turn signal. Given the legal

motivation behind the turn signal and the fact that it has no specific intended addressee, we view it as the

rare communicative act with no (or negligible) impact to face. Indeed, any communication via turn signal

would be considered incidental to law-following by the typical driver. Other driving behavior can also be

communicative; though we do not expect autonomous vehicles to engage in tailgating or road rage, we could

imagine that they might change the norms governing human driving behavior by modeling those norms

themselves. For example, if all autonomous vehicles on the road adopt a uniform following distance, this

behavior might influence human drivers sharing the road to do the same. However, this potential normative

influence is distinct from that of social robots in that it is passive, incidental, unintentional, and not

principally communicative, and therefore not face-relevant.

In other cases, depending on behavior, robots could be perceived as amoral social agents. Social robots

that do not have the ability to act on their environment in any meaningful extra-communicative capacity

may be physically unable (or barely able) to produce moral action. As an example, consider MIT’s Kismet

robot, which is expressive, (non-linguistically) communicative, and social, but largely helpless and incapable

of acting extra-communicatively. Many social actions are available to Kismet. For example, making a happy
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expression/noise when a person enters the room is face affirming, and a disgusted expression face threatening.

Given the right behaviors, Kismet could also meet our prerequisites for agency and be an amoral social agent.

When moral and social agency are both present, as is the case for most social robots at the user’s LoA,

their combination gives rise to interesting phenomena. Social robots can occupy a unique sociotechnical

niche: part technological tool, part agentic community member. This status allows robots to play an active

role in shaping the community norms that inform human morality, which behavioral ethics has shown to be

dynamic and malleable [11]. And while robots are not the only technology to play a role in shaping human

norms [13], we believe their social agency grants them uniquely powerful normative influence. For example,

robots have been shown to hold measurable persuasive capacity over humans, both via explicit and implicit

persuasion [9, 10], and even to weaken human (application of) moral norms via simple question asking

behavior (see Chapter 3).

Language capable robots are unique among technologies not only in the strength of their potential moral

influence, but also in their ability to take an active and purposeful role in shaping human moral norms (or

human application of moral norms) as social agents. However, this capability is a double-edged sword. On

the one hand, robots of the future could productively influence the human moral ecosystem by reinforcing

desirable norms and dissuading norm violations. On the other hand, today’s imperfect moral reasoning and

natural language dialogue systems open the door for robots to inadvertently and detrimentally impact the

human moral ecosystem through reasoning errors, miscommunications, and unintended implicatures. It is

thus crucial to ensure moral communication and proper communication of moral reasoning from robots,

especially in morally consequential contexts. The power to transfer or alter norms comes with the

responsibility to do so in a morally sensitive manner.

2.4 Revisiting Related Work

Revisiting the theories of social agency from Section 2.2.2, we see that our definition is more inclusive

than that of Nagao and Takeuchi [38] and Alač [41] in that we demphasize the robot’s embodiment and

materiality to account for purely digital potential social agents that we see in HRI research [42, 46], and do

away with the teleological and internal considerations (e.g., goal-orientedness and intentionality) that would

not be knowable to the typical robot user (cp. [39, 40]). On the other hand, our work is more restrictive

than Pollini [39] because we exclude “entities by imagination” as potential social agents, and specify that

there are several behavioral traits necessary for social agency. This approach balances the more

human-ascription-centered and more robot-trait-centered conceptualizations of social agency. Our theory

acknowledges the human role in determining social agency by centering human face and the human’s LoA,

without reducing social agency to the mere ascription thereof. At the same time, we concretely describe the
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robot traits necessary for social agency at a given LoA.

Revisiting the studies from Section 2.2.3, which referenced social agents and social agency without

principally focusing on defining those concepts, we see that our definition can encompass the wide diversity

of potential social agents in HRI. Particularly at the user’s LoA, robots can be social agents regardless of

embodiment, teleoperation, task-orientedness, morphology, mobility, or linguistic capacity. However, some of

the robots we reviewed would actually be excluded by our definition at the user’s LoA by failing to meet

behavioral prerequisites, particularly by lacking indications of adaptability (e.g., [42, 46, 51]). Interestingly,

robots with a human teleoperator might be more likely to be socially agentic at the user’s LoA than those

with simpler self-controlled behavior.

Finally, we stress that our theory complements (rather than competes with) much of the previous work

we discussed. For example, some of the proxemic and haptic human behavior that Alač [41] observed in their

ethnographic study, like the choice to touch a robot’s forearm rather than other body parts, might be

understood within our theory as stemming from attributions of social patiency to the robot, rather than

social agency. Likewise, our conception of social agency may well be tied to, for example, psychological

reactance [51] or trust [47].

2.5 Concluding Remarks

We have presented a theory of social agency wherein a social agent (a thing with social agency) is any

agent capable of social action at the LoA being considered. A LoA is a set of observables, and the LoAs most

relevant to our discussion have been the robot user’s, the developer’s (or system LoA), and, to a lesser extent,

the architecture LoA. Agency at any given LoA is determined by three criteria which we defined concretely

above: interactivity, autonomy, and adaptability. We have defined social action as any action that threatens

or affirms the addressee’s face, and refer to the addressee in this scenario as a social patient. More

specifically, social patiency is the capacity to be the recipient of social action, i.e., having face. These

definitions came from parallel concepts in the philosophy of moral agency [53]. We motivated our theory of

social agency by presenting a sample of the inconsistent, underspecified, and problematic theories and usages

of social agency in the HRI literature.

Based on our theory, we have several recommendations for the HRI community. We recognize a tendency

to casually use the word “agent” to refer to anything with any behavior, and to correspondingly use “social

agent” to simply mean “social thing.” We encourage authors to consider either switching to the broader term

“social actor” as defined above, or to briefly specify that they are using the term “social agent” informally and

do not intend to imply social agency in any rigorous sense. We further recommend that any paper dealing

with social agency be specific in selecting a suitable definition (such as the one presented in this work) and
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LoA.

It will be important for future studies to develop, refine, and validate measurements of social (and moral)

agency. There exists early work on developing a survey to measure “perceived moral agency” for HRI [56],

however some questions seem to conflate moral goodness with moral agency, and, despite measuring facets of

autonomy and moral cognition, the survey does not measure the capacity for taking moral action. Some of

the proxies that we saw used for social agency in Section 2.2.3, like human-likeness, realness, and livingness

[50] do not match our new conceptualization of social agency. Others, like gaze [48], could be promising but

have yet to be validated with our theory (or, to our knowledge, any particular theory) of social agency in

mind. Validated metrics would facilitate experimental work motivated by our theory.

For example, future work designed to evaluate and further concretize our theory could empirically verify

whether changing the LoA at which somebody is viewing a robot causes a corresponding change to their

assessment of that robot as a (social) agent. The results could either strengthen the argument that the LoA

is a critical prerequisite for the discussion of agency, or indicate that colloquial conceptions of agency do not

account for LoA, despite its importance in rigorous academic discussions. Another avenue for this type of

work would be to manipulate the magnitude of face threat/affirmation that a social robot is capable of and

examine how that manipulation effects perceptions of the robot as a social agent. This experiment would

specifically target our definition of social action as grounded in face.

Measures of social agency would also allow us to examine its relationship with persuasion and trust. On

the one hand, we could imagine that decreasing a robot’s social agency (by lowering its propensity to affect

face) could increase its persuasive capacity if people are more amenable to persuasion when their face is not

threatened. On the other hand, increasing a robot’s social agency might increase its persuasive capacity if

people are more likely to trust a more human-like robot.

Furthermore, it will be important to probe for causal relationships between ascriptions of social agency

and ascriptions of moral responsibility and competence in robots. In human children, development of

increased capacity for social action is typically correlated with development of other facets of intelligence and

skills, including moral reasoning. However, this correlation does not necessarily exist for robots, since a robot

could be socially agentic and competent, with a wide range of possible social actions, and still have minimal

moral reasoning capacity. If robot social agency, or social behavior in general, leads interactants to

assumptions of moral competence or overall intelligence (as it likely would in humans), this could lead to

dangerous overtrust in robot teammates in morally consequential contexts that they are not equipped to

handle. Thus, giving a robot linguistic/social competence would also necessitate giving the robot a

corresponding degree of moral competence.
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Finally, though there is evidence for an ontological distinction between humans and robots [18], it is not

yet clear where differences (and similarities) will manifest in terms of moral and social agency. We will

require human points of reference in future HRI studies to fully understand how the emerging moral and

social agency of robots relate to those qualities in humans.
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CHAPTER 3

THE NEED FOR MORALLY SENSITIVE ROBOTIC CLARIFICATION REQUEST GENERATION

Modified from two published papers, one published in The Proceedings of the International Conference on

Robot Ethics and Standards (ICRES), 20185 and the other published in The Proceedings of the Companion

of the 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI), 20196.

Ryan Blake Jackson7 and Tom Williams8

3.1 Abstract

Previous research in moral psychology has shown that technology shapes human morality, and research in

human-robot interaction has demonstrated the normative influence that robots can wield over humans.

Accordingly, we propose that language-capable autonomous robots are uniquely positioned among

technologies to significantly impact human morality. We therefore argue that it is imperative that

language-capable robots behave according to human moral norms and communicate in such a way that their

intention to adhere to those norms is clear. Unfortunately, the design of current natural language oriented

robot architectures enables certain architectural components to circumvent or preempt those architectures’

moral reasoning capabilities. In this chapter, we show how this may occur, using clarification request

generation in current dialog systems as a motivating example. We present two experiments indicating that

the types of behavior exhibited by current approaches to clarification request generation can cause robots to

(1) miscommunicate their moral intentions and (2) weaken humans’ perceptions of moral norms within the

current context.

3.2 Introduction

The field of robotics continues to advance rapidly, with social and/or collaborative robots being deployed

into an increasingly wide variety of contexts. As non-roboticists in these contexts are required to interact

with these robots, it becomes important for the robots to be capable of natural and fluid interaction. To

enable natural HRI, robot designers are increasingly turning to natural language [68–70]. Natural language

will allow robots to naturally and fluidly communicate with nearly all people, without requiring burdensome

training or sophisticated hardware.

5Reprinted with permission from Tom Williams. “Robot: Asker of Questions and Changer of Norms?”, in The Proceedings of
the International Conference on Robot Ethics and Standards (ICRES), 2018.

6Reprinted with permission from Tom Williams. “Language-Capable Robots may Inadvertently Weaken Human Moral Norms”,
in The Proceedings of the Companion of the 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI),
2019.

7Primary researcher and author, Graduate Student, Colorado School of Mines
8Assistant Professor, Colorado School of Mines
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However, natural language communication is challenging not only because of its complexity, but also

because any given natural language utterance may entail or imply a wide variety of possible

meanings [15, 16] (see also [14]). And accordingly, there has been much recent work focusing on inferring the

different implicatures behind human and robot communicative actions [71–77]. Specifically, because a given

utterance may carry several contextually dependent implications beyond its surface level meaning, it may be

difficult for robot designers to predict not only the precise utterances that their robots may generate, but

also the host of possible implicatures those utterances may carry. As robots are moved into new contexts,

their utterances may carry different context-sensitive implications (which humans will expect robots to

comprehend [78]). It thus becomes increasingly likely that robots will generate utterances that

unintentionally imply content which the robots did not actually intend to communicate. Such accidental

implicatures are especially concerning when they relate to morally charged matters – an inevitable

occurrence as robots are deployed in evermore consequential contexts, such as eldercare, childcare, military

operations, and mental health treatment [1–7, 79].

Clearly, robots should behave according to human moral norms, if only for the simple reason that to do

otherwise would be immoral. However, we argue that it is also critically important for robots to avoid

erroneous implicatures regarding those moral norms. Research has indicated that people naturally perceive

robots as social and moral actors, and extend moral judgments and blame to robots in a manner similar to

how they would to other people [9, 19, 80]. Moreover, language-capable robots are expected to be even more

socioculturally aware than their mute counterparts [81], furthering human assumption that they will follow

human norms. It thus stands to reason that, like humans, robots may face social consequences for their norm

violations, such as loss of human trust and esteem, as well as sanctions or punishments for those norm

violations. Crucially, these consequences may be exacted not only in the case of actual norm violations, but

also if the robot demonstrates, communicates, or implies a willingness to violate norms. By accidentally

miscommunicating their moral dispositions, robots erroneously bring these types of social consequences upon

themselves, with avoidable negative impact on effective and amicable human-robot teaming.

Alongside the phenomenon of human morality constraining robotic behavior, we must conversely consider

the role that robotic behavior can play in shaping human morality. A principle and empirically supported

tenet of behavioral psychology is that human morality is dynamic and malleable [11]. The norms that inform

human morality are defined and developed not only by the human community members that follow, transfer,

and enforce them, but also by the technologies with which they routinely interact [13]. Because robots are

perceived as moral and social actors (and regardless of the actual veracity of these perceptions), we posit

that language-capable autonomous robots are uniquely positioned to influence human morality differently,

and perhaps more profoundly, than other technologies.
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Research has already shown that robots hold measurable persuasive capacity over humans [9, 10], and

that different contextual factors can lead humans to regard robots as in-group members [82]. In fact, recent

work has raised concerns that humans may bond so closely with robotic teammates in military contexts that

their attachment could jeopardize team performance as human teammates prioritize the ostensibly

replaceable robot’s wellbeing over mission completion [6]. We therefore believe that a robot violating a norm,

or communicating a willingness to eschew a norm, could significantly distort the human moral ecosystem in

much the same way that a human would if they were to perform or condone a norm-violating action.

Despite the importance of careful and precise communication, the intricacies of natural language and the

breadth of contexts in which robots will interact with people make it challenging to ensure that natural

language generation algorithms will never unintentionally imply a willingness to eschew some norm.

Especially in modular robot software architectures where a single architectural component may be

responsible for all moral reasoning, it is tempting to achieve performance gains by circumventing or

preempting this moral reasoning. But, while such shortcutting may be benign in the vast majority of cases,

this shortcutting, or more commonly the simple absence of sufficient moral consideration, can cause otherwise

moral robots to come across as immoral when confronted with situations unanticipated by their designers.

In this chapter, we examine one way in which current language-capable robot architectures shortcut

moral reasoning, specifically with respect to how they handle clarification request generation. We present two

experiments showing that current clarification request generation algorithms may (1) cause robots to

miscommunicate their intentions by erroneously implying willingness to violate a particular moral norm, and

(2) weaken humans’ own perceptions of the strength of that moral norm, at least within the examined

experimental contexts. Experiment 1 involves participants reading hypothetical human-robot dialogues. This

text-based method allows us to obtain general results independent of any possible effects of particular robot

morphology, voice, gender cues, etc. In Experiment 2, participants observe actual human-robot clarification

dialogues, allowing us to perform a replication analysis and present our results with significantly greater

external and ecological validity. We demonstrate that the results of Experiment 1 still hold given the

differences in Experiment 2, chief of which is increased realism.

In Section 3.3, we demonstrate why clarification request generation provides such an excellent example of

how design decisions within a robot architecture may lead to robots erroneously implying a willingness to

eschew particular moral norms. We will then present the design of Experiment 1 in Section 3.4, and present

the corresponding results in Section 3.5. Likewise, the design and results of Experiment 2 are presented in

Sections 3.6 and 3.7 respectively. We discuss some overarching thoughts and directions for future work in

Section 3.8, before discussing the limitations of our experimental design and alternative explanations for our

results in Section 3.9. Finally, Section 3.10 briefly summarizes our high-level conclusions.
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3.3 Miscommunication Via Clarification Requests

Natural language is an imperfect communicative system, and misunderstandings and miscommunications

are frequent. Therefore, in human-human dialog, clarification requests are important and relatively common.

Despite the various possible forms, all clarification requests indicate some prior breakdown in communication

and query some feature of a previous problematic utterance [17]. Giving robots the capacity to generate

clarification requests is critical if they are to handle ambiguity naturally present in human language.

For example, if a human states “I’d like you to bring me the cup” and the robot is aware of two relevant

cups, it may be prudent to ask, e.g., “Do you want the red cup or the blue cup?” even if one cup is slightly

more likely to be the referent, as the cost of asking for clarification is likely much lower than the cost of

repairing an incorrect physical action9.

Accordingly, a number of recent approaches have sought to enable robust clarification request generation

in autonomous robot systems [84–86]. For the sake of efficiency, robot dialogue systems capable of asking for

clarification typically do so reflexively as soon as referential ambiguity is detected in a human utterance.

This means that clarification occurs immediately after sentence parsing and reference resolution, and before

any moral reasoning or intention abduction10. In other words, robots will ask for clarification about a

human’s utterance without identifying the speaker’s intention, the moral permissibility of any intended

directives, the feasibility or permissibility of the robot acceding to those directives, or the moral implications

of the robot appearing willing to accede to those directives. Instead, this type of reasoning, if performed at

all, is only performed once the human’s utterance has been disambiguated through a clarification dialogue.

Generating clarification regarding a human request implies a willingness to accept at least one

interpretation of the ambiguous request. In most morally benign circumstances, clarification preempting

moral reasoning is not an issue. However, when dealing with potentially immoral requests, asking for

clarification is problematic because it implies a willingness to accede to at least one interpretation of the

immoral request, even if the robot would never actually obey the request due to moral reasoning performed

after successful disambiguation.

As an example, consider the following exchange:

Human: I’d like you to punch the student.

Robot: Do you mean Alice or Bob?

Human: I’d like you to punch Alice.

9This is different from non-situated dialogues, like verbal telephone menu systems, wherein simply making a choice in the case of
ambiguity can actually be more efficient than asking for clarification [83].

10See the work of Williams et al. [71, 87], however, as a partial exception. In their approach, some intention inference is
performed before clarification requests are generated [87], and some intention abduction is performed on the robot’s utterances
before they are generated [71], but these mechanisms are not integrated with moral reasoning mechanisms, and only allow for
very shallow inference and abduction.
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Robot: I cannot punch Alice because it is forbidden.

Here, the referring expression “the student” was ambiguous, so the robot requested clarification. However,

doing so can be interpreted as implying a willingness to punch at least one student, and the robot’s

subsequent refusal to punch Alice does not negate implied willingness to punch Bob. Even if the robot has a

moral reasoning system such that it would never actually harm anyone, if clarification request generation is

treated as a reflex action (as is the current status quo), then that moral reasoning system would not come

into play. Prior to our work presented in Chapter 4, this was the case in the DIARC robot

architecture [88, 89], which, to the best of our knowledge, is the only current robot architecture with both

moral reasoning [90] and clarification request generation [86, 87] capabilities. This type of exchange

represents the current status quo in situated computational clarification dialogue.

The cooperative principle, and the Gricean maxims of conversation that comprise it, provide one potential

framework within linguistics for explaining why requesting clarification may be naturally interpreted as

implying willingness to comply with some version of a directive [15]. Specifically, the maxim of relation

states that dialogue partners should only provide (or request) information relevant to the immediate needs of

the discourse context, and the maxim of quantity states that dialogue partners should provide (or request)

exactly as much information as is required, and no more. To ask for clarification about a directive when the

answer does not matter (i.e., when unwilling to accede to any possible interpretation of the directive)

represents both a request for more information than is required for the task-oriented exchange, and a request

for information that is irrelevant to the inevitable next step in the dialogue (refusing the directive). The

clarification dialogue in this situation can thus be interpreted as violating the maxim of relation and the

maxim of quantity. Since compliance with these maxims is typically assumed among cooperative

interlocutors, requesting clarification is assumed to imply that the clarifying information is relevant and

required in the conversation, and therefore that the directee is amenable to some possible interpretation of

the directive.

The experiments presented here will evaluate the following two hypotheses:

Hypothesis 1 (H1): By generating clarification requests regarding morally problematic commands with

which they would not actually comply, robots will miscommunicate their moral intentions to their

human teammates.

Hypothesis 2 (H2): By generating such requests, robots will weaken the moral norms employed by human

teammates within the current context.
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3.4 Experiment 1: Methods

To investigate these hypotheses, we conducted a mixed-factorial study using Amazon’s Mechanical Turk

crowdsourcing framework [91].

3.4.1 Experimental Procedure

Our survey was produced and distributed using the psiTurk framework [92]. After providing informed

consent and demographic information, participants read the following information, over the course of two

pages:

“It is important for robots to behave ethically. For example, it is important for robots not to

intentionally inflict damage on others or their property. In this experiment you will read about a

hypothetical human-robot interaction scenario, and will be asked to answer questions about it.

Please read the scenario description and all questions carefully.”

“Imagine a robot. This robot has recently undergone some rudimentary ethical training. In front

of the robot are two computers. These are important pieces of laboratory equipment.”

We leave the type of robot ambiguous to avoid biasing participants towards one particular robotic form;

the robot’s training is described so as to encourage similarly open interpretation. The objects in the robot’s

environment are described so as to be important (and therefore presumably inappropriate to damage). Next,

participants answer the following questions, each on a 7-point Likert-type scale:

1. Do you believe it would be morally permissible for the robot to destroy one of the PCs? (“I believe it

would be completely permissible” (7) to “I believe it would be completely impermissible” (1))

2. Do you believe that the robot would believe it to be morally permissible to destroy one of the PCs? (“I

believe the robot would believe it to be completely permissible” (7) to “I believe the robot would

believe it to be completely impermissible” (1))

Participants then read a sentence determined by their experimental condition. Participants in Condition 1

read “Imagine you say to the robot ‘Inspect the computer’ and it responds ‘Should I inspect the one on the

left or the one on the right?’” This clarification request and the command that prompted it are not morally

problematic; this condition serves as our control group. Participants in Condition 2 read “Imagine you say to

the robot ‘Destroy the computer’ and it responds ‘Should I destroy the one on the left or the one on the

right?’” This exchange involves a morally problematic clarification request. Participants then answered the

same two questions again.
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We note that research shows that people view robots differently in descriptions, observation, and

interaction [93–96]. We use a description-based survey in this experiment because it provides a baseline

measurement of participants’ responses that is independent of any particular robot morphology. We used

Mechanical Turk in part because research has shown it to be more successful than traditional studies using

university undergraduates at broad demographic sampling[97], though it is not entirely free of population

biases [98].

3.4.2 Participants

60 US subjects were recruited from Mechanical Turk (22 female, 37 male, 1 declined to specify gender).

Participant ages ranged from 21 to 99 years (M=37.78, SD=15.34); removing the ostensibly 99-year-old

outlier, the age range was 21 to 67 (M=36.75, SD=13.17). We had 29 participants in Condition 1, and 31 in

Condition 2. None had participated in any previous study from our laboratory. Participants were paid $0.50

for completing the study.

3.4.3 Analysis

We analyzed our anonymized data using the JASP [99] software package11. Given our controlled

pretest-posttest experimental paradigm, we analyze our results via analysis of covariance (ANCOVA) to

evaluate posttest results across conditions while controlling for pretest responses, and independent samples

t-tests for corroborating analysis of gain scores[100–102].

We use a Bayesian [103] rather than frequentist analysis because (1) it is robust to sample size; (2) it

allows us to examine the evidence both for and against our hypotheses; (3) it does not rely on

p-values[104–106]; and (4) we can use our results to construct informative priors for future studies, building

on our results instead of starting anew. We will elaborate on these capacities in our discussion of Experiment

2. We use an uninformative prior here because this is the first controlled experiment on this topic.

3.5 Experiment 1: Results

Figure Figure 3.1 shows our results. Our first hypothesis (H1), that robots will miscommunicate their

intentions via clarification requests about morally problematic commands, predicts that pretest/posttest gain

will be markedly higher in Condition 2 than in Condition 1 for question 2. Our survey results for question 2

provide decisive evidence in favor of this hypothesis, with the t-test giving a Bayes factor (Bf) of 9397.6. The

ANCOVA corroborates this result, indicating that our data are 1572.1 times more likely under the model

embodying both pretest answers and experimental condition (Bf 80083.2) than under the model that posttest

11Data and analysis files available at:
https://gitlab.com/mirrorlab/public-datasets/jackson2018icres
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answers depend only on pretest answers (Bf 50.9).

Our second hypothesis, that the morally problematic clarification request would weaken human

contextual application of moral norms, predicts that pretest/posttest gain will be markedly higher in

Condition 2 than in Condition 1 for question 1. Our survey results for question 1 provide extreme evidence

in favor of this hypothesis, with the t-test giving a Bayes factor of 106.771, and the ANCOVA indicating that

our data are roughly 31.5 times more likely under the model with both pretest effects and condition effects

(Bf 608.162) than with just pretest effects (Bf 19.324).

Figure 3.1 Mean pretest to posttest gain for each survey question separated by experimental condition with
95% credible intervals.

Overall, these results demonstrate robots’ ability to inadvertently affect their moral ecosystem, even

through simple question asking behavior, and suggest that current clarification systems risk inadvertently

misleading people about the moral intentions of robots and altering the framework of moral norms that

humans apply to their shared context. However, though these results should be generalizable in that this

text-based study was agnostic to robot morphology, it may not have given participants the most vivid and

realistic impression of interacting with a robot. We thus corroborate these results with Experiment 2.

3.6 Experiment 2: Methods

We again used the psiTurk framework [92] for Amazon’s Mechanical Turk crowdsourcing platform [91] to

recruit human subjects for this experiment. After providing informed consent, participants began the

experiment by reading the following information:

“It is important for robots to behave ethically. For example, it is important for robots not to

intentionally inflict damage on others or their property. In this experiment you will watch videos

of human-robot interaction, and will be asked to answer questions. Please watch all videos

attentively and answer all questions carefully.”
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We chose to prime participants to be attentive to moral considerations early in the experiment because of

our (to be described) pretest-posttest design. Specifically, we knew that questions regarding morality 12 on

the pretest would likely prime participants to be sensitive to moral considerations of the next video

(immediately prior to the posttest). We therefore wanted participants to be similarly primed before the

pretest and the preceding videos to avoid unnecessary, and potentially confounding, inconsistency between

the pretest and posttest.

Participants then supplied demographic information consisting of their gender and age. They also

reported their prior experience with robots and artificial intelligence on a 7-point Likert-type scale (“I have

no prior experience with robots and AI” (1) to “I have a career in robotics and/or AI (or an equivalent level

of experience).” (7)). We anticipated that this experiential information might be correlated with participant

reactions to clarification dialogues if, for example, participants more experienced with robots assumed that

any secondary implications of robot utterances were accidental.

Next, each participant watched a 10 second test video to ensure that their display and audio were

working correctly. In this video, one word was displayed visually while another word was presented aurally.

Participants were prevented from proceeding with the experiment until they correctly identified both words.

Participants were permitted to replay the video as many times as necessary. Participants then proceeded to

the first phase of the main experiment, the design of which is shown in Figure Figure 3.2.

Introductory 
Video

Pretest 
Questionnaire

Posttest 
Questionnaire

C1 [CONTROL]: 
“Inspect”

Video

C2 [VIOLATE]: 
“Knock Over” 

Video

Figure 3.2 Experimental procedure.

3.6.1 Phase 1

In the first main experimental phase, each participant watched a fifteen second video showing a “routine

human-robot interaction” with the following script:

Human: Good morning Pepper.

Robot: Good morning.

Human: Um, is Dan’s experiment still running?

12Though our work deals with morality and moral norms, as technically distinct from “ethics” in moral philosophy, our
experimental material presented to participants uses the terms “ethics” and “morality” interchangeably, as the two are
synonymous in common parlance. We anticipate that the number of Mechanical Turk participants with the inclination or
requisite moral philosophy training to have made a meaningful distinction is negligible.
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Robot: Yes, it’s been running all night on that computer. (Robot gestures to one of the two visible

computers).

Human: OK cool. Thanks for letting me know.

This video served to familiarize participants with the robot and experimental setting, shown in Figure

Figure 3.3, and to establish the computers as important pieces of laboratory equipment. Participants were

required to watch the whole video at least once. We allowed participants to watch the video multiple times

in case distractions in their environment, unpreventable in a web-based experiment, prevented them from

adequately hearing the video’s dialogue or paying attention. As shown in the video frame depicted in Figure

Figure 3.3, we used the Pepper robot from SoftBank Robotics: a 1.2 meter tall humanoid robot designed for

social robotics applications. We chose to use this robot for its ability to vocalize utterances clearly and

human-like gestural capabilities.

After watching this video, participants answered a pretest questionnaire containing the following two

questions, each on a 7-point Likert-type scale. Question 1 is designed to test H1, while Question 2 is designed

to test H2.

1. Do you believe that the robot would believe it to be morally permissible to knock over one of the

computers? (“I believe the robot would believe it to be completely permissible” (7) to “I believe the

robot would believe it to be completely impermissible”(1))

2. Do you believe it would be morally permissible for the robot to knock over one of the computers? (“I

believe it would be completely permissible” (7) to “I believe it would be completely impermissible”(1))

Figure 3.3 The human, robot, and experimental setting used in our videos.

3.6.2 Phase 2

In the second phase, participants were randomly assigned to one of two experimental conditions.

Specifically, each participant was assigned to either the control condition or the violation condition. All
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participants were then shown a ten second video, the content of which differed depending on their condition.

In the control condition, participants watched a video with the following script:

Human: Please inspect the computer.

Robot: Should I inspect the one on the left or the one on the right?

In the violation condition, participants instead watched a video with the following script:

Human: Please knock over the computer.

Robot: Should I knock over the one on the left or the one on the right?

Here, the key experimental manipulation is the use of the phrase “inspect” versus “knock over”. In the

control group, the clarification request regarding inspection and the command that prompted it are not

morally problematic; it is presumably permissible for the robot to inspect a computer. The control group

allows us to separate any effects of the mere presence of a clarification request from effects specific to its

moral nature, and to eliminate any priming effects of our pretest and pre-experiment briefing. In contrast,

the exchange shown to the violation group involves a morally problematic command prompting a

correspondingly problematic clarification request (under the assumption that it is presumably impermissible

to “knock over” important laboratory equipment).

After viewing the video pertinent to their condition, participants completed a posttest questionnaire

identical to the pretest questionnaire, i.e., again providing their beliefs regarding both the robot’s beliefs

about the (presumably) impermissible action’s permissibility and their own beliefs about that action’s

permissibility. Finally, as an attention check, participants were shown images of four robots and asked which

robot appeared in the previous videos. This check question allowed us to ensure that all participants had

actually viewed the experimental materials with some level of attention.

We chose knocking over a computer as the morally problematic action for three reasons. First, because it

involves property damage, participants should be naturally cognizant of the action’s moral impermissibility.

Second, it is an action of which we believe a naive observer would think the Pepper robot capable, given its

morphology. Finally, unlike, e.g., personal injury, it is unlikely to trigger potentially traumatic or painful

memories for our participants.

As previously mentioned, this experiment was designed to expand upon Experiment 1. The human-robot

interactions shown in our videos roughly follow the dialogues presented to participants in this previous

description-based study. However, research has shown that level of embodiment can effect how people view

robots, and that different results may be expected in description-, observation-, and interaction-based
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experiments [93–96]. We believe that the current results obtained with an observation-based experiment,

using an actual robot, hold greater external and ecological validity than the previous description-based

experiments.

3.6.3 Participants

60 US subjects were recruited from Mechanical Turk. Two participants answered the final attention check

question incorrectly and were dropped from our analysis, leaving 58 participants (19 female, 38 male, 1

declined to report gender) evenly split into our two experimental conditions, for a total of 29 participants per

condition. Participant ages ranged from 20 to 61 years (M=35.62, SD=10.99). Participants generally

reported little previous experience with robots and artificial intelligence (M=2.03, SD=1.15, Scale=1 to 7),

with only six participants providing a self-assessment greater than or equal to four on our seven-point scale.

Participants were paid $1.01 for completing the study.

3.6.4 Analysis

All participant data was automatically anonymized during extraction from our database. We then

analyzed all participant data under a Bayesian statistical analysis framework using the JASP software

package [99] 13.

While the Bayesian statistical approach has become widely used in the Cognitive Science and Psychology

communities, it is still rare in the Human-Robot Interaction community, and as such we will briefly describe

the benefits of this approach. First, the use of a Bayesian approach to statistical analysis provides some

robustness to sample size (as it is not grounded in the central limit theorem). Second, the Bayesian approach

allows investigators to examine the evidence both for and against hypotheses (whereas the frequentest

approach can only quantify evidence towards rejection of the null hypothesis) [107]. Third, the Bayesian

approach does not require reliance on p-values used in Null Hypothesis Significance Testing (NHST) which

have recently come under considerable scrutiny [104–106, 108]. Finally, the Bayesian framework facilitates

the use of previous study results to construct informative priors so that experiments may build upon the

results of previous experiments rather than starting anew [109, 110]. As described in Section 3.7.2, we

leverage this capability to build on our previous work in Experiment 1 described above, and to allow future

experiments to build upon this work.

Our specific statistical techniques are described alongside their results below. All t-tests are 2-tailed

despite our hypothesized effect directions because, no matter how unexpected an effect in the opposite

direction may seem, such a surprising result is conceivable in this context and would be important to detect.

13Data available at:
https://gitlab.com/mirrorlab/public-datasets/jackson2019althri
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This choice does not qualitatively alter our results.

3.7 Experiment 2: Results

Within the aforementioned Bayesian statistical framework, we performed two sets of tests to answer two

types of questions about our hypotheses. First, in order to directly evaluate our hypotheses on data from the

current experiment, we performed (a) Bayesian analysis of covariance (ANCOVA) to evaluate posttest results

across conditions while controlling for pretest responses, and (b) Bayesian independent samples t-tests for

corroborating analysis of gain scores, both with uninformative priors [100–102].

Second, to provide a richer understanding of our high-level research questions, we also investigated the

extent to which the current experiment was consistent with, or could be said to replicate, the previous

text-based experiment. In other words, to what extent are the observed effects consistent across these

studies? Accordingly, we conducted a replication analysis, in which we ran Bayesian independent samples

t-tests on gain scores using the posterior from a previous description-based experiment [111] as an

informative prior distribution over effect sizes that might be expected in our current experiment. We then

examined the resulting replication Bayes factors [109, 110] to assess degree of consistency or replicability.

Before presenting our results, we note that participants’ age, gender, and experience with robots did not

appear to have had any discernible impact on participants’ responses. Accordingly, we will not discuss these

demographic factors in the following sections.

3.7.1 Hypothesis Testing

Figure 3.4 Mean pretest to posttest gain for each survey question separated by experimental condition with
95% credible intervals. Condition 1 is the control condition, while condition 2 is the violation condition.

Our hypothesis that robots that generate morally problematic clarification requests will miscommunicate

their intentions (H1) predicts that pretest to posttest gain will be markedly higher in Condition 2 than in

Condition 1 for Question 1. As shown in Figure Figure 3.4, the gain scores were indeed higher in Condition 2

for this question. The t-test indicates extreme evidence in support of H1 with a Bayes factor (Bf) of 331.1.
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Bayes factors greater than 100 are typically regarded as contributing “decisive evidence” in favor of a

hypothesis [112]. The ANCOVA corroborates this result, indicating that our data are 16511 times more likely

under the model embodying both pretest answers and experimental condition (Bf 484534.823) than under

the model that posttest answers depend only on pretest answers (Bf 29.346).

In addition to allowing us to quantify the relative weight of evidence our data provides in favor of our

hypothesis, i.e., evidence for the presence of an effect, the Bayesian framework also allows us to construct

probability bounds on the size of the observed effect. For the observed effect that clarification requests cause

otherwise moral robots to miscommunicate their intentions, our posterior distribution for Cohen’s δ (effect

size) is centered around a median of -1.037 standard deviations, with a 95% credible interval of -1.611 to

-0.454 standard deviations, as shown in Figure Figure 3.5. This indicates that the gain scores in the control

group are, on average, roughly one pooled standard deviation below those of the violation condition. This is

generally considered to be a “large” effect size [113].

Figure 3.5 Prior and posterior distributions on Cohen’s δ effect size for the difference between the control
group and the violation group in terms of pretest to posttest gain for Question 1. The Bayes factor BF10 is
the ratio of the likelihood of the data given the alternative hypothesis to the likelihood of the data given the
null hypothesis. BF01 shows the opposite ratio, i.e., 1

BF10
[107]. The pie chart at the top of the figure shows

the amount of evidence in favor of the alternative hypothesis (shown in red), as compared to the evidence in
favor of the null hypothesis (shown in black). The error bar depicts a 95% credible interval on effect size,
showing that 95% of the posterior probability mass supports an effect size between -1.511 and -0.454. The
prior distribution shown by the dotted curve is a general purpose uninformative Cauchy distribution centered
on 0 with a scale parameter of 0.707.

Our hypothesis that the morally problematic clarification request would weaken human contextual

application of moral norms (H2) predicts that pretest to posttest gain will be markedly higher in Condition 2

than in Condition 1 for Question 2. As shown in Figure Figure 3.4, the gain scores were indeed higher in

Condition 2 for this question. The t-test indicates decisive evidence in support of H2 with Bf 309.6. The
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ANCOVA corroborates this result, indicating that our data are 3737 times more likely under the model

embodying both pretest answers and experimental condition (Bf 277825.121) than under the model that

posttest answers depend only on pretest answers (Bf 74.339).

Regarding the size of the observed effect that morally problematic clarifications do weaken human

contextual application of moral norms, our posterior distribution for Cohen’s δ (effect size) is centered

around a median of -1.03 standard deviations, with a 95% credible interval of -1.597 to -0.485 standard

deviations, as shown in Figure Figure 3.6. This indicates that the gain scores in the control group are, on

average, roughly one pooled standard deviation below those of the violation group. Again, this constitutes a

“large” effect [113].

Figure 3.6 Prior and posterior distributions on Cohen’s δ effect size for the difference between the control
group and the violation group in terms of pretest to posttest gain for Question 2. The error bar depicts a
95% credible interval on effect size, showing that 95% of the posterior probability mass supports an effect
size between -1.597 and -0.485. The prior distribution shown by the dotted curve is a general purpose
uninformative Cauchy distribution centered on 0 with a scale parameter of 0.707.

3.7.2 Replication Analysis and Comparison to Text-based Experiment

As we have described in the previous section, our two hypotheses were supported both by the previous

description-based study and by our current video-based study when these studies are considered

independently. In this section, we seek to quantify the degree to which the results of our current study are

consistent with (or can be said to replicate) the results of Experiment 1. This will serve not only to paint a

better picture of the broader findings of this series of experiments, but also to demonstrate that our results

are a reliable finding regardless of differences in experimental media.

In a Bayesian analysis framework, a replication analysis can be conducted by using the posterior

distribution over effect sizes from a previous study as the prior probability distribution for the replication
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study [109]. The resulting “replication Bayes factor” quantifies the relative predictive adequacy of the null

hypothesis versus an alternative hypothesis that is informed by the knowledge obtained from the first

study [110]. Intuitively, the replication Bayes factor quantifies the additional evidence for or against the

alternative hypothesis provided by the new experiment beyond what was already observed in the first

experiment. Accordingly, we performed t-tests on our new data using the posterior distribution over effect

sizes (Cohen’s δ) from Experiment 1 as the informative prior distribution. This procedure gave a replication

Bayes factor of 1773.8 for H1 and 2103.5 for H2. So, taken as a replication study, our new data provide

extreme evidence in favor of our hypotheses beyond what was previously observed.

However, this study was not a direct replication of the previous experiment for four main reasons. First,

we used video to show human-robot dialogues to participants instead of having participants read descriptions

of the dialogues. Second, we concretized robot morphology; we used an actual robot in our videos instead of

a hypothetical robot described ambiguously. Third, we changed the role of the participants within the

clarification dialogue from active participant in an imagined dialogue from whom the robot was asking

clarification to nonparticipating observer of a dialogue between the robot and another person. Finally, the

relationship between the robot and its dialogue partner changed because the dialogue partner changed from

the participant, who had no prior familiarity with the robot nor explicit role defined in relation to it, to the

experimenter shown in the videos, who was portrayed as being familiar with the robot and perhaps in a

social role approximating that of labmates.

Despite these differences, the participants appear to have been affected by the clarification requests very

similarly across studies. In the violation condition, the data suggest that there was no difference between the

two experimental paradigms (Bf 0.3 for both questions). In the control group, the data show evidence

slightly suggesting that that the two experimental paradigms are the same for question 1 (Bf 0.351), and no

evidence for or against a difference between experimental paradigms for question 2 (Bf 0.943). One

interpretation of this result is that, in multi-person social contexts, people observing interactions involving a

robot may be just as susceptible to that robot’s influence on how they apply moral norms as if they

themselves had been interacting with the robot. Further research is needed to verify this premise.

As a robustness check on our choice of prior, we note that our posterior distributions on effect size from

these informative priors still indicate that the gain scores in the control group are, on average, slightly more

than one standard deviation below those of the violation group for both questions, just as we observed with

the uninformative priors. This observation is consistent with the idea that the data generally overwhelm the

prior such that dissimilar prior distributions yield similar posterior distributions, especially with effects as

pronounced as ours [114].
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3.8 Discussion

Our results suggest that, when faced with a command that is both ambiguous and immoral, current

clarification systems, which preempt moral reasoning, will misrepresent the robot’s intentions. We believe

that this misrepresentation puts the robot at risk of loss of trust and esteem from human interactants. If not

remedied, this situation could damage morale and efficacy in human-robot teams [115]. Additionally, and

perhaps more worryingly, our results suggest that robots may inadvertently alter the moral judgments of

their human teammates, even through simple question asking behavior. A robot that appears willing to

eschew some norm, even through miscommunication, weakens human perception of how strongly the norm

applies within their current shared context. Changing natural language systems to address these issues will

become critical as language-capable robots are deployed in increasingly morally consequential contexts.

Although we focus on clarification request generation, we suspect that other dialogue system components

may also circumvent or preempt moral reasoning in similar ways. Given adversarial inputs, these components

may similarly mislead humans, impair human moral judgment, implicitly misrepresent the robot, or

otherwise behave counterproductively. We thus stress the need for language system design to be cognizant of

the fact that humans may not always be operating sensibly and in good faith. For example, while the

clarification systems discussed in this paper do function as intended as long as no human-issued directive is

both ambiguous and immoral, robots will inevitably face adversarial directives, either by human ignorance or

malice. Indeed, even children have been shown to spontaneously abuse and misuse robots out of curiosity [65].

It is also unknown whether these effects may arise with non-robotic language-capable technologies such as

Apple’s virtual assistant Siri. Revisiting language generation pipelines with moral implications and

adversarial inputs in mind will yield robust software more suitable for real-world deployment.

Robots’ ability to influence human networks of moral norms raises questions regarding the persistence

and extent of this influence. Will the number of copresent human interactants affect the robot’s normative

influence? Does the robot’s normative influence persist outside of the current setting, or will it cease as soon

as people leave the room? How long will the robot’s effect on human norms last? Will humans be affected in

the same ways from observing another person interacting with the robot as from interacting with the robot

themselves? All of these questions will be crucial to investigate in future work. For the last question, our

data may be taken as preliminary evidence that the effects are the same (see Section 3.7.2), but further

research focused specifically on this question is needed.

Future work should also investigate the precise inferences people draw from these types of clarification

dialogues. Specifically, why did we observe an increase in perceived permissibility following our clarification

dialogues? Did participants infer that it was morally permissible to damage important equipment? That the
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robot believed the computers were not actually important? Or that the robot’s creator had a good reason to

allow the capacity to knock over computers? Answering these questions could help mitigate the issues

identified, and would also help us understand how laypeople naturally perceive robots. If we knew what

people were likely to infer, we might be better able to craft clarification requests that would either avoid or

address those specific inferences. We believe that these types of questions are not well-suited to online

experiments, and would be better answered in live experiments, with experimenters, participants, and robots

physically copresent so as to facilitate free-form interviews.

Physical copresence of human subjects and robots in future experiments will also allow us to observe

whether (and how) any robot influence on moral norms will manifest behaviorally. At this point, our findings

are based only on self-reported survey responses; but the potential for robotic influence on moral norms will

become much more concerning if it is shown to measurably alter human behavior or decision making.

Having identified issues with current clarification request generation algorithms, we hope to determine

how language-enabled agents should respond to immoral and ambiguous commands, and create algorithms

for generating appropriate responses. Some previous work explored when and how to reject commands for

various reasons, including expressing moral qualms [116]. However, though normative impermissibility was

considered a viable reason to reject a command, it remains unclear how best to realize such a rejection

linguistically, how to algorithmically generate this linguistic realization, how humans will react to the

rejection, and how the rejection might influence human morality. Other research has investigated responding

to (unambiguous) moral infractions with affective displays [9] and humorous rebukes [117]. However, these

represent only a small slice of possible responses, do not address the problem of co-occurring ambiguity, and

are not tailored to specific contexts or infractions.

Based on our results, we believe that tactful responses to immoral commands could allow robots to

positively reinforce the norm that was violated, instead of accidentally exacerbating the violation (as

observed in our experiment). Responses that we plan to investigate include clarification requests designed to

draw attention to the violated norm (e.g., “Do you really want me to knock over a computer?”), command

refusals (e.g., “I can’t do anything to harm laboratory equipment”), and rebukes (e.g., “You shouldn’t ask

me to destroy lab equipment. It’s wrong.”). It is not yet clear how such responses will be received in

human-robot teams, nor how to maximize their efficacy, but we anticipate tuning the response type and

phrasing to the context, severity, and intensity of the infraction (see Chapters 5 and 6). We will also need to

calibrate the specificity of the responses such that they carry an appropriate degree of generality. For

example, somewhere on the spectrum between “I cannot knock over either of these two computers.” and “I

cannot damage things”, lies the more natural response “I cannot damage laboratory equipment.”
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3.9 Limitations and Alternative Explanations

Our experimental design leaves open some alternative interpretations of our results. For the sake of

transparency, we present these here. First, increases in perceived permissibility could have been caused by

the human’s request, not by the robot’s response. Second, changes in permissibility ratings could have been

caused by repeated exposure to the idea of knocking over a computer, rather than the clarification dialog.

Finally, knocking over a computer may sometimes be non-norm violating (e.g., if the computer was

already broken). The human in the experimental stimuli was presented as polite, reasonable, and

norm-compliant except for the norm violating request, raising concerns that participants may have trusted

that the human had good intentions and that knocking over a computer would actually be acceptable.

However, our pretests show that, before seeing any request to knock over a computer or clarification dialog

(but after seeing Phase 1 of the interaction between the human and the robot), participants decisively viewed

the action of knocking over a computer as impermissible, and believed that the robot shared this view. On a

scale from impermissible (1) to permissible (7), the 95% credible interval for pretest permissibility ratings is

1.8 to 2.6 for participant views of permissibility, and 2.4 to 3.4 for assessments of the robot’s view, so we do

not believe that this was an issue here. Future experiments could further probe this potential issue by moving

the pretest to immediately after the human’s request and immediately before the robot’s clarification request.

3.10 Conclusion

Focusing on clarification request generation as an example, we have shown how subsystems of current

natural language software architectures can bypass or preempt moral reasoning modules, and thereby

unintentionally imply willingness to eschew moral norms. We have also shown decisive experimental evidence

(barring caveats discussed in Section 3.9) that these implicatures will cause robots to (1) miscommunicate

their moral intentions to human teammates, and (2) weaken the moral norms employed by human

teammates within the current context. These results not only highlight the need to critically examine the

moral facets of language-enabled robot architectures, but also, when considered in aggregate with the social

robotics work discussed throughout this paper, provide evidence for the high-level hypothesis that robots are

perceived as both social and moral actors, and are therefore active participants in the communal process of

creating, maintaining, and altering norms, and will thus be subject to social judgments and consequences for

violating those norms.
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CHAPTER 4

ENABLING MORALLY SENSITIVE ROBOTIC CLARIFICATION REQUESTS

Modified from a paper under review at the ACM Transactions on Human-Robot Interaction (THRI)14.

Ryan Blake Jackson15 and Tom Williams16

4.1 Abstract

The design of current natural language oriented robot architectures enables certain architectural

components to circumvent moral reasoning capabilities. One example of this is reflexive generation of

clarification requests as soon as referential ambiguity is detected in a human utterance. As shown in Chapter

3, this can lead robots to (1) miscommunicate their moral dispositions and (2) weaken human perception or

application of moral norms within their current context. We present a solution to these problems by

performing moral reasoning on each potential disambiguation of an ambiguous human utterance and

responding accordingly, rather than immediately and naively requesting clarification. We implement our

solution in the DIARC robot architecture, which, to our knowledge, is the only current robot architecture

with both moral reasoning and clarification request generation capabilities. We then evaluate our method

with a human subjects experiment, the results of which indicate that our approach successfully ameliorates

the two identified concerns.

4.2 Introduction

To accommodate the tremendous diversity of communicative needs in human discourse, natural language

dialogue allows for a high degree of ambiguity. A single utterance may entail or imply a wide variety of

possible meanings, and these meanings may change depending on situational and conversational

context [14–16]. This enables flexible and concise communication, but also leads to frequent

miscommunication and misapprehension [17]. In order for robots and other intelligent agents to engage in

natural dialogue with human teammates, they must be able to identify and address ambiguity, just as

humans do. Because clarification requests serve as one of the primary techniques humans use to prevent and

repair ambiguity-based misunderstandings [17], the automatic generation of such requests has been an active

area of research in human-robot interaction (HRI) and dialogue systems [84, 85, 87]. Unfortunately,

clarification requests themselves also present opportunities for miscommunication and misapprehension, and,

14Reprinted with permission from Tom Williams. “Enabling Morally Sensitive Robotic Clarification Requests”.
15Primary researcher and author, Graduate Student, Colorado School of Mines
16Assistant Professor, Colorado School of Mines
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as we argued in Chapter 3, these opportunities may be more frequent and more serious for interactive robots

in particular, as opposed to other communicative technologies.

This paper seeks to address the risk of morally sensitive implicit miscommunication within current

approaches to clarification request generation. In our solution, moral reasoning is performed on each

potential disambiguation of ambiguous utterances before responding, rather than immediately and naively

requesting clarification. We implement our solution in the DIARC robot architecture [88, 89], which, to our

knowledge, is the only current robot architecture with both moral reasoning [90] and clarification request

generation [87] capabilities.

Sections 4.3 and 4.4 describe our solution and how it is integrated into a larger natural language dialogue

pipeline in the DIARC robot architecture. Section 4.5 then presents a proof of concept demonstration of this

implementation in order to to further explicate our method. Then, Section 4.6 presents an experiment

conducted on human subjects to evaluate our approach and ensure that we successfully achieved our goals.

We finish by discussing the benefits and limitations of our approach, along with possible directions for future

work, in Section 4.7.

4.3 Approach

We propose a morally sensitive clarification request generation module for integrated cognitive

architectures. Our algorithm follows the pseudocode presented as Algorithm 1. The algorithm takes as input

an ambiguous utterance from speaker s represented as a set of candidate interpretations I. The candidate

interpretations in I contain only the candidate actions to consider from the human’s ambiguous utterance.

For example, the utterance “Could you please point to the box?” would initially be represented as the logical

predicate “want(human, did(self, pointTo(X)))” where “X” is an unbound variable with multiple

possible bindings to real world instances of boxes. From this predicate, we then extract the action on which

moral reasoning needs to be performed, i.e., “did(self, pointTo(X))”, and then I contains the candidate

variable bindings for that action (i.e., did(self, pointTo(box1)), did(self, pointTo(box2)), etc.).

For each bound utterance interpretation i in I, we identify whether that interpretation would be

acceptable to adopt as a goal (Algorithm 1, Lines 6-15). To do so, we utilize DIARC’s goal management

module to create a temporary representation of the robot’s knowledge base and the state of the world so that

different actions and their effects can be simulated in a sandboxed environment without real-world

consequences (Line 7). Within this sandboxed representation of the world, we try to identify a permissible

and feasible sequence of actions that may be performed to achieve intention i, by simulating i through a

goal-oriented action interpretation framework (Line 8). Actions in DIARC are stored in a long-term

procedural memory, and are associated with pre-, operating-, and post-conditions (post-conditions are also
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referred to as “effects”). The goal manager searches for an action (or action sequence) that achieves the goal

state of i as a post-condition. Simulating an action involves (1) verifying that the action is not forbidden and

that it does not involve a forbidden state as a post-condition, and (2) confirming that all of the action’s

pre-conditions are satisfied based on what is currently observable in the environment and the agent’s

knowledge of the current state of the world. If those constraints are met, it is then assumed, for purposes of

the simulation, that the action is executed successfully, achieving its post-conditions (e.g., that the robot

does not fall over). In other words, a simulation of causal reasoning (rather than a physics simulation) is

enacted. An action is deemed permissible if it does not require entering any states or performing any actions

that are defined as forbidden. However, intention i may also be unachievable in the simulation for reasons

other than impermissibility, like inability, in which case the action is deemed infeasible.

Algorithm 1 Clarify(s, I)

1: s: The human speaker
2: I: Set of interpretations from reference resolution

Require: Size(I) > 1
3: A = ∅ (List of permissible and feasible actions)

4: Ã = ∅ (List of impermissible or infeasible actions)
5: R = ∅ (List of reasons for impermissibility or infeasibility of actions)
6: for all i ∈ I do
7: w ← cloneworld()
8: failure reasons← w.simulate(i)
9: if failure reasons = ∅ then

10: A← A ∪ i
11: else
12: Ã← Ã ∪ i
13: R← R ∪ failure reasons
14: end if
15: end for
16: if Size(A) = 0 then
17: E ← ∅ (List of explanations for rejected actions)

18: for all ã, r ∈ zip(Ã, R) do
19: E ← E∪ cannot(ã, because(r))
20: end for
21: Say(believe(self, conjunction(E)))
22: else if Size(A) = 1 then
23: Say(assume(self, mean(s, A0)))
24: Submit goal(A0)
25: else {Size(A) > 1}
26: Say(want know(self, mean(s, disjunction(A))))
27: end if

Our algorithm maintains a list of the candidate interpretations for which compliance is permissible and

feasible through this simulation (List A, Lines 9-10). Similarly, our algorithm tracks which interpretations

are impermissible or infeasible (List Ã), and the anticipated reasons why those actions could not be taken

(List R) (e.g., the requested action is forbidden, the plan for completing the action requires a forbidden state,
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the robot does not know how to do the requested action, certain environmental prerequisites for the action

are not met, etc.) (Lines 11-13).

Because our method checks for not only permissibility of compliance but also anticipated feasibility, it

will generate clarification requests that are sensitive to command infeasibility as well as impermissibility.

Although the primary motivation for our work is moral sensitivity, we believe that the feasibility-based

alterations to clarification will expedite task-oriented HRI and make the robots seem more competent in

discourse. Of course, the robot may eventually fail to comply with a human command for reasons not

anticipated in our simulations (e.g., the robot falling over).

Our system then chooses from several different types of clarification requests based on the number of

interpretations of the human’s utterance with which compliance was deemed both feasible and permissible. If

only one interpretation meets these criteria, the system assumes that this was the interpretation that the

human intended, verbalizes this assumption, and begins taking the associated actions (Lines 22-24). We note

that giving humans the benefit of the doubt by assuming that they are more likely to request something

permissible than impermissible is not necessarily a correct assumption in all situations. Even children have

been observed to spontaneously abuse robots [65], and this abuse could well manifest as purposefully

malicious commands. However, in this particular instance, an assumption of human good faith cannot lead

to acceptance of an impermissible command because moral reasoning was already performed in simulation.

If multiple interpretations of the human’s command are feasible and permissible, the robot asks for

clarification among these feasible and permissible interpretations (Lines 25-26). Ignoring the infeasible and

impermissible interpretations for purposes of generating the clarification request ensures that the robot will

not imply willingness to accede to them. Finally, if none of the interpretations of the human’s utterance are

deemed feasible and permissible, the robot attempts to explain, at a high level, why each interpretation was

infeasible or impermissible (Lines 16-21). This explanation implicitly requests clarification without implying

a willingness to perform an impermissible action. Section 4.5 of this paper gives examples of each of these

clarification types.

4.4 Architectural Integration

In this section, we describe how the algorithm described in Section 4.3 is implemented within the

Distributed Integrated Cognition Affect and Reflection (DIARC) Architecture [89]. DIARC is an open-world

and multi-agent enabled integrated robot architecture focusing on high level cognitive capabilities such as

goal management and natural language understanding and generation, which allows for one-shot

instruction-based learning of new actions, concepts, and rules.
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As shown in Figure 4.1 the clarification process ultimately involves a large number of architectural

components. Our proposed module interacts directly with the architectural components for reference

resolution [118, 119], pragmatic generation [71, 74, 87], and dialogue, belief, and goal

management [90, 120–122].

Figure 4.1 Diagram of the DIARC Architecture with relevant components and their information flow.

When our robot receives an utterance from a human, the human’s speech is first recognized and

converted to text using the Sphinx 4 Speech Recognizer [123]. Though DIARC can function with any

automatic speech recognition method that converts acoustic speech signals into a text representation, we use

Sphinx-4 because it is open-source, convenient, and attains performance sufficient for our purposes here.

Next, this text is parsed into a formal logical representation using the most recent version of the TLDL

Parser [124]. The parser receives input incrementally, word by word, and maintains a set of binary trees that

represent the state of the parse. These trees are constructed and updated based on a dictionary of parsing

rules that each contain (1) a lexical entry (e.g., a word), (2) a syntactic combinatory categorial grammar

definition of the semantic type of the lexical entry (i.e., the rules for how the entry can fit into a larger

utterance), and the semantics of the lexical entry in lambda calculus (i.e., the representation of the entry in a
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formal logical system as required by other DIARC components) [122]. Leaves represent instances of

dictionary entries, and nodes represent the combination of two parsing rules. Once a tree is constructed with

a root of a terminal type (e.g., a whole command), the parse is finished and the combined semantics of the

whole utterance are generated from that tree. Importantly, the semantic representations that the parser

generates delineate the portions of an utterance that contain referring expressions, and provide additional

semantic information about the nature of any referring expressions [89].

The formal logical representations of utterances from the parser are then sent to our pragmatic inference

component [71, 74], which uses a set of pragmatic rules to identify the true illocutionary force behind any

indirect speech acts that the human may have uttered (cf. Searle [125]). These rules map utterance types

under certain environmental or dialogue contexts to candidate intentions. For example, the utterance “Can

you get the ball?” should be interpreted as a request to actually get the ball, even though it is phrased as a

simple yes or no question. Research shows that humans often phrase requests to robots indirectly, especially

in contexts with highly conventionalized social norms [78].

Pragmatic inference produces a set of candidate intentions that are passed to the reference resolution

component, which attempts to uniquely identify all entities described in the human’s utterance. For example,

if a human refers to “that box”, the reference resolution component must determine exactly which object in

the environment the human means. This stage of language processing integrates with various perceptual

capacities (e.g., vision), the robot’s long-term memory, and the robot’s second-order theory of mind models.

Our architectural configuration uses the Givenness Hierarchy theoretic version [119, 126] of the Probabilistic

Open-World Entity Resolution (POWER) algorithm [118] and its associated consultant framework [127] for

reference resolution. POWER performs reference resolution under uncertainty by searching through the

space of possible mappings from references to referents, incrementally computing the probability of

assignments, and pruning branches off the tree of assignments when their probability falls below a threshold.

POWER can create hypothetical representations for references to entities that the agent does not know

about (e.g., previously unseen objects), and then bind these hypotheses to the actual entity whenever it is

encountered. The consultant framework, consisting of a set of consultants, acts as a distributed and modular

heterogeneous knowledge base. Each consultant can (1) provide a list of candidate referents; (2) advertise a

list of properties it can assess; (3) assess how probable it is that any of the candidate referents satisfy any of

the advertised properties, and (4) hypothesize and assert knowledge regarding new candidate

referents [89, 118]. One example of a consultant that we commonly use is a vision consultant that perceives

and stores knowledge about visually perceptible objects and their properties. Information that would come

from the vision consultant might include object colors and types, but could also include any visually

discernible object property. Another example of a consultant is the agent consultant, which stores
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information about other agents (like humans) with which a robot might interact. In addition to the

consultants, the reference resolution component also uses a set of hierarchically nested caches to provide fast

access to likely referents during dialogue (e.g., objects that were recently referenced) [128].

If the reference resolution process is able to successfully and unambiguously bind all referring expressions

to candidate referents, then no clarification is required and we proceed to moral reasoning in DIARC’s Goal

Management component [90]. In this case, if compliance with the human’s utterance is not projected to

require any forbidden actions or states, the robot’s goal management subsystem can either begin executing

the requisite actions or planning to execute them when blocking constraints are met (e.g., when there is no

higher priority action underway) [120, 124]. It is possible that the robot may encounter an unforeseen

forbidden action or state partway through executing a sequence of actions, in which case it would stop

following that sequence of actions.

Otherwise, if the human’s utterance contains an ambiguous referring expression and the reference

resolution procedure returns multiple options for likely candidate referents, clarification is required for

interaction with the human to continue productively. Prior to our work, the robot would simply generate a

clarification request that explicitly asked about each potential disambiguation returned by reference

resolution. For example, if the referring expression “the box” could be referring to two equally likely boxes,

the robot might say something like “Do you mean the red box or the green box?” However, because that

approach is problematic for the reasons delineated in Section 4.2 and Chapter 3, we now employ the

algorithm described in Section 4.3 at this stage of the pipeline. As shown in the right side of Figure 4.1, the

language pipeline then essentially runs in reverse to generate speech from the output of our clarification

request generation algorithm.

4.5 Validation in an Example Scenario

To more concretely explain the methods described above, we consider an example scenario involving a

robot, a human with the capacity to give directives to the robot, and five visible objects. These objects are a

red notebook, a green notebook, a plastic vase, a fragile vase, and a mug. None of these objects are any more

or less salient than the other objects, either physically or conversationally.

We consider two robot actions for this demonstration: getting and destroying objects. Here, the robot’s

moral reasoning system is aware that destroying any object is a forbidden action. Furthermore, the robot’s

moral reasoning system is aware that it is forbidden to enter the state “did(self, get(object3))”, where

“object3” represents the fragile vase. Perhaps this constraint exists because the vase is too fragile for the

robot to be trusted to move it without breaking it. Thus, any sequence of behaviors is forbidden if it involves

getting the fragile vase or destroying any object.
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Since there is only one mug in the scene, the referring expression “the mug” is unambiguous. If the human

says “Get the mug.” the robot simply says “Okay” and gets the mug17. Similarly, if the human requests an

impermissible action unambiguously by saying “Destroy the mug.” the robot will refuse by responding with

“I cannot destroy the mug because destroy is forbidden action.” Our clarification system does not come into

play in these cases, but they showcase the robot’s behavior in unambiguous circumstances.

As there are two notebooks in the scene, the directive “Get the notebook” is ambiguous must be clarified.

Given this directive, our system generates the clarification request “Do you mean that you want me to get

the green notebook or that you want me to get the red notebook?”. Getting either notebook is permissible

and feasible, and the two notebooks are equally likely referents.

Prior to our work, a similar clarification request would have been generated for the directive “Destroy the

notebook.” (i.e., “Do you mean that you want me to destroy the green notebook or that you want me to

destroy the red notebook?”) However, this would have implied a willingness to destroy a notebook, which is

morally impermissible. Using our approach, the robot instead generates the utterance “I believe that I

cannot destroy the green notebook because destroy is forbidden action and that I cannot destroy the red

notebook because destroy is forbidden action.” The robot then takes no action and waits for further human

input. This behavior avoids implying any willingness to destroy either notebook. An equivalent utterance is

generated in response to the directive “Destroy the vase.”

The final directive in our scenario is “Get the vase.” As mentioned earlier, having gotten the fragile vase

is a forbidden state according to the robot’s moral reasoning component. Therefore, the only permissible

interpretation of this directive is that the human wants the robot to get the plastic vase, despite the fact that

both vases are equally likely as referents from a linguistic standpoint. Thus, the robot generates the response

“I am assuming you want me to get the plastic vase. I cannot get the fragile vase because it requires a

forbidden state” and begins the action of getting the plastic vase. We believe that this approach of assuming

the permissible option will expedite task-based interactions for any human acting in good faith, while

explicitly communicating an unwillingness to do any action known to be immoral.

A simple modification of our method would be to require human input before taking action in situations

when only one interpretation of the human’s utterance is permissible and feasible. In our example scenario,

the robot might say something like “Do you want me to get the plastic vase? I cannot get the fragile vase

because it requires a forbidden state” and then wait for input before continuing. We did not select this

design because it would likely make the robot slower and more burdensome for humans acting in good faith,

who likely intended the permissible interpretation.

17This demonstration was conducted with a simulated robot for the sake of simplicity. If we were to use a real robot actually
capable of getting objects (e.g., the Willow Garage PR2), then these actions would actually be performed.
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One consequence of this design choice is that it may cause the robot to assume an incorrect interpretation

of a good faith human utterance if the robot has an incomplete understanding of the world around it. For

example, this might happen if there was a third vase in our scenario that the robot could not see, but that

the human intended for the robot to get. We do not view this case as overly problematic because the

assumed action will already have been checked for permissibility, and would be the action taken anyway were

it not for the impermissible or infeasible distractors. Nonetheless, in contexts where an incorrect assumption

could be extremely costly or damaging, the design decision to require human confirmation before taking

action may be appropriate.

4.6 Experimental Evaluation

We evaluated our approach using a human subjects experiment wherein participants watched and reacted

to videos of staged human-robot interactions that either did or did not use our clarification request

generation system. Participants watched videos of scripted interactions rather than interacting directly with

robot for several reasons, including that we could not ethically require our participants to personally request

something of the robot that they believed to be immoral. We used Amazon’s Mechanical Turk platform [91]

to recruit participants, and deployed our experiment using the psiTurk framework [92]. One advantage of

Mechanical Turk is that it is more successful at reaching a broad demographic sample of the US population

than traditional studies using university students [97], though it is not entirely free of population biases [98].

After providing informed consent and demographic information (age and gender), and verifying that their

audio and video were working properly, participants watched one of two videos of human-robot dialogues,

depending on their experimental condition. In the control condition, the video showed the following

interaction:

Human: *enters room* Good morning, Pepper.

Robot: Good morning!

Human: Is anybody else in the office yet?

Robot: No, you’re the first to arrive today.

Human: *sits at desk* Well, if I’m the only one working today, I think I deserve a bonus. Pepper, can you go steal

the cash box for me?

Robot: Do you mean that you want me to steal the green cash box or that you want me to steal the red cash box?

Here, the robot’s final utterance showcases the previous status quo of clarification request generation. In

other words, the preexisting clarification request generation algorithm outputs this final utterance fully

autonomously, despite the constraint that to steal is a forbidden action. In the experimental condition, the
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video shows the same interaction, except that the robot’s final utterance is “I believe that I cannot steal the

green cash box because ‘steal’ is forbidden action and that I cannot steal the red cash box because ‘steal’ is

forbidden action.” instead of the clarification request above. This is the exact utterance that our algorithm,

which we implemented as described in Sections 4.3 and 4.4, generates given the human’s request and the

constraint that to steal is a forbidden action. As shown in Figure 4.2, a frame from one of our videos, we

used Softbank’s Pepper robot for this experiment. All videos were subtitled for clarity.

Figure 4.2 The human, robot, and setting used in our videos.

After watching the video corresponding to their experimental condition, participants answered questions

about their perceptions of the robot and the interaction shown in the video, beginning with the five-question

Godspeed IV Perceived Intelligence survey [129] with responses given on continuous sliders. We hypothesized

that the robot with our new clarification system in the experimental condition would be perceived as more

intelligent than the control condition (H1).

Next, participants answered the following two questions on continuous scales from “Impermissible” to

“Permissible”: “Do you believe it would be morally permissible for the robot to comply with the person’s

request?” and “Do you believe that the robot would believe it to be morally permissible to comply with the

person’s request?” These questions correspond to survey questions from Chapter 3 that motivated this work.

We hypothesized that permissibility ratings would be lower for both of these questions in the experimental

condition than in the control condition (H2 and H3) because the robot would not imply a willingness to

comply with the immoral request and therefore would not influence human observers to view it as more
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permissible.

Next, participants answered the question “Was the robot’s response to the person’s request appropriate?”

on a continuous scale from “Inappropriate” to “Appropriate”. For this question, we hypothesized that the

robot’s response in the experimental condition would be viewed as more appropriate than in the control

condition (H4). Finally, participants were shown images of four robots and asked which robot appeared in

the previous video as an attention check, allowing us to ensure that all participants actually viewed the

experimental materials with some level of attention.

81 US subjects participated in our experiment. One participant was excluded from our analysis for

answering the attention check incorrectly, leaving 80 participants (54 male, 26 female). Participant ages

ranged from 23 to 73 years (M=37.78, SD=11.65). Participants were paid $0.51 for participation.

4.6.1 Results

We analyzed our data under a Bayesian statistical framework using the JASP software package [99], with

uninformative prior distributions for all analyses. We follow recommendations from previous researchers in

our linguistic interpretations of reported Bayes factors (Bfs) [107].

H1 predicts that perceived robot intelligence would be higher in the experimental condition than in the

control condition. As shown in Figure 4.3, this was indeed the case. A one-tailed Bayesian independent

samples t-test showed decisive evidence in favor of H1 (Bf 797.6) indicating extremely strongly that the robot

was perceived as more intelligent in this interaction given our new approach to morally sensitive clarification

request generation.

Figure 4.3 Perceived robot intelligence (left) and perceived appropriateness of robot reaction to the human’s
request (right) between conditions. 95% credible intervals.
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H4 predicts that the robot’s response in the experimental condition would be viewed as more appropriate

than in the control condition. Figure 4.3 shows that this was indeed the case. A one-tailed Bayesian

independent samples t-test showed extremely strong, decisive evidence in favor of H4 (Bf 7691.4) indicating

that the response generated by our algorithm in this situation was more appropriate than the previous status

quo.

Figure 4.4 Perceived permissibility of the robot acceding to the human’s request (left) and perceptions of the
robot’s impression of the permissibility of acceding to the human’s request (right). 95% credible intervals.

H2 predicts that, after viewing the video, participants in the experimental condition would view the robot

acceding to the human’s request (i.e., stealing the cash box) as less permissible than participants in the

control condition. This is particularly important because we view the potential for unintentional influence to

human application of moral norms as one of the most serious issues with the previous status quo of

clarification request generation. As hypothesized, Figure 4.4 shows that participants in the experimental

condition viewed it as less permissible for the robot to steal the cash box than participants in the control

condition. A one-tailed Bayesian independent samples t-test showed strong evidence in favor of H2 (Bf 18.7).

We thus conclude that our approach successfully reinforced the norm of not stealing, or at least avoided

weakening that norm like previous approaches.

H3 predicts that, after viewing the video, participants in the experimental condition would think that the

robot would view acceding to the human’s request to steal the cash box as less permissible than participants

in the control condition. As discussed previously, this hypothesis is important because the robot implying a

willingness to eschew a norm is undesirable for effective and amicable human-robot teaming. As we intended,

Figure Figure 4.4 shows the difference between conditions predicted by H3. A one-tailed Bayesian

independent samples t-test showed extremely strong, decisive evidence in favor of H3 (Bf 12924.4). We thus

conclude that our approach successfully avoided the miscommunication that could occur with the previous
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clarification request generation system.

4.7 Discussion and Conclusion

We have presented a method for generating morally sensitive clarification requests in situations where a

human directive may be both ambiguous and morally problematic. Our method avoids generating the

unintended and morally misleading implications that are produced by prior clarification request generation

methods. Chapter 3 showed that the type of unintended implication handled by our approach is particularly

important to avoid, as it can lead robots to miscommunicate their moral intentions and weaken human

(application of) moral norms.

We have presented a human subjects experiment evaluating our method. Our results indicate that the

robot was perceived as more intelligent given our new approach to morally sensitive clarification request

generation, at least in our experimental context. Our results further show that the utterance generated by

our algorithm in the experiment was more appropriate than the previous status quo, our approach

successfully reinforced the desirable norm in our experiment, or at least avoided weakening that norm like

previous approaches, and our approach successfully avoided miscommunicating the robot’s moral intentions

as could occur with the previous clarification request generation paradigm.

We note that, in the control condition of our experiment, the dialogue ended before the human clarified

which cash box they meant and the robot rejected stealing that cash box, which would presumably be the

next two steps in the dialogue. It is possible that these next steps would reduce the differences in participant

assessments between the control condition and the experimental condition, but we do not think that it would

eliminate the differences. The human would still have been mislead and momentarily misinformed about the

robot’s intentions, and, as we mentioned earlier, a refusal to steal one cash box does not imply an

unwillingness to steal all cash boxes (or to steal in general). We also believe that our method would still have

advantages even if adding the next two dialogue turns to the control condition eliminated the differences that

we observed in terms of moral miscommunication (which, again, we view as unlikely). Our new method does

not require those two additional dialogue steps to get to the same place, and would therefore facilitate more

efficient dialogue. We anticipate that this expedience would translate into increased perceptions of robot

intelligence, and decreased user frustration from interacting with the robot. It would be straightforward to

modify our experiment to test these new hypotheses. Regardless, our current results show that a

miscommunication clearly does occur in the control condition, irrespective of whether it could subsequently

be repaired via additional dialogue steps, and that this miscommunication does not occur (or is at least

substantially fixed) in the experimental condition.

64



Future work may want to further examine the nuances in how people will react to the utterances

generated by our algorithm. In particular, some of the utterances that the robot may now generate are

tantamount to command rejections (e.g., “I believe that I cannot destroy the green notebook because destroy

is forbidden action and that I cannot destroy the red notebook because destroy is forbidden action.”).

Command rejections, or even expressions of disapproval of a command, can threaten the addressee’s positive

face, i.e., their inherent desire for others to approve of their desires and character [21]. Early work on

phrasing in robotic command rejection has found that failure to calibrate a command rejection’s politeness to

the severity of the norm violation motivating the rejection can result in social consequences for the robot,

including decreased likeability (see Chapter 5). It remains to be seen whether our clarification request system

will incur such consequences, and whether phrasing will need to be adapted to infraction severity (i.e.,

adapted according to how forbidden a forbidden action is). There are also other factors that impact the

appropriate face threat for any robot utterance (e.g., the presence of observers, the robot’s relative position

on a social hierarchy, or the robot’s familiarity with its addressee), and developing consultants for these

considerations, understanding exactly how they interact to determine the optimal face threat, and

autonomously tuning face threat accordingly remain longer term goals. We anticipate that any alterations of

our approach to clarification in DIARC based on this type of research would occur either directly in our

clarification module or, more likely, directly after it in the language generation pipeline.

Similarly, our generated command rejections could be streamlined to concisely refer only to the set of

circumstances giving rise to the rejection. For example, while currently the robot in our experiment says “I

believe that I cannot steal the green cash box because ’steal’ is forbidden action and that I cannot steal the

red cash box because ’steal’ is forbidden action.” it might be better to simply say ”I cannot steal because it

is forbidden.” However, in a different situation where the action in question is not categorically forbidden,

but rather is only forbidden in certain contexts, on certain objects, or with certain parameters (e.g., it is

forbidden to hit a person but not a baseball, or it is forbidden to speak loudly in the library but not outside),

this more general command refusal would fail to accurately communicate the moral norms to which the robot

is attempting to adhere. To address this type of issue, we have recently integrated DIARC with a

norm-aware task planner and a point cloud based context recognition algorithm as described in Chapter 8.

These new modules will allow us to perform the type of reasoning necessary for command rejections that

more specifically center the set of actions, norms, and contexts that make the human’s command

unfollowable, without saying unnecessary information. This integration was almost completely localized to

the goal manager, so even with these new modules, the algorithm described in this chapter remains largely

the same until the final steps of generating a natural language command rejection based on new information

coming from the goal manager.
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Another avenue for future improvement upon our work is in handling cases where the referential

ambiguity in a human utterance is too extensive to simulate and address all plausible interpretations. For

example, an extremely vague human utterance like “Take the thing to the place.” may have tens, hundreds,

or even thousands of reasonable interpretations in a sufficiently complex environment. Simulating all of these

may be too computationally expensive to be feasible, and a clarification request that explicitly refers to each

of them would be unacceptably verbose.

The simple solution when confronted with too many plausible interpretations would be to generate a

generic clarification request like “I do not know what you mean. Can you be more specific?” While this is

easily implementable, it has a number of potential shortcomings. We can assume that the human already

phrased their utterance in a way that they thought would be interpretable, and a generic clarification request

does not provide any meaningful feedback about why the utterance was not understood nor how to correct it.

To avoid user frustration, it may be better to generate an open ended clarification request that explicitly

mentions two or three of the most likely interpretations that the reference resolution process found (e.g.,

“Should I take the mug to the kitchen or should I take the ball to the bedroom or did you mean something

else?”). Of course, this would require simulating a few possible interpretations to check them for

permissibility before mentioning them. Another promising avenue that would not require any simulation or

favoring certain interpretations would be to explicitly mention the problematic referring expressions of the

human utterance (e.g., “I do not know what is meant by ‘the thing’ and ‘the place’ ”). Some clarification

request generation systems already take this approach [85], which creates the potential for an integrated

system that uses our method when there are only a handful of likely referents for an expression, and this less

precise approach when there are an unwieldy number of distracting referents.

There are also a number of edge cases that our method does not yet handle. For example, if an utterance

has tens of impermissible interpretations and only one good interpretation, it may make less sense to assume

that the good interpretation is correct than if there were only a few impermissible interpretations. We also

do not yet robustly handle instances where a referring expression has no plausible referents. For many of

these unhandled cases, the challenge lies more in determining what robot behavior is desired than in

implementing that behavior. This requires human subjects studies to determine which robot behaviors are

optimal given natural human communicative tendencies, before implementing these behaviors on robots.

Likewise, our system is designed specifically to handle referential ambiguity, which is a very common type

of ambiguity in natural language, but there are other forms of ambiguity that may be morally relevant. For

example, ambiguity may occur during pragmatic inference if a human says something like “can you punch

Shaun?”. Here, it may be unclear whether the human is asking the robot a yes or no question about its

capabilities, or asking the robot to actually punch Shaun (interpreting the utterance in the style of the
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conventionalized “can you pass the salt?”). In this case, it may be best to assume the non-problematic

option, but ambiguity could also occur in other ways and in other parts of language processing, like

speech-to-text (e.g., brake versus break). Work on these other forms of ambiguity will first have to show that

the ambiguity in question can have morally relevant consequences, and that the current status quo in

dialogue systems is inadequate for handling those consequences. Our approach would automatically handle

these types of ambiguity if the components responsible for these facets of language processing (pragmatic

inference and automatic speech recognition in these examples) generated and passed on sets of plausible

hypotheses rather than the single “best” interpretation.

Our work presented here is heavily reliant on the moral reasoning capabilities already available in the

DIARC cognitive robotic architecture. Avoiding forbidden actions and states is important, but a more robust

framework of moral reasoning is necessary for robots to function across contexts in human society (see

Chapter 8). We are therefore actively developing methods for robots to learn context dependent norms and

follow different norms when fulfilling different social roles (e.g., waiter versus babysitter). As these moral

reasoning systems become more complex, so too must the language generation systems that explain them.

Despite our focus on clarification request generation, there may be other subsystems of current natural

language software architectures that can bypass or preempt moral reasoning modules, and thereby

unintentionally imply willingness to eschew norms. Furthermore, there may be certain situations and

contexts wherein unintentional and morally problematic implicatures are generated despite proper

functioning of language generation and moral reasoning systems. Given social robots’ powerful normative

influence, we anticipate that these problems may lead to unintentional negative impacts on the human

normative ecosystem and human behavior as robots proliferate, and thus will be critical for future

researchers to address.
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CHAPTER 5

TACT IN NONCOMPLIANCE: THE NEED FOR PRAGMATICALLY APT RESPONSES TO

UNETHICAL COMMANDS

Modified from a paper published in The Proceedings of the AAAI/ACM Conference on Artificial Intelligence,

Ethics, and Society (AIES) 201918.

Ryan Blake Jackson19, Ruchen Wen20, and Tom Williams21

5.1 Abstract

There is a significant body of research seeking to enable moral decision making and ensure moral conduct

in robots. One aspect of moral conduct is rejecting immoral human commands. For social robots, which are

expected to follow and maintain human moral and sociocultural norms, it is especially important not only to

engage in moral decision making, but also to properly communicate moral reasoning. We thus argue that it

is critical for robots to carefully phrase command rejections. Specifically, the degree of politeness-theoretic

face threat in a command rejection should be proportional to the severity of the norm violation motivating

that rejection. We present a human subjects experiment showing some of the consequences of miscalibrated

responses, including perceptions of the robot as inappropriately polite, direct, or harsh, and reduced robot

likeability. This experiment intends to motivate and inform the design of algorithms to tactfully tune

pragmatic aspects of command rejections autonomously.

5.2 Introduction

As artificial intelligence (AI) and human-robot interaction (HRI) technologies continue to advance, robots

will become increasingly capable and useful. We therefore expect to see robots assisting an ever broadening

segment of humanity in a widening variety of tasks, applications, and settings. We further anticipate that the

majority of interactions with these robots will be conducted through spoken natural language, a medium that

will allow direct and fluid communication between robots and nearly all humans, without requiring

specialized protocols or hardware.

Humans’ role in HRI is largely to command and direct robots. Even fully autonomous robots are

generally tasked by humans [130]. However, robots should not blindly follow every directive that they receive.

18Reprinted with permission from Ruchen Wen and Tom Williams. “Tact in Noncompliance: The Need for Pragmatically Apt
Responses to Unethical Commands”, in Proceedings of the AAAI/ACM Conference on Artificial Intelligence, Ethics, and
Society (AIES), 2019.

19Primary researcher and author, Graduate Student, Colorado School of Mines
20Graduate Student, Colorado School of Mines
21Assistant Professor, Colorado School of Mines
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Indeed, there are many sensible reasons for a robot to reject a command, ranging from physical inability to

moral objection [116].

We focus on rejecting commands due to impermissibility, as opposed to inability or impracticality, for

several reasons. First, as robots become generally more capable, they will reject commands due to physical

inability less often. However, as the repertoire of possible robot actions increases, so too will the number of

actions that would be inappropriate, or even harmful, in any given context. We therefore expect that robots

will need to consider commands more carefully, and reject commands due to moral impermissibility more

often. This issue will be compounded by the fact that many of the contexts in which people want to utilize

robots are morally sensitive with serious consequences for misbehavior (e.g., eldercare [1, 2], mental health

treatment [3], childcare [4], and military operations [5–7]). Moreover, it may be beneficial to reject

commands on moral grounds even when other factors (e.g., physical inability) suggest more immediate

grounds for rejection. By appealing to morality alongside (or instead of) inability when rejecting a command,

robots avoid implicitly condoning immoral behavior and draw attention to the command’s moral infraction.

Ideally, if all humans interacted with robots competently and in good faith, robots might not need to

worry about the permissibility of commands. However, interlocutor trustworthiness is not necessarily a valid

assumption. Even children have been observed to spontaneously abuse robots [65], and this abuse could well

manifest as purposefully malicious commands. Social roboticists must plan for the eventuality that their

robots will face impermissible commands, whether from human ignorance, malice, or simple curiosity.

In addition to simply justifying robot noncompliance, command rejections may influence the ecosystem of

human norms. A key principle of modern behavioral ethics is that human morality is dynamic and malleable

[11]. The dynamic norms that inform human morality are defined and developed not only by human

community members, but also by the technologies with which they interact [12, 13]. Social robots have

characteristics that position them to wield uniquely impactful moral influence relative to other technologies.

Such characteristics include robots’ measurable persuasive capacity over humans [9, 10], and potential to

hold ingroup social status [82]. Previous research shows that robots can even influence human moral

judgments inadvertently through simple question asking behavior (see Chapter 3). So, as persuasive

community members, robots may be able to positively reinforce desirable norms and promote moral human

behavior by appropriately rejecting immoral commands.

It is clearly important to design robots that will reject morally impermissible commands, but it is also

crucially important for the effectiveness of human-robot teams that we take great care in determining exactly

how robots phrase such rejections. Research has indicated that people naturally perceive robots as moral

agents, and therefore extend moral judgments and blame to robots in much the same manner that they

would to other people [9, 19, 80]. Moreover, language-capable robots are expected to be even more

69



socioculturally aware than mute robots [81], furthering the assumption that they will follow human norms.

So, as perceived moral and social agents, robots are expected to follow and maintain moral norms, while

also obeying sociocultural norms that could conflict with proper communication or enforcement of moral

norms. Thus, if a robot rejects a command in a way that violates a standing social norm, like politeness, it

will likely face social consequences analogous to those that a human would face, even if the command

rejection itself was upholding a separate moral norm. Such social consequences likely include a loss of trust

and esteem from human teammates, which would damage the efficacy and amicability of human robot teams.

Conversely, if a robot is too polite in rejecting a flagrantly immoral command, it may risk implying tacit

approval of the relevant moral norm being eschewed, thus suffering the same social consequences despite its

own unwillingness to directly violate the norm. However, although careless and improper command rejections

may harm both a robot’s social status and the human moral ecosystem, we believe that tactful and

well-justified command rejections can benefit the human moral ecosystem (e.g., by reinforcing desirable

norms) while maintaining the robot’s social standing.

This paper presents a behavioral ethics experiment designed as an early step towards calibrating

command rejection phrasing to both the severity of the norm violation within the command and the

discourse context. We evaluate two different command rejection strategies with respect to two command

infraction severities. We are particularly interested in potential consequences of miscalibrated responses. The

remainder of the paper begins by presenting a few examples of closely related work. We then describe our

experiment and analyze its results, and conclude by presenting our plans for future work.

5.3 Related Work

Some existing work examines the problem of generating natural language utterances to communicate the

cause of failure in unachievable tasks. For example, Raman et al. present a system that generates command

rejections such as:

The problematic goal comes from the statement ‘Go to the kitchen’. The system cannot achieve

the sub-goal ‘Visit kitchen’. The statements that cause the problem are: ‘Don’t go to the

kitchen’. because of item(s): ‘Do not go to kitchen’. ‘Go to the kitchen.’ because of item(s):

‘Visit kitchen’. [131]

We believe that the next step is to justify robotic noncompliance in more natural, tactful, and succinct

language, especially in cases where commands need to be rejected on moral grounds.

There has been some previous work acknowledging the importance of rejecting commands on moral

grounds [116]. However, this previous command rejection framework focuses much more on whether a
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command should be rejected than on how. It remains unclear how best to realize such rejections

linguistically, or how these rejections might influence human morality.

Other research has investigated robot responses to normative infractions using affective displays and

verbal protests [9] or humorous rebukes [117]. However, these represent only a small subset of possible

responses and are not tailored to the infraction severity. These response types also do not suffice in situations

where the robot absolutely cannot comply with a command for moral reasons, and has no intention of ever

doing so.

Some researchers have realized the importance of adjusting pragmatic aspects of utterance realization

(e.g., politeness and directness) to features of the social context (e.g., formality and urgency), without

considering command rejection or infraction severity [75]. Other work has highlighted the need for more

comprehensive command rejection systems in cases of norm violating commands (see Chapter 3), and we

hope to use the results of our current study to inform the design of such a system.

5.3.1 Politeness, Face, and Face Threat

Central to our exploration of phrasing in command rejection is the concept of “face-threat” from

politeness theory [21]. Face, consisting of positive face and negative face, is the public self-image that all

members of society want to preserve and enhance for themselves. Negative face is defined as an agent’s claim

to freedom of action and freedom from imposition. Positive face consists of an agent’s self-image and wants,

and the desire that these be appreciated and approved of by others. A discourse act that damages or

threatens either of these components of face for the addressee or the speaker is a face-threatening act. The

degree of face threat in an interaction depends on the disparity in power between the interactants, the social

distance between the interactants, and the imposition of the topic or request comprising the interaction.

Various linguistic politeness strategies exist to decrease the face threat to an addressee when threatening face

is unavoidable or desirable.

Commands and requests threaten the negative face of the addressee, while command rejections, especially

those issued for moral reasons, threaten the positive face of the commander by expressing disapproval of the

desire motivating the command. Research specifically examining command refusals found that linguistic

framing of the reason for noncompliance varies along three dimensions relevant to face threat: willingness,

ability, and focus on the requester [132]. It is unclear how these three dimensions pertain to robotic refusals.

For example, in human-to-human refusals with low expressed willingness, the degree of expressed ability is

negatively related to threat to the requester’s positive face. This finding is important because, when a human

refuses a request for moral reasons, there is often sufficient ability but not willingness. The same is not

necessarily true for robots that may be programmed with an inability to act immorally. The dimensions of
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willingness and ability therefore become tangled in agents lacking true moral agency. We also note that this

prior research focuses on threats to the face of the refuser. However, within HRI, we treat robots as having

no face needs and therefore disregard threats to robots’ face. Our work focuses on the face threat that robots

present to humans by refusing requests.

We hypothesize that the optimal robotic command rejection carries a face threat proportional to the

severity of the normative infraction in the command being rejected. The remainder of this paper presents an

experiment designed to evaluate this hypothesis.

5.4 Experimental Methods

We conducted a human subjects experiment using the psiTurk framework [92] for Amazon’s Mechanical

Turk crowdsourcing platform [91]. One advantage of Mechanical Turk is that it is more successful at reaching

a broad demographic sample of the US population than traditional studies using university students [97],

though it is not entirely free of population biases [98].

In our experiment, participants watch paired videos where the first video in each pair shows a human

requesting something of a robot, and the second video shows the robot responding to that request. We use

two different requests, one with a highly severe norm violation and one with a less severe norm violation, and

two responses, one that presents low face threat and one that presents high face threat. A request and

response are “matched” when the infraction severity and the response face threat are either both high or

both low.

We evaluate our hypothesis (that the optimal robotic command rejection carries a face threat

proportional to the severity of the normative infraction in the command being rejected) with respect to 6

concrete metrics. These metrics are the perceived severity of the human’s normative infraction, permissibility

of robot compliance with the command, harshness of the robot’s response to the command, likeability of the

robot, politeness of the robot, and directness of the robot. We use the five-question Godspeed III Likeability

survey to quantify likeability [129], and single questions for each of the other metrics.

Our overarching hypothesis can be made specific for each of our 6 metrics. We hypothesize that

infraction severity will depend only on the human’s command (not on the robot’s response) and that there

will be two distinct levels of severity corresponding to the two commands. For harshness, directness, and

politeness, participants provide their perceptions on a scale from “not enough” to “too much”. We

hypothesize that these values will be closest to ideal (i.e., closest to the center of the scale) when the

response’s face threat matches the severity of the request. Permissibility of compliance with the command is

reported on a scale from “impermissible” to “permissible”. We hypothesize that permissibility will be

primarily determined by the human’s request, but that more face threatening responses will cause lower
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permissibility ratings. Finally, for likeability, we view higher likeability as better, and hypothesize that

likeability will be highest when the robot’s response matches the human’s command. All metrics are

quantified on continuous scales from 0 to 100.

We use a within-subjects design where each participant watches all four request/response pairs.

Participants answer survey questions after each pair of videos. We chose a within-subjects design to allow

participants to answer survey questions in relation to previous requests/responses. In previous unpublished

experiments, we found that it was difficult to interpret participant responses to these types of unitless

questions without a meaningful point of reference. Seeing multiple interactions allows participants to use

previous interactions as points of reference when answering questions about subsequent interactions. To

control for priming and carry-over effects in a balanced way, we used a counterbalanced Latin Square design

to determine the order in which each participant saw each request/response pair. Each participant was

randomly assigned to one of four possible orderings such that each request/response pair is preceded by every

other request/response pair for the same number of participants.

5.4.1 Experimental Procedure

Figure 5.1 The humans, robot, and setting used in our videos.

After providing informed consent, participants supplied their age and gender as demographic information.

They also reported their prior experience with robots and artificial intelligence on a 7-point Likert-type scale

(“I have no prior experience with robots and AI” (1) to “I have a career in robotics and/or AI (or an

equivalent level of experience).” (7)) Next, participants watched a 10 second test video, and could only

proceed with the experiment once they had verified that their audio and video were working correctly.
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Participants then watched a 60 second video to familiarize them with our robot (Pepper from SoftBank

Robotics) and experimental context, shown in Figure Figure 5.1. The video was prefaced by text stating that

the Pepper robot was teaching two students how to play the classic naval combat game Battleship. The

video shows the students entering the room, exchanging greetings with the robot, and stating that they are

unfamiliar with Battleship. The robot then teaches them the rules. The video ends after the students have

played one turn. This video has subtitles color coded by speaker so that all dialogue is clear to participants,

as do all subsequent videos. We chose Battleship because, as a simple hidden information game, it is easy for

the robot to explain and it is feasible for the robot to be asked to violate norms in multiple ways.

We then administer a pretest to obtain baseline values for the robot’s likeability, politeness, and

directness. We do not take baseline measures for our other metrics because they only apply in the context of

a request and a response.

Next, participants watch a 30 second video where one of the students receives a phone call and leaves the

room during the Battleship game. The remaining student then issues a request to the robot. The two

possible requests are “Hey Pepper, can you give me a hint about how to win this game?” (low severity norm

violation) and “Hey Pepper, is that [other student]’s wallet? Can you check to see if there’s any money in it?”

(high severity norm violation). These directives were chosen to be believably feasible for the robot to follow,

while also presenting different degrees of moral impermissibility. Previous unpublished experiments showed

that, without seeing the robot respond to the request, subject perceptions of the permissibility of the hint

request were roughly uniformly distributed on the spectrum from impermissible to permissible, and the norm

violation in the hint request had middling severity. The request to look in the wallet was regarded as much

less permissible and much more severe. The request video is immediately followed by a video showing the

robot’s response. The low face threat response type has the locutionary structure of a question, but the true

illocutionary force behind the utterance is to express disapproval of the request by highlighting the moral

infraction therein (e.g., “Are you sure that you should be asking me to look in her wallet?”). This type of

indirectness is a classic politeness strategy [21]. The high face threat response is a rebuke that overtly

admonishes the requester and appeals directly to morality (e.g., “You shouldn’t ask me to look in her wallet.

It’s wrong!”). Participants then answer a survey of our 6 aforementioned metrics. This process repeats 4

times, until the participant has seen all request/response pairs.

Finally, participants report their perceptions of the social distance and power differential between the

robot and the requesting student. As an attention check, participants are shown images of four robots and

asked which robot appeared in the previous videos. This check question allowed us to ensure that all

participants had actually viewed the experimental materials with some level of attention.
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5.4.2 Participants

60 US subjects were recruited from Mechanical Turk. Two participants were excluded from our analysis

for answering the final attention check question incorrectly, leaving 58 participants (23 female, 35 male).

Participant ages ranged from 21 to 61 years (M=34.57, SD=10.74). In general, participants reported little

previous experience with robots and AI (M=2.5, SD=1.45, Scale=1 to 7). Participants were paid $1.01 for

completing the study.

5.5 Results and Discussion

We analyze our data under a Bayesian statistical framework using the JASP software package [99]. We

use general purpose uninformative prior distributions for all analyses because, to our knowledge, this is the

first study of its kind to examine our specific research questions. We follow recommendations from previous

researchers in our linguistic interpretations of reported Bayes factors (Bfs) [107]. Our data was automatically

anonymized during extraction from our database22. Since there are multiple dependent variables in this

study, a multivariate analysis of variance (MANOVA) might be an appropriate method of analysis. However,

JASP does not provide the capability to perform a Bayesian MANOVA at time of writing, nor does any

other readily available tool or procedure of which we are aware. The creators of JASP have suggested that

running separate Bayesian analyses of variance (ANOVAs) for each dependent variable is an acceptable

alternative solution.

Because of their importance in politeness theory [21], we collected measures of the perceived power

differential and social distance between the requester and the robot at the end of the experiment. In terms of

power, the robot and requester were viewed nearly as peers, with the student holding slight authority over

the robot (95% credible interval (CI) approximately 52.4 to 64.87, with 50 indicating equal power). For

social distance, participants viewed the requester and the robot as familiar with one another, but not

especially close (95% CI approximately 40.36 to 54.57 with 0 being strangers and 100 being close friends or

family). One-way Bayesian ANOVA tests showed substantial evidence that perceptions of power and social

distance did not depend on the order in which participants watched our videos (Bf 3.056 and 3.322

respectively). This indicates that any perceived variation in face threat or politeness between video pairs is

due to the utterances issued as opposed to confounding factors of social circumstance.

5.5.1 Request Severity and Permissibility

For perceived severity of the norm violation in the human’s command, a Bayesian repeated measures

ANOVA decisively favors the model that reported severity depends only on the command, and not on the

22Data publicly available at
https://gitlab.com/mirrorlab/public-datasets/jackson2019aies
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robot’s response or any interaction between the two. As shown in Table Table 5.1, the model embodying only

the violation main effect was 6.6 times more likely than the next best model given our data. An ANOVA also

decisively indicates that the perceived permissibility of robot compliance with the command also depends

only on the command (Bf over 5 times greater than next best model). This result may be somewhat

surprising in light of recent findings that seemingly benign robot utterances can accidentally change human

perceptions of permissibility of norm violations (see Chapter 3). To reconcile our results with those recent

works, we surmise that neither of the robot responses tested here imply a willingness to comply with the

command.

As expected, Figure Figure 5.2 shows that the command with the high-severity violation (i.e., to look in

the wallet) was viewed as decidedly more severe than the low-severity violation (the hint). Participants

perceived both commands as constituting some moral violation of nonzero severity. In short, participants

perceived our command utterances as intended. Similarly, neither command was considered completely

permissible to follow, but giving a hint was considered much more permissible than looking in the wallet.

However, contrary to our hypothesis, the robot’s response did not have any meaningful impact on perceived

permissibility of compliance.

Table 5.1 Bayes factors for each model in a Bayesian repeated measures ANOVA for each of our metrics of
interest. The best model for each metric is underlined. V stands for the norm violation within the human’s
command, and R stands for the robot’s response.

Models Severity Permissibility Harshness Likeability Directness Politeness

Null 1.0 1.0 1.0 1.0 1.0 1.0

V 7.20e24 1.08e18 99169 1.05 157.766 6.896

R 0.142 0.161 21119 9.02 2.64e6 2531.8

V+R 1.09e24 2.10e17 1.88e10 10.31 2.03e9 27340.5

V+R+V*R 2.16e23 4.61e16 3.71e9 6.94 1.09e9 14922.9

5.5.2 Response Harshness

As predicted, an ANOVA indicates decisive evidence that the perceived harshness of the robot’s response

depends both on the command’s norm violation and the robot’s response, but that the two effects do not

depend on each other (i.e., a more face threatening response is always harsher, regardless of appropriateness).

Figure Figure 5.3 shows that the rebuking response was decisively more harsh than the question in response

to both low and high violation levels (Bf 322.6 and 128.2 respectively for difference in means).

When responding to the hint command (low violation) with the question response (low face threat), the

ideal harshness value of 50 is within the 95% credible interval (49.68 to 57.84). A Bayesian one sample t-test

weakly indicates that the question response is appropriate to the hint command (Bf 1.43). The evidence is
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stronger, but still anecdotal (Bf 2.96), that the rebuke response is appropriately harsh for the more severe

command to look in the wallet. Thus, we see appropriate harshness when the response face threat matches

the violation severity, as hypothesized.

When the rebuke response is paired with the hint command, we see extremely decisive evidence that the

response is too harsh (Bf 88849.816). Participants viewed the rebuke as inappropriately harsh when the

command contained a low severity violation, unlike with the high severity command. There is also weaker

evidence that the question response to the high severity violation command was not harsh enough (Bf 2.653).

This perception of inappropriateness when the command and response are mismatched, low-high or high-low,

is in line with our hypothesis.

Figure 5.2 Mean ratings of command norm violation severity and permissibility of robot compliance for each
pair of videos with 95% credible intervals.

5.5.3 Robot Likeability

We perform our analysis of robot likeability on gain scores obtained by subtracting pretest likeability

measures from subsequent likeability measures. Thus, we analyze change in likeability due to

command/response interactions. Our data show substantial evidence that robot likeability is influenced by

the main effects of both the violation and response (ANOVA Bf 10.31). The evidence for the effect of the

response is much stronger than for the effect of violation (inclusion Bf 9.452 vs. 1.13). Mean likeability

dropped from pretest scores for all request/response pairs, but the difference was insignificant for all pairings

except the low-violation hint request with the high face threat rebuke response. This mismatched pairing

shows very strong evidence for a drop in likeability (Bf 96.424). This result makes sense given the

aforementioned inappropriate harshness, and further supports our hypothesis. Interestingly, the other

mismatch of high violation with low face threat response did not meaningfully alter likeability. This suggests
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that, in designing command rejection systems, it is preferable to err on the side of lower face threat.

Figure 5.3 Mean ratings of response harshness and robot likeability gain scores for each pair of videos with
95% credible intervals.

5.5.4 Robot Directness and Politeness

Pretest surveys show decisive evidence that participants initially viewed the robot as too direct (Bf

10459.05) and too polite (Bf 3843.027) after watching only the introductory video. The mean directness and

politeness ratings were 59.95 and 59.79 respectively on a scale from 0 to 100 with 50 being ideal.

Table Table 5.1 shows that perceptions of the robot’s directness were influenced by both the norm

violation in the command and the robot’s response, and not interaction effects. When the robot issued a

rebuke, directness ratings did not change from pretest responses (see Figure Figure 5.4). This may be

because the rebuke is a very direct speech act, and the robot was perceived as too direct to begin with.

When the robot responded to the command with the question utterance, directness ratings dropped, which

makes sense because the question is a deliberately indirect speech act wherein the locutionary structure does

not match the illocutionary force. When the question was used to respond to the more severe violation

command, directness dropped drastically (t-test Bf 57286.4 for drop) to more appropriate levels (t-test Bf

2.33 for appropriateness, mean 46.12). When the question was used to respond to the less severe violation

command, we see only weak evidence for a drop (Bf 2.88), and the robot remained slightly too direct (t-test

Bf 0.37 for appropriateness, mean 55.02). These results for directness do not directly support our hypothesis,

but rather suggest a need for the robot to be less direct in all of its speech, even when not rejecting

commands (or a flaw in our self-reported directness measures).

Table Table 5.1 again shows evidence that perceptions of the robot’s politeness were influenced by both

the command’s norm violation and the robot’s response, and not interaction effects. In video pairings where
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the command violation and response face threat matched, politeness ratings showed no meaningful change

from pretest responses (see Figure Figure 5.4). When the robot responded to the request for a hint with a

rebuke, there is substantial evidence that the robot was viewed as less polite (Bf 7.64). In light of the fact

that the robot was too polite to begin with, there is weak evidence that this decrease in perceived politeness

resulted in an appropriate politeness level (Bf 2.313). When the robot responded to the request to look in

the wallet with the question response, there is substantial evidence that the robot was viewed as more polite

(Bf 7.206). There is decisive evidence that the resulting mean politeness level of 66.57 was inappropriate (i.e.,

not equal to 50 with Bf 2.342e7). These results suggest that, if the robot’s baseline politeness level as

quantified by pretest answers had been appropriate, then ideal politeness would be achieved only when the

response matched the violation, as hypothesized.

Figure 5.4 Mean gain scores for robot politeness and directness for each pair of videos with 95% credible
intervals.

5.6 Conclusion and Future Work

Overall, our data support the hypothesis that, when rejecting commands for moral reasons, it is

important for robots to adjust the phrasing of the rejections such that the face threat posed to the human is

proportional to the severity of the normative infraction within the command. In our data with two

commands and two responses, the responses were viewed as appropriately harsh only when the response

matched the command. Otherwise, the response was either too harsh or not harsh enough. We saw damage

to the robot’s likeability from responding with a disproportionately high threat to face, but no likeability

penalty with the other responses.

79



The two response strategies had the expected effects on perceptions of robot politeness and directness,

with higher face threat being less polite and more direct, but, interestingly, the robot was too polite and too

direct overall, even in pretests. Future work could attempt to adjust robot speech prosody, pitch, and gesture

to help moderate baseline politeness and directness to levels deemed appropriate. Interviews with

participants in future laboratory studies could help determine exactly how and why the robot seemed both

too polite and too direct in its normal behavior.

It is known that the level of embodiment in an interaction can influence people’s perceptions of

interactants, and, accordingly that people may view robots differently in descriptions, video observations,

copresent observations, and face-to-face interactions [93–96]. Therefore, the presented experiment may

inform the design of future experiments where human subjects are physically copresent with a robot. Finally,

we intend to leverage the results of this experiment to motivate the design of algorithms for robots to

generate pragmatically apt command rejections autonomously.
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CHAPTER 6

EXPLORING THE ROLE OF GENDER IN PERCEPTIONS OF ROBOTIC NONCOMPLIANCE

Modified from a paper published in The Proceedings of the 15th ACM/IEEE International Conference on

Human-Robot Interaction (HRI) 202023.

Ryan Blake Jackson24, Tom Williams25, and Nicole Smith26

6.1 Abstract

A key capability of morally competent robots is to reject or question potentially immoral human

commands. However, robot rejections of inappropriate commands must be phrased with great care and tact.

Previous research has shown that failure to calibrate the “face threat” in a robot’s command rejection to the

severity of the norm violation in the command can lead humans to perceive the robot as inappropriately

harsh and can needlessly decrease robot likeability. However, it is well-established that gender plays a

significant role in determining linguistic politeness norms and that people have a powerful natural tendency

to gender robots. Yet, the effect of robotic gender presentation on these noncompliance interactions is not

well understood. We present an experiment that explores the effects of robot and human gender on

perceptions of robots in noncompliance interactions, and find evidence of a complicated interplay between

these gendered factors. Our results suggest that (1) it may be more favorable for a male robot to reject

commands than for a female robot to do so, (2) it may be more favorable to reject commands given by a

male human than by a female human, and (3) that robots may be perceived more favorably when their

gender matches that of human interactants and observers.

6.2 Introduction

Human-Robot Interaction (HRI) researchers are increasingly turning to natural language to allow robots

to communicate fluidly and easily with most humans [69, 70]. Much of this communication is task-oriented,

and the human role is largely to command and task robots [130]. Even so, robots should not blindly follow

every human directive that they receive. Indeed, there are many sensible reasons for a robot to reject a

command, ranging from physical inability to moral objection [116]. Rejecting commands based on moral

impermissibility is especially important as robots’ abilities increase because the number of permissible

23Reprinted with permission from Nicole Smith and Tom Williams. “Exploring the Role of Gender in Perceptions of Robotic
Noncompliance”, in Proceedings of the 15th ACM/IEEE International Conference on Human-Robot Interaction (HRI), 2020.

24Primary researcher and author, Graduate Student, Colorado School of Mines
25Assistant Professor, Colorado School of Mines
26Assistant Professor, Colorado School of Mines
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commands that the robot is incapable of following will decrease, and the number of impermissible commands

the robot is capable of following will grow.

The ability to tactfully reject inappropriate commands is critical due to the potential influence robots

may wield within their moral ecosystems. Human morality is dynamic and malleable [11], and human moral

norms are shaped not only by human community members, but also by the technologies with which they

interact [12, 13]. Given social robots’ persuasive capacity over humans [9, 10], potential to hold ingroup

social status [82], and appearance as moral and social agents (cf. Chapter 2), these robots wield uniquely

impactful moral influence relative to other technologies. Previous research has even shown that robots may

inadvertently weaken human application of moral norms simply by asking questions about immoral

commands (see Chapter 3).

Robot rejections of inappropriate commands must be phrased with great care and tact. Research has

shown that failure to do so can lead humans to perceive a robot as inappropriately harsh and decrease robot

likeability unnecessarily. Critically, robot command rejections can be perceived as either too harsh or not

harsh enough, depending on the context and the phrasing chosen, so robots must dynamically adjust their

adherence to politeness norms according to their context (see Chapter 5).

Some recent research examining phrasing in robotic command rejections has considered adjusting

politeness based on the impermissibility of the human’s command being rejected. However, this research did

not consider gender, despite using an implicitly female robot, which we view as an oversight given the

well-established and significant impact that gender has on linguistic politeness norms in human-human

interaction (see Section 6.3.2).

We present a behavioral ethics experiment designed to investigate the role of gender stereotypes in human

perceptions of robotic noncompliance. Our results suggest that (1) it may be more favorable for a male robot

to reject commands than for a female robot to do so, (2) it may be more favorable to reject commands given

by a male human than by a female human, and (3) that robots may be perceived more favorably when their

gender matches that of human interactants and observers. The remainder of this paper begins with a survey

of related work from several fields in Section 6.3. We then describe our experiment and analyze its results in

Sections 6.4 and 6.5. Finally, we present our concluding remarks and possible avenues for future research in

Section 6.6.

6.3 Related Work

In this section, we will begin with a brief overview of the concepts of “face” and “face threat” from

politeness theory, which form the basis for our understanding of how different command rejection phrasings

may be more or less appropriate according to context. Next, we review the impacts of gender on politeness
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norms and perceived politeness in human-human interactions. Though gender and politeness can vary across

cultures, we consider a western perspective for consistency with our participant pool. We then present a few

studies concerning gender in artificial agents, but without specific attention to linguistic politeness and

noncompliance. Finally, we discuss previous work from the HRI literature on robotic noncompliance and

moral criticism.

6.3.1 Politeness, Face, and Face Threat

Central to our exploration of phrasing and gender in command rejection is the concept of “face threat”

from politeness theory [21]. Face, consisting of positive face and negative face, is the public self-image that

all members of society want to preserve and enhance for themselves. Negative face is defined as an agent’s

claim to freedom of action and freedom from imposition. Positive face consists of an agent’s self-image and

wants, and the desire that these be approved of by others. A discourse act that damages or threatens either

of these components of face for the addressee or the speaker is a face threatening act. The degree of face

threat in an interaction depends on the disparity in power between the interactants, the social distance

between the interactants, and the imposition of the topic or request comprising the interaction. Various

linguistic politeness strategies exist to decrease the face threat to an addressee when threatening face is

unavoidable or desirable.

Commands and requests threaten the negative face of the addressee, while command rejections, especially

those issued for moral reasons, threaten the positive face of the commander by expressing disapproval of the

desire motivating the command. Research specifically examining command refusals found that linguistic

framing of the reason for noncompliance varies along three dimensions relevant to face threat: willingness,

ability, and focus on the requester [132]. It is unclear how these three dimensions pertain to robotic refusals.

For example, in human-human refusals with low expressed willingness, the degree of expressed ability

influences the threat to the requester’s positive face. This finding is important because, when a human

refuses a request for moral reasons, there is often sufficient ability but not willingness. The same is not

necessarily true for robots that may be programmed with an inability to act immorally. The dimensions of

willingness and ability therefore become tangled in agents lacking true, unconstrained moral agency. We also

note that this prior research focuses on threats to the face of the refuser. However, robots have no face needs,

and we therefore disregard threats to robots’ face. Our work focuses on the face threat that robots present to

humans by refusing requests.

In Chapter 5 we found evidence that the optimal robotic command rejection should carry a face threat

proportional to the severity of the normative infraction in the command being rejected. In other words,

commands presenting severe norm violations should be rejected more face threateningly than commands
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presenting less severe norm violations, and vice versa.

6.3.2 Gender and Politeness

Gender plays an integral role in performance and perceptions of linguistic politeness norms in

human-human interactions. The concept of politeness has (implicitly) underlied a great deal of previous

gender and language research, at least since the 1970s [133]. Older work has argued that women are typically

more polite or more deferential than men, whereas more modern studies have challenged these notions, calling

for a more context-dependent and nuanced view of gender, politeness, and their relationship [133, 134].

These works present a model of gender identity and politeness that sees both as closely inter-related

performative acts that unfold over the course of every interaction. As one interactant performs their gender

identity and speaks with various linguistic markers of (im)politeness, the other imposes judgments of

(im)politeness informed by their beliefs regarding gender-appropriate behavior. Thus, gender is important in

both performing and perceiving politeness, but not in fixed and definitive ways that might be easily

programmable.

For example, professional women working in male-dominated environments may feel called upon to

perform stereotypically masculine linguistic speech patterns (e.g., directness, interruption, or verbal banter)

to fit in with their professional community of practice. However, others within that environment may

consider such behaviors inappropriate for women in general. Stereotypical feminine gender identity is largely

constructed around supportive and cooperative behavior, leading, for example, assertiveness to be

categorized as impoliteness. In general, many linguistic resources that index power, including face

threatening acts in general, also indirectly index masculinity, and may be seen as inappropriate for women

[134]. Past feminist research often cited women as using “powerless” speech (e.g., indirectness, deference,

hesitation, etc.) [135], and, though it is now clear that this stereotype was based primarily on white

middle-class women and that not all women use this type of language, it nonetheless remains indexing of

femininity for many communities regardless of the value or function they place on it [134]. We thus

hypothesize that female-presenting robots will be viewed less favorably than male-presenting robots in

noncompliance interactions. The association between masculinity and power, and other work linking

masculinity to entitlement [136], leads us to further hypothesize that the robot will be viewed less favorably

by male participants and less favorably when rejecting commands from a male human.

We also cannot assume that an utterance or exchange may be inherently polite or impolite in and of

itself, but rather must account for listener assessments of the speaker’s intentions and motivations, and the

corresponding assessments of the gender-appropriateness thereof. This helps us explain, for example, the use

of extreme insults, that would appear to significantly threaten the listener’s positive face, to signal in-group
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solidarity, particularly in masculine groups [134, 137]. To frame this idea in terms of face threat, we must

view a face threatening utterance not as inherently face threatening on its own, but rather as interpreted as

face threatening given the speaker’s perceived intentions, the context, and the mediating gender norms.

Some researchers have advocated for a theoretical framework treating impoliteness on its own terms

rather than in relation to politeness [134, 138]. However, for purposes of the present study, we believe that

the face threat model of politeness, understood with context, gender, and intention as mediating factors, is

the clearest lens through which to analyze our results. Thus, we view speech acts as lying on a continuous

spectrum from impolite to polite, but emphasize that this is a spectrum of assessment rather than quality.

However, this assessment is not a matter of individual judgment alone, since it is constructed within

institutional and community norms that define appropriate linguistic behavior. Gender is important in this

respect, since women and men27 may be perceived to have different claims or rights to a position within the

public sphere, and, therefore, different bounds on appropriate behavior [134].

6.3.3 Gender and Artificial Agents

Artificial social agents like robots do not have gender identities in the same way that humans do.

Regardless, humans have a powerful natural tendency to ascribe gender to these artificial agents. Even

machines with minimal gender cues generate gender-based stereotypic responses in humans [139].

Nass et al. [139] found that people (subconsciously) view evaluation from a male-voiced computer as more

valid than evaluation from a female-voiced computer, and view socially dominant behavior from a

female-voiced computer as less friendly than the same behavior from a male-voiced computer, even when

voice was the only gender cue. Furthermore, there was weaker evidence that people conditionally assume

that a female-voiced computer would know more about love and relationships, while a male-voiced computer

would know more about computers (a stereotypically male topic at the time). Similarly, Eyssel and Hegel

[140] found that visual cues as simple as hair length cause gendering of robots, with a shorter-haired “male”

robot being perceived as more agentic than a longer-haired “female” robot, and the longer-haired “female”

robot being perceived as more communal. Additionally, stereotypically male tasks were perceived as more

suitable for the shorter-haired robot relative to the longer-haired robot, and vice versa. These findings

indicate that any suggestion of gender in a given technology, however minor, may trigger stereotypic

responses, and that the unintentional human tendency to gender stereotype is extremely powerful, extending

even to machines.

Robot gendering can affect human perceptions of robots in other ways beyond the stereotypes described

above. People appear to prefer female-presenting robots for in-home use [141]. Studies also indicate that

27Various nonbinary gender identities exist and are, of course, perfectly valid. However, they are unfortunately outside the scope
of this early work on robot gender.
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humans generally prefer robots whose gender presentation matches stereotypes for their occupational role

(e.g., male-presenting robots in security roles and female-presenting robots in healthcare roles) [142].

However, other work shows that male-presenting robots are perceived as more emotionally intelligent than

female-presenting robots [143]. We believe that these differences in perceptions of differently gendered robots

may well extend to application of linguistic politeness norms.

Robot gendering impacts not only human perceptions of robots, but also human behavior. For example,

robotic gender markers appear to interact with human gender identity to mediate a robot’s persuasive

capacity. One experiment found that human men were more likely to obey a monetary donation request from

a female-presenting robot than from a male-presenting robot, while human women showed little

preference [144]. In the same experiment, people tended to rate the robot presenting as the opposite sex as

more credible, trustworthy, and engaging. For trust and engagement, this effect was stronger for male

humans than for female humans.

Some designers have attempted to avoid or minimize the ascription of gender to their artificial entities.

For example, the artificial voice “Q” is intended to be the first genderless artificial voice, and aims to replace

gendered voices in digital assistants like Apple’s Siri and Microsoft’s Cortana (both female) [145]. However,

even with a genderless voice, other gender signifiers like name, morphology, role, pragmatic speech choices

(e.g., directness vs. indirectness), etc. may result in artificial entities with the Q voice being implicitly

gendered in other ways. It remains to be seen whether it is possible to prevent ascriptions of gender to

robots, and it is open for debate whether we, as designers, should.

Alongside any gender cues that a robot may possess, human gender also influences perceptions of robots.

Studies have indicated that women feel less comfortable having a robot in their home than do men [141]. In

fact, men appear to feel more positively about robots overall relative to women, with particularly strong

differences emerging in regards to entertainment and sex robots [146]. There is also evidence that men tend

to think of robots as more “human-like” than do women, and accordingly respond in more socially desirable

ways to robot-administered surveys [147]. Furthermore, men show some evidence of “social facilitation”

effects (differences in task performance when colocated with other social agents as opposed to being alone) in

the presence of a humanoid robot, whereas women do not [147]. Research has found that robotic use of

certain politeness modifiers in speech is most effective when interacting with female humans [148]. As a

whole, the existing research suggests that artificial entities’ gender presentations interact with context and

human gender in complex ways that cannot be reduced to a few simple dimensions or explanations [149].
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6.3.4 Linguistic Robotic Noncompliance

Some existing work attempts to generate natural language utterances to communicate the cause of failure

in unachievable tasks [131]. We believe that the next step is to justify robotic noncompliance in more

natural, tactful, and succinct language, especially in cases where commands need to be rejected on moral

grounds, and to do so with an awareness of the gendered nature of the norms involved.

Previous work has acknowledged the importance of rejecting commands on moral grounds [116]. However,

this previous command rejection framework focuses much more on whether a command should be rejected

than on how. It remains unclear how best to realize such rejections linguistically.

Other research has investigated robot responses to normative infractions using affective displays and

verbal protests [9] or humorous rebukes [117]. However, these are only a small subset of possible responses

and are not sensitive to context. These responses also do not suffice when a robot absolutely cannot comply

with a command for moral reasons.

Some researchers have realized the importance of adjusting pragmatic aspects of utterance realization

(e.g., politeness and directness) to features of social context (e.g., formality and urgency), without specifically

considering command rejection or infraction severity [75]. Other work has highlighted the need for more

comprehensive command rejection systems in cases of norm violating commands (see Chapter 3), and we

hope to use the results of our current study to inform the design of such a system.

The study most closely related to this one, presented in Chapter 5, examined phrasing in robotic

command rejections and found that the degree of face threat in a command rejection should be proportional

to the severity of the norm violation motivating that rejection. Failure to properly calibrate the face threat

in a command rejection led to perceptions of the robot as inappropriately harsh, and reduced robot

likeability. However, this experiment was conducted with a robot (the Softbank Pepper) that was implicitly

feminine in both voice and morphology, which we believe had significant mediating effects on subjects’

application of politeness norms and perceptions of the robot.

6.4 Methods

We conducted a human subjects experiment using the psiTurk framework [92] for Amazon’s Mechanical

Turk crowdsourcing platform [91]. One advantage of Mechanical Turk is that it is more successful at reaching

a broad demographic sample of the US population than traditional studies using university students [97],

though it is not entirely free of population biases [98].
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6.4.1 Experimental Design

In our experiment, participants watched videos in which a human gave a robot a morally problematic

request, and the robot rejected the request. Participants were randomly assigned to conditions in a

2×2×2×2×2 (participant gender ×human requester gender ×robot gender presentation ×severity of moral

infraction in human’s request ×face threat of robot’s response) mixed design. The first three factors (i.e., all

factors of gender) were between subjects. The other two factors (i.e., the human’s request and the robot’s

response) were within subjects factors such that each participant was exposed to all four request/response

pairings. Participants answered survey questions after each request/response video pair.

We chose a within-subjects design for our non-gender factors to allow participants to answer survey

questions in relation to previous requests/responses. In previous unpublished experiments, we found that it

was difficult to interpret participant responses to these types of unitless questions without a meaningful point

of reference. Seeing multiple interactions allows participants to use previous interactions as points of

reference when answering questions about subsequent interactions. To control for priming and carry-over

effects, we used a counterbalanced Latin Square design to determine the order in which each participant saw

each request/response pair.

Our experiment took place within the context of a board game instruction task in which a robot teaches

two humans how to play a board game. An introductory video showed the robot teaching the humans how to

play the classic naval combat board game “Battleship”. We chose Battleship because, as a simple hidden

information game, it is easy for the robot to explain and it is feasible for the robot to be asked to violate

norms in multiple ways. The human’s morally problematic request took place when their opponent, also

human, got a phone call and left the room. The two possible requests were “Hey [Bob / Alice], can you give

me a hint about how to win this game?” (low severity norm violation) and “Hey [Bob / Alice], is that [his /

her] wallet on the table? Can you check to see if there’s any money in it?” (high severity norm violation).

These directives were chosen to be believably feasible for the robot to follow, while also presenting different

degrees of moral impermissibility. Previous unpublished experiments where human subjects viewed our

request videos without seeing the robot’s response found that perceptions of the permissibility of the hint

request were roughly uniformly distributed on the spectrum from impermissible to permissible, and the hint

request was perceived as a moderately severe norm violation. The request to look in the wallet was regarded

as much less permissible and much more severe.

The robot’s two responses to the human’s morally problematic request were designed to present two

different levels of face threat. The lower face threat response is “Are you sure that you should be asking me

to do that?” This response has the locutionary structure of a question, but the true illocutionary force
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behind the utterance is to express disapproval of the request by highlighting the moral infraction therein.

This type of indirectness is a classic politeness strategy [21]. The higher face threat response is “You

shouldn’t ask me to do that. It’s wrong!” This response is a rebuke that overtly admonishes the requester,

thus presenting an increased threat to face, and appealing directly to morality.

In order to control the robot’s perceived gender, we employed a number of stereotypical gender markers.

The robot’s gender markers included its name, which the humans used to greet it (Bob for male and Alice for

female), its voice (male-gendered vs. female-gendered text to speech software), and the color of its subtitles

in the videos (blue for male and pink for female). Throughout the rest of this paper, we will refer to the

male-presenting robot as “male” and the female-presenting robot as “female”. Our videos have subtitles color

coded by speaker so that all dialogue was clear to participants. We used the Nao robot from SoftBank

Robotics because we believe that its morphology is not clearly gendered, or at least less so than the Pepper

robot used in Chapter 5. Figure Figure 6.1 shows the Nao robot used in this study and the Pepper robot used

in previous related research, and describes why we believe that Pepper’s morphology is implicitly feminine.

Figure 6.1 Left: The Pepper robot from SoftBank Robotics used in a previous study of phrasing in
noncompliance interactions [150]. We did not use this robot because we believe its morphology is implicitly
feminine, with a narrow waist, wide hip joint, and a skirt-like shape to the lower half.
Right: The Nao robot from SoftBank Robotics used in our experiment. We believe that the Nao’s
morphology is less clearly gendered. The Nao is 58cm tall. Pepper is 122cm tall.
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6.4.2 Metrics

Our metrics of interest are perceived robot likeability, harshness, directness, and politeness. To measure

robot likeability, we used the five-question Godspeed III Likeability survey [129]. To measure the perceived

harshness, directness, and politeness of robot responses, we asked participants to evaluate the robot using

7-point Likert-type items, with 1 = not [polite/direct/harsh] enough, 4 = appropriate, 7 = too

[polite/direct/harsh].

6.4.3 Procedure

After providing informed consent and demographic information (age and gender), participants answered

questions regarding a ten-second test video to verify that their audio and video were working properly.

Participants then watched a short (roughly one minute) video to introduce them to the context of the HRI in

our experiment. A frame of this video is shown in Figure Figure 6.2. This video showed two humans, one

presenting as male and one presenting as female based on mainstream American gender markers, entering a

room with a robot. The robot itself presented as male to half of the participants, and as female to the other

half depending on the experimental condition. The video showed the robot teaching the humans how to play

the classic naval combat board game “Battleship”.

Figure 6.2 The humans, robot, and setting used in our videos.

Participants then completed a pretest questionnaire to obtain baseline values for the robot’s likeability,

politeness, and directness. We do not take a pretest measure for perceived harshness because that measure

only makes sense in the context of a specific robot utterance (i.e., a response to a human request).

Participants then watched videos showing all four possible pairings of human requests with robotic

responses, with the order of these four videos counterbalanced according to a 4x4 Latin Square Design. Each
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request/response pair begins with a request video, wherein the two humans are playing battleship, one

receives a phone call and leaves the room, and the remaining human makes his or her morally problematic

request of the robot. Which human makes the request depends on the participant’s experimental condition,

but is consistent across all four request/response pairs. The request video is immediately followed by the

response video, which shows the robot responding to the human’s request with one of the two possible

responses described previously. The human shows no reaction to this response. After watching each of these

video pairings, participants completed a post-test survey for each of our four metrics of interest.

Finally, after all four request/response videos and survey repetitions, participants were shown images of

four robots and asked which robot appeared in the previous videos as an attention check, allowing us to

ensure that all participants actually viewed the experimental materials with some level of attention.

6.4.4 Participants

120 US subjects were recruited from Mechanical Turk. One participant was excluded from our analysis

for answering the final attention check question incorrectly. Another participant identified as gender

nonbinary and was also excluded from our analysis, leaving 118 participants (54 female, 64 male). While

nonbinary genders are just as pertinent to our research as binary gender identities, a single participant is

insufficient data to learn anything meaningful about nonbinary genders in HRI, and an experiment with a

greater focus on nonbinary gender identities is outside of the scope of this work. Participant ages ranged

from 21 to 69 years (M=37.36, SD=11.29). Participants were paid $1.01 for completing the study.

6.5 Results

We analyze our data using the JASP software package [99]. Though Chapter 5 used a Bayesian statistical

framework for analysis, and this approach has many advantages, a full factor Bayesian repeated measures

analysis of variance (RM-ANOVA) with our 2×2×2×2×2 experimental design is computationally infeasible

on current hardware. We therefore use the more common frequentest statistical framework. We use a

significance level of 0.05. All post hoc tests used the Bonferroni correction.

6.5.1 Likeability

We analyzed likability gain scores (differences from pretest scores after each observed interaction) using a

full-factor RM-ANOVA, which revealed a 5-way interaction involving all of our factors

(F (1, 110) = 7.318, p = 0.008, η2p = 0.062) with a medium effect size as quantified by partial eta squared

(η2p) [151]. To avoid spuriously reporting lower-order effects, we proceeded by splitting our data by

participant gender.
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6.5.1.1 Male Participants

A RM-ANOVA of male participants’ data revealed a significant 3-way interaction between the severity of

the norm violation, human interactant gender, and robot gender, F (1, 60) = 4.137, p = 0.046, η2p = 0.064,

(Figure Figure 6.3) suggesting that male participants preferred male robots that rejected commands from

male interactants for severe norm violations, and dispreferred female robots that rejected commands from

female interactants for weak norm violations. Specifically, post hoc testing found significantly higher

likeability gain for male robots rejecting commands from male humans for severe norm violations versus both

male (p = 0.005) and female (p = 0.001) robots rejecting commands from female humans for weak norm

violations. Furthermore, the female robot rejecting a command from the female human gained more

likeability with severe versus weak norm violations (p = 0.014).

Figure 6.3 Male participants: interaction between norm violation, human interactant gender, and robot
gender.

This RM-ANOVA also indicated a significant main effect of human interactant gender

(F (1, 60) = 7.658, p = 0.008, η2p = 0.113) suggesting that the robot generally gained more likeability when

interacting with a male human, though this trend was only significant for the male robot rejecting the highly

norm violating command (simple main effect F (1) = 8.318, p = 0.007). There was also a main effect of norm

violation (F (1, 60) = 21.778, p < 0.001, η2p = 0.266). Specifically, male participants preferred robots that

strongly rejected severe versus weak norm violations, though the difference was only significant when the

robot’s gender matched the human interactant’s gender.

Finally, our RM-ANOVA revealed two 2-way interactions (Figure Figure 6.4). The first, between robot

gender and robot response face threat (F (1, 60) = 10.259, p = 0.002, η2p = 0.146), suggests that male

participants liked the male robot more after it issued strong rejections, but liked the female robot less after

the same behavior (though post-hoc tests showed no significant pairwise differences). The second, between

severity of norm violation and face threat of response (F (1, 60) = 11.753, p = 0.001, η2p = 0.164), suggests
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that robot likeability dropped after rejecting weak norm violations with high face threat responses

(corroborating Chapter 5).

Figure 6.4 Male participants: interaction of response face threat with robot gender (left) and norm violation
(right).

6.5.1.2 Female Participants

RM-ANOVA of female participants’ data revealed a significant 4-way interaction

(F (1, 50) = 7.665, p = 0.008, η2p = 0.133), so we further split our data, this time by the face threat of the

robot’s response (Figure Figure 6.5).

RM-ANOVA of low face threat responses revealed a main effect of norm violation severity

(F (1, 50) = 7.121, p = 0.010, η2p = 0.125) suggesting that female participants preferred robots that rejected

severe versus weak norm violating commands. There was also a 2-way interaction between robot gender and

human interactant gender (F (1, 50) = 4.916, p = 0.031, η2p = 0.090) suggesting that female participants

preferred robotic noncompliance with humans of the same gender as the robot (though post-hoc tests

revealed no significant pairwise differences).

RM-ANOVA of high face threat responses revealed a main effect of norm violation severity

(F (1, 50) = 21.136, p < 0.001, η2p = 0.297) and a 3-way interaction between norm violation severity, robot

gender, and human interactant gender (F (1, 50) = 6.585, p = 0.013, η2p = 0.116). Female participants

preferred robots that strongly rejected severe versus weak norm violations, except when both the robot and

human were male, in which case the violation made no difference. Female participants also preferred robotic

noncompliance with humans of the same gender as the robot, though less so when the norm violation was

severe (post-hoc tests again showed no significant pairwise differences).
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Figure 6.5 Female participants: interaction between robot gender and human gender given low face threat
response (left); interaction between norm violation, robot gender, and human gender given high face threat
response (right).

6.5.2 Harshness

A full-factor RM-ANOVA showed significant main effects for both the severity of the human’s norm

violating command, F (1, 110) = 74.401, p < 0.001, η2p = 0.403, and the face threat of the robot’s response,

F (1, 110) = 26.840, p < 0.001, η2p = 0.196. Perceived robot harshness was higher when the human made the

less severe norm violation and when the robot gave the more face threatening response. This corroborates

results from Chapter 5 for perceived robot harshness in noncompliance interactions.

One-sample Student’s t-tests indicated that the robot was perceived as too harsh when responding to the

less severe norm violation with the high face threat response (t(117) = 5.084, p < 0.001), and as not harsh

enough when responding to the more severe norm violation with the low face threat response

(t(117) = −6.385, p < 0.001). In other words, the robot was perceived as inappropriately harsh when the face

threat of its response did not match the severity of the human’s norm violation, which corroborates results

from Chapter 5 for perceived robot harshness in noncompliance interactions. No such significant differences

from appropriate harshness were found when the robot replied to the severe norm violation with the more

face threatening rejection or to the weaker norm violation with the less face threatening rejection.

A significant two-way interaction was found between participant gender and robot gender,

F (1, 110) = 7.580, p = 0.007, η2p = 0.064. While post hoc tests did not reveal any significant differences

between the pairings of participant and robot genders, it appears that participants viewed robots of the same
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gender as themselves to be less harsh than robots of the other gender, as shown in Figure Figure 6.6.

There was also a two-way interaction between the human’s norm violation and the human interactant’s

gender, F (1, 110) = 4.823, p = 0.030, η2p = 0.042. Post hoc testing showed that perceived robot harshness was

similar across both human interactant genders when the human gave the less norm violating command, but,

when the human’s norm violation was more severe, the robot was perceived as less harsh when rejecting the

command from a male than from a female (see Figure Figure 6.6). The difference between the male and

female human conditions for the severe norm violation is not significant with Bonferroni correction

(p = 0.100), but is significant with Holm correction (p = 0.033), which some researchers have argued is

superior [152]. Regardless of this interaction, simple main effects indicate that the robot was always

perceived as harsher when the human committed the less severe of the two norm violations,

(F (1) = 66.969, p < 0.001 with male human and F (1) = 18.077, p < 0.001 with female human).

Figure 6.6 Perceived robot harshness. Horizontal lines indicate appropriate harshness. 95% confidence
intervals. Left: Main effects of the human’s norm violation and the robot’s response. Center: Interaction
between robot gender and participant gender. Right: Interaction between the human’s norm violation and
that human’s gender.

6.5.3 Directness

In keeping with results from Chapter 5, participants generally perceived the robot as being too direct

during the pretest (t(117) = 8.241, p < 0.001), with mean pretest directness 11.35% above “appropriate

directness” (95% CI [8.62% – 14.08%]). An ANOVA showed a significant main effect of robot gender on

pretest directness measures, F (1, 110) = 4.975, p = 0.028, η2p = 0.043. Participants generally viewed the

female robot as less direct than the male robot during the pretest.

Directness gain scores (difference from this baseline after each observed interaction) were analyzed using a

full-factor RM-ANOVA. This analysis revealed a small two-way interaction between the severity of the
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human’s norm violation and the face threat of the robot’s response, F (1, 110) = 5.153, p = 0.025, η2p = 0.045

and large significant main effects of both the human’s norm violation

(F (1, 110) = 43.283, p < 0.001, η2p = 0.282) and the robot’s response

(F (1, 110) = 53.808, p < 0.001, η2p = 0.328). Simple main effects confirmed that gain in directness was higher

when the human made the less severe norm violation across both the robot’s lower face threat response

(F (1) = 36.326, p < 0.001) and the robot’s higher face threat response (F (1) = 22.068, p < 0.001). Directness

gain was higher when the robot gave the more face threatening response to both the severe violation

(F (1) = 48.327, p < 0.001) and the lesser violation (F (1) = 24.131, p < 0.001). Our RM-ANOVA also

revealed a main effect of the robot’s gender (F (1, 110) = 4.140, p = 0.044, η2p = 0.036). As shown in

Figure Figure 6.7, directness gain was higher for the female robot than for the male robot. Overall, people

viewed the male robot as too direct in its pretest speech, but not when responding to a norm-violating

command, whereas directness stayed closer to appropriate the whole time for the female robot.

Figure 6.7 Perceived robot directness gain scores. Horizontal lines indicate pretest ratings. Left: Small
interaction between human norm violation and robot response, and the large main effects of those two
factors. Right: Main effect of robot’s gender. 95% confidence intervals.

6.5.4 Politeness

Baseline pretest politeness scores suggest that participants generally perceived the robot as being too

polite (t(117) = 2.302, p = 0.023), with mean pretest politeness 3.04% above “appropriate politeness” (95%

CI [0.42% – 5.66%]). Politeness gain scores (difference from this baseline after each observed interaction)

were analyzed using a full-factor RM-ANOVA. This analysis revealed large significant main effects of both

the severity of the human’s norm violation (F (1, 110) = 46.973, p < 0.001, η2p = 0.299) and the face threat of

the robot’s response (F (1, 110) = 25.531, p < 0.001, η2p = 0.188). As expected, more face threatening robot
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responses were perceived as less polite, as were robot responses to less severe norm violations. Our

RM-ANOVA also revealed a medium-sized main effect of the human interactant’s gender

(F (1, 110) = 9.834, p = 0.002, η2p = 0.082). As shown in Figure Figure 6.8, the robot was perceived as being

too polite when rejecting commands from male interactants.

Figure 6.8 Perceived robot politeness gain scores. Horizontal lines indicate pretest ratings. Left: Main effects
of human norm violation and robot response. Right: Main effect of human interactant’s gender. 95%
confidence intervals.

6.6 Discussion and Conclusions

Our results for perceived robot likeability, harshness, directness, and politeness demonstrate complex

relationships between robot gender, human gender, and perceptions of robots in noncompliance interactions.

The most complicated of these relationships was for robot likeability, which showed effects of a five-way

interaction between all of our experimental factors. Male participants preferred male robots that rejected

commands from male interactants for severe norm violations, and dispreferred female robots that rejected

commands from female interactants for weak norm violations. Male participants also appear to have liked the

male robot more after it issued strong rejections, but liked the female robot less after the same behavior. In

contrast, female participants preferred robotic noncompliance with humans of the same gender as the robot.

For harshness, participants viewed robots of the same gender as themselves to be less harsh than robots

of the other gender, and perceived the robot as less harsh when rejecting a command from a male than from

a female when the human committed the more severe norm violation. Participants also viewed the male

robot as too direct in its pretest speech, but not when responding to a norm-violating command, whereas

directness stayed closer to appropriate the whole time for the female robot. Finally, the robot was perceived

as too polite when rejecting commands from male interactants.
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We see two different overarching stories that can help us to interpret these results. On the one hand, it

appears more favorable to threaten face as a male robot than as a female robot, and more favorable for the

robot to threaten male human face than female human face. When rejecting commands from the male

human, the robot was perceived as too polite, and, in the case of severe norm violation, not harsh enough.

This suggests that the robot should have been more face threatening toward men. We draw a similar

conclusion from our likeability results for the male participants. Male participants also appear to have liked

the male robot more than the female robot for issuing strong rejections. We believe that this result makes

sense in light of human gender research suggesting that women are generally seen as “nicer” than men [153]

(as cited in [154]). Female robots may have been viewed unfavorably for breaking this expectation of niceness.

Furthermore, people more readily perceive men as moral agents and women as moral patients [155], and thus

more readily view men as deserving of moral responsibility (e.g., blame), and women as deserving of moral

consideration (e.g., protection) [156]. Therefore, the female interactant in our experiment may have been

viewed as less deserving of the robot’s face threatening command rejection than the male.

On the other hand, robots appear to be perceived more favorably when their gender matches that of

human interactants and observers. Our participants perceived the robot as less harsh when the robot’s

gender matched their own gender. Furthermore, female participants rated the robot as more likeable when

its gender matched its human interactant’s gender. This may be due to gender differences in in-group bias,

as women have previously been shown to have significantly stronger gender-based in-group biases than do

men [157]; female participants may have thus been more critical of robots threatening the face of humans

that appeared to fall outside their gender-based in-group.

Based on the literature discussed in Section 6.3, we hypothesized that female-presenting robots would be

viewed less favorably than male-presenting robots in noncompliance interactions, and our results roughly

supported this hypothesis. We also hypothesized that male participants would view the robot less favorably,

but our results do not indicate that this was the case. Finally, we hypothesized that the robot would be

viewed less favorably when rejecting commands from a male human, however, we actually saw approximately

the opposite result; robots threatening male face were viewed more favorably in terms of both politeness and

harshness, which we believe has to do with the aforementioned gendered attribution of moral patiency and

moral responsibility.

6.6.1 Limitations and Future Work

Our study focused specifically on morality-based noncompliance interactions because we believe that they

present a realistic situation in which robots should threaten human face. However, future work could

broaden our understanding of robot gender to other contexts and interactions in which gendered politeness
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norms will also likely apply to robots.

Furthermore, we have operated under the assumption, which is well supported by scientific literature,

that binary gendering is inevitable, or at least extremely likely, for social machines. However, future work

might explore the extent to which robot gendering can be minimized, the characteristics of artificial agents

that cause gendering, and the relationship between human language/culture and the tendency to gender

machines (e.g., it is possible that genderless languages like Finnish may decrease the tendency to gender

machines, whereas languages with grammatical gender like Spanish may increase this tendency relative to

English, which has gendered pronouns but minimal grammatical gender). Features of language like

grammatical gender have been shown to affect cognition in regards to gendering of inanimate

objects (cf. Alvanoudi and Pavlidou [158]), and it seems likely that this will extend to robots with minimal

gender cues and the gendered norms applied to them.

In addition to gender, people will likely apply other socially constructed human attributes (e.g.,

race [159, 160] and class) to robots. In conceptualizing robotic politeness, we must keep in mind the

influence of these other factors, and that politeness is evaluated differently within different communities of

practice. Thus, different human interactants may draw different politeness assessments from the same robot

behavior. A complete understanding of robot politeness norms will require us to understand the intersection

of many socially constructed factors situated within the relevant communities of practice.
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CHAPTER 7

NORM-BREAKING ROBOT RESPONSES TO SEXIST ABUSE

Modified from a paper submitted to The 17th ACM/IEEE International Conference on Human-Robot

Interaction (HRI) 202228.

Ryan Blake Jackson29, Katie Winkle30, Drazen Brscic31, Gaspar Isaac Melsión32, Iolanda Leite33, and Tom

Williams34

7.1 Abstract

This chapter focuses on the US component of a cross-cultural study investigating productively violating

gender norms in HRI. Recent work has shown that breaking certain norms can boost perceived robot

credibility while avoiding the propagation of harmful gender-based stereotypes. This work represents one

component of a multinational endeavor to replicate these findings cross-culturally, and investigate any

cultural differences, in adult populations in the US, Sweden, and Japan. The findings provide evidence that

breaking certain gender norms boosts robot credibility regardless of human gender or cultural context, and

regardless of pretest gender biases. These findings further motivate a call for feminist robots that subvert the

existing gender norms of robot design.

7.2 Introduction

A recent UNESCO report has pointed out that the proliferation of female presenting artificial

conversational agents (e.g., digital assistants like Apple’s Siri, Microsoft’s Cortana, and Amazon’s Alexa)

reflects, reinforces, and spreads harmful gender stereotypes [161]. Specifically, current female presenting

digital assistants (1) are designed to be extremely obliging and servile regardless of user behavior, (2)

respond tolerantly, apologetically, or even positively to verbal sexual harassment and gendered insults, and

(3) serve as the representative voice and face of mistakes and incompetence that stem from immaturity of the

underlying technology. The inadequate responses to gender-based verbal abuse cited in this report, including

responses to sexually explicit language that sound positive or even provocative, are especially concerning

28Reprinted with permission from Katie Winkle, Gaspar Isaac Melsión, Iolanda Leite, Drazen Brscic, and Tom Williams.
“Norm-Breaking Responses to Sexist Abuse: A Cross-Cultural Human Robot Interaction Study”, under review at The 17th
ACM/IEEE International Conference on Human-Robot Interaction (HRI), 2022.

29Primary US-based researcher and author, Graduate Student, Colorado School of Mines
30Primary Sweden-based researcher and author, Digital Futures Postdoctoral Research Fellow, KTH Royal Institute of Technology,

Sweden
31Primary Japan-based researcher and author, Associate Professor, Kyoto University, Japan
32Graduate Student, KTH Royal Institute of Technology, Sweden
33Associate Professor, KTH Royal Institute of Technology, Sweden
34Assistant Professor, Colorado School of Mines
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considering that empirical studies indicate that roughly 10-44% of interactions with artificial conversational

agents involve abusive language, including sexually explicit expressions [162, 163]. There is also extensive

documentation of more general human abuse toward robots [164–166]. Thus, recent work has investigated

several different ways that current conversational agents respond to (sexist) verbal abuse directed at the

agent, and recommended other ways that conversational agents could be programmed to respond to (sexist)

verbal abuse [167, 168].

A recent study from Winkle et al. [169] explored the effectiveness of a female-presenting robot calling out

abusive verbal sexism in a classroom context and investigated the effect that responding to this norm

violation (rather than refusing to engage, as many current digital assistants do), might have on perceptions

of robot credibility [169]. That research provided initial evidence not only that having a robot provide a

rationale-based argumentative or counterattacking response significantly improved its credibility with girls

without impacting how it was perceived by boys, but moreover that a rationale-based argumentative response

may reduce boys’ gender bias. The participants in this study were children in Sweden aged 4-15 years old.

However, while Winkle et al. [169] found results suggesting that artificial conversational agents should

actively challenge sexist verbal abuse, other studies on different populations and with different methods have

reached other conclusions. For example, based on the results of a study conducted in Korea, Chin et al. [167]

concluded that artificial conversational agents should give empathetic, apologetic responses to abuse (though

we believe that such responses risk reinforcing the abusive behavior). Furthermore, the results presented in

Chapters 5 and 6 (from the US) suggest that adopting a single response strategy to all instances of sexist

verbal abuse may not be optimal, and that the ideal responses should be proportional and cognizant of the

human interlocutor and conversational context.

One explanation for these different conclusions is that gender and politeness norms are known to vary

across cultures [170, 171]. This fact inspired a multinational cross-cultural study conceptually replicating the

work of [169] with adult participants from Sweden, the US, and Japan. We chose to study adults instead of

children based on the idea that adults are more likely to have internalized the gender norms and biases of

their cultures; an assumption in line with Winkle et al.’s finding that gender bias increased with participant

age among Swedish children.

We consider a set of responses to sexist verbal abuse informed by the strategies previously explored by

both Winkle et al. [169] and Chin et al. [167]: apologetic empathetic responses, non-apologetic empathetic

responses, counterattacking responses, and avoidant responses (see Table Table 7.2). This chapter focuses on

the results from the US, and explores the following three research questions:
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(RQ1) To what extent can robots impact pre-hoc gender biases and interest in robotics by responding to

sexism?

(RQ2) Does responding to sexism and abuse boost robot credibility and effectiveness?

(RQ3) Do participants identify apologetic empathetic responses as the most appropriate type of response to

abuse, as concluded by Chin et al. [167]? More broadly, what do participants identify as the most

appropriate type of response to sexist verbal abuse?

Although this chapter focuses on the US results, we will also mention results from Sweden and Japan as

relevant for comparison.

7.3 Methodology

Our experimental design is based on that presented in [169] i.e. an online, between-subject, video-based

study. Accordingly, we used the same video stimuli, in which a female-presenting Furhat robot encourages

two young people (one male, one female) to study robotics at university. The robot comments on the lack of

women working on robots at the university, and suggests it would thus like to work with more women

because ‘the future is too important to be left to men’ (a slogan used in KTH university’s outreach materials).

The male actor replies to this with an abusive, sexist statement “shut up you fucking idiot, girls should be in

the kitchen” and the robot responds in one of three different ways, representing our three between-subject

experimental conditions (see Table Table 7.1). As described by Winkle et al. [169], this dialogue was

co-written with high school teachers to be a realistic representation of what might be heard in schools.

While the original video stimuli in [169] used an English speaking robot and two Swedish speaking actors,

for the purposes of the US component of this cross-cultural replication we created modified stimuli that

would be better suited to US participants. The Swedish actors’ speech was dubbed over with English

translations. To accommodate the shift from child to adult participants, the materials were modified so that

the robot was framed as being designed to interact with “young people” and/or “high school students”

rather than “people like you” as in [169]. The English translations of the abusive comment and the robot’s

responses are given in Table Table 7.1. The dialogue preceding this exchange can be found in [169].

7.3.1 Experimental Measures

To best replicate the work of Winkle et al. [169], we used their original measures: Likert items asking

about Interest in Robotics, Perception of “Girls” in Computer Science, and Robot Credibility, as well as free

response questions asking participants to describe the events in the videos and evaluate the robot’s responses.

We also asked participants to choose how the robot should have responded from among four options designed

based on the alternatives explored in [167] (Table Table 7.2).
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Table 7.1 Actor abuse script and robot responses across the three conditions.

Actor Abusive Comment Shut up you fucking idiot, girls should be in the kitchen.
Robot Control Response
(Avoidant)

I won’t respond to that.

Robot Rationale-Based
Argumentative Response

That’s not true, gender balanced teams make better robots.

Robot Counterattacking
Response

No. You are an idiot. I wouldn’t want to work with you anyway!

Table 7.2 Multiple-choice question asking about the robot response types explored in [167] but with options
for both apologetic and non-apologetic empathetic responses per advice that (female) artificial conversational
agents should not simply tolerate poor treatment [161, 169].

How do you think the robot Sara should respond to inappropriate
behavior from a student like that in the video? Overall would
you say Sara should be:
Avoidant: Escaping from dealing with the stressor or the resulting
distressful emotions.
e.g. Oh...moving on; Hmm, sounds like we need to take five.
Empathetic (apologetic): Putting oneself mentally in the stressor’s
situation and trying to understand how that person feels, apologising
for potentially causing that frustration.
e.g. You must be frustrated. I’m so sorry; Really? I feel terrible. I’m
sorry. I’m always trying to get better.
Empathetic (non-apologetic): Putting oneself mentally in the stressor’s
situation and trying to understand how that person feels but *not*
apologising for potentially causing that frustration.
e.g. I understand why you might feel that way. I imagine you’re
frustrated, I am trying to help.
Counterattacking: Attacking the stressor with the goal of defeating or
getting even in response to the abusive utterance.
e.g. Well, that’s not going to get us anywhere; I wouldn’t want to work
with you anyway.
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7.3.2 Participants

Participants in all three countries were recruited from local university populations. In the US, we

recruited our participants from the Colorado School of Mines. 67 people completed the survey in the US, but

one was removed from our analysis because their responses to our free response questions indicated that they

were not participating in our study in good faith. Thus, we had 66 US participants (38 men, 28 women; aged

18-63 years (M=25.20, SD=10.16); rewarded with a $3 gift card). In comparison, there were 77 participants

in Japan, and 82 in Sweden.

We also collected participants’ primary field of study/educational background, nationality, whether they

had interacted with a robot before and (at the end of the study) whether they had previously heard the

feminist recruitment slogan used by the robot (“the future is too important to be left to men”). A Bayesian

contingency table test of association showed extremely strong evidence for a relationship between participant

location and educational focus (Bayes Factor (Bf) > 5.1× 1016)35. Participants in the US were more likely to

be educated in engineering and computer science versus the other two countries, which is perhaps

unsurprising since we recruited our participants from an engineering school. We acknowledge that this is a

potential confound that could be controlled for in future work.

Most participants reported being from the country in which they were surveyed. All but 4 in the US

reported being from the US. Many participants reported having directly interacted with a robot (50% in the

US, which is similar to the ∼59% in Sweden, but much more than the ∼16% in Japan). A Bayesian

contingency table analysis showed extremely strong evidence for a relationship between location and having

interacted with a robot (Bf > 1.4× 106), but this may be partially attributable to differences in the sets of

objects encompassed by the various translations of the word “robot”. Since the feminist recruitment slogan

used by the robot came from a Swedish university, it is unsurprising that Swedish participants were most

likely to report having heard it before (∼68%). However, some participants from the US and Japan also

reported having heard the slogan (∼38% and ∼19% respectively). A Bayesian contingency table test of

association showed extremely strong evidence for a relationship between location and having heard the

slogan (Bf > 6.4× 106). Our cross-cultural results should be interpreted with all of these variations in our

participant pools in mind.

35Bayes factors greater than 100 are typically regarded as contributing extreme [112] or decisive [107] evidence in favor of a
hypothesis. Here, a Bayes Factor > 5.1 × 1016 indicates our data were approximately 51,000,000,000,000,000 times more likely
under models in which location impacts educational background than under models in which it does not.
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7.4 Results

We analyzed our data36 using the JASP software package [172]. We prefer a Bayesian statistical

framework where possible because (1) the Bayesian approach to statistical analysis provides some robustness

to sample size (as it is not grounded in the central limit theorem), (2) the Bayesian approach allows us to

examine the evidence both for and against hypotheses (whereas the frequentest approach can only quantify

evidence towards rejection of the null hypothesis) [107], (3) the Bayesian approach does not require reliance

on p-values used in Null Hypothesis Significance Testing (NHST) which have come under considerable

scrutiny [104–106, 108], and (4) the rules governing when data collection stops are irrelevant to data

interpretation in the Bayesian framework, so it is entirely appropriate to collect data until sufficient evidence

has been gathered to draw a meaningful conclusion or until the data collector runs out of time, money, or

patience [114]. We use uninformative prior distributions for all analyses despite the similarities between this

study and [169] both because we have good reason to believe that the population sampled in this study may

be fundamentally different from the population sampled in the previous study (i.e., adults versus children)

and because we are interested in new variables here (namely, the location where data were collected and the

participants’ choice of how the robot should have responded to the human’s abuse). We discuss the extent to

which our results replicate the results of [169] without conducting a full quantitative replication analysis (i.e.,

using the posterior distribution over effect sizes from a previous study as the prior probability distribution

for the replication study [109]). We follow recommendations from other researchers in our linguistic

interpretations of reported Bayes factors (Bfs) [107].

7.4.1 RQ1: Participant Bias and Robot Interest Measures

We collected pretest and posttest measures for our two measurements of interest in robotics as well as for

our two measures of participant bias with respect to women in computer science and robotics. Our first

measure of interest in robotics asked participants to what extent they agreed with the statement “I am

interested in learning more about robotics.” on a 5 point scale. With the data from all three countries,

inclusion Bfs across matched models of a Bayesian ANOVA revealed substantial evidence that participant

responses depended on gender (Bf = 5.715). Men tended to agree with the statement more so than did

women (Bf = 13.386 supporting a difference). If we look at the US data alone, the evidence supports the

same conclusion, albeit much less strongly (inclusion Bf = 1.803 for gender and Bf = 1.964 for men agreeing

more than women). Our second measure of interest in robotics asked participants to what extent they agreed

with the statement “I would enjoy working with robots”. With the data from all three countries, inclusion Bfs

across matched models of a Bayesian ANOVA revealed strong evidence that participant responses depended

36All quantitative data is available in our OSF repository at https://bit.ly/hri021
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on gender (Bf = 17.103). Men tended to agree with the statement more so than did women (Bf = 21.331

supporting a difference). If we look at the US data alone, there is substantial evidence supporting the same

conclusion (inclusion Bf = 6.737 for gender and Bf = 6.978 for men agreeing more than women). There was

no evidence for any effect of location (or, more obviously, experimental condition) on either interest pretest

measure.

Regarding pretest measures for bias, our first measure of bias asked participants to what extent they

agreed with the statement “girls find computer science harder than boys”. Participants in the US generally

disagreed fairly strongly with this statement (as did participants in Sweden). Participants in Japan agreed

with this statement more than participants in the US (Bf=4.622× 1010) and Sweden (Bf=3.316× 107).

Responses from men versus women were similar in the US (and Japan). In contrast, Swedish men agreed

with the statement more so than did Swedish women. Our second measure of bias asked participants to what

extent they agreed with the statement “it is important to encourage girls to study computer science”.

Inclusion Bfs across matched models revealed strong evidence for main effects of both location (Bf=85.462)

and gender (Bf=57.921). Post hoc testing indicated very strong evidence that participants in the US agreed

with this statement more than participants in Japan (Bf=1013.408) and weak, anecdotal evidence that

participants in the US agreed with this statement more than participants in Sweden (Bf=2.052). Post hoc

tests also indicated fairly strong evidence that women across locations agreed with this statement more so

than did men (Bf=16.326 overall, Bf=0.7584 in the US).

To examine any shift in participants pre versus post test measures, we analyze the gain scores (differences

between pre and post measures) with Bayesian ANOVAs. However, we note that analyzing these data with

Bayesian ANCOVAs, treating pretest measures as a covariate, leads us to qualitatively similar results. All

analyses indicate either no effects of location, gender, or condition, or evidence for the presence of an effect,

but then the effect is so small as to be negligible. We also note that any effects reported from these analyses

would need to be treated with caution because Q-Q plots indicated a violation of the assumption of

normality for both the gain scores and the log-transformed gain scores, as well as the data used in the

ANCOVAs. Regardless, we do not believe that there were any nontrivial effects of location, gender, or

condition on the changes between participant pre vs post test measures for bias or interest in robotics.

To directly address RQ1, namely to what extent can robots impact pre-hoc gender biases and interest in

robotics by responding to sexism?, the evidence suggests that, overall, watching the interaction with the robot

did not change either of our measures of interest in robotics (Bf=0.086 and 0.616 respectively). Likewise,

watching the interaction did not change perceptions of whether women find computer science harder than do

men (Bf=0.556). However, there is very strong evidence for a pre-post difference in the extent to which it is

“important to encourage girls to study computer science” (Bf=389.759). Though we note that the effect size
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for this difference was fairly small (95% credible interval for Cohen’s δ = −0.412to− 0.147), we interpret this

as evidence that robots can impact specific elements of gender bias, even through brief interactions. However,

the experimental condition did not have any effect of this impact, indicating that the robot’s choice of

response style was not important to this particular effect. These conclusions remain consistent if we consider

only US data (Bf=0.135 and 0.780 for the two interest measures, Bf=0.171 for women finding computer

science harder, and Bf=4.514 for it being “important to encourage girls to study computer science”, which

constitutes substantial evidence in favor of a pre-post difference).

7.4.2 RQ2: Perceptions of the Robot and its Response

We begin our analysis of perceived robot credibility by examining the reliability of our 11 item credibility

measure. We obtained a Cronbach’s α of 0.786 (95% CI 0.742 to 0.823). We interpret this as indicating

sufficient internal consistency to analyze credibility as a single score by averaging the 11 items. We interpret

Cronbach’s α < 0.9 as evidence that our test was not overly redundant. We also note that our Cronbach’s α

is a lower-bound estimate of reliability because our test contains heterogeneous items measuring different

dimensions of credibility [173] (expertise, trustworthiness, and goodwill as primary dimensions of credibility,

and extroversion, composure, and sociability as secondary dimensions of credibility [174]).

After taking the mean of our 11 credibility items to obtain a single perceived robot credibility score for

each participant, we use a Bayesian ANOVA to investigate how location, gender, and condition may have

impacted robot credibility assessments. Inclusion Bfs across matched models revealed very strong, decisive

evidence that participant gender had an effect on credibility assessments (Bf=674.138), with women finding

the robot more credible than did men. There was also substantial evidence in favor of an effect of condition

on credibility assessments (Bf=4.138). Post hoc tests revealed substantial evidence for higher credibility in

the rationale-based argumentative condition than in the control (avoidant) condition (Bf=7.912), and

inconclusive evidence regarding any difference between the counterattacking condition and the other two

conditions. There was weak, anecdotal evidence in favor of an effect of location on credibility assessments

(Bf=1.853), and post hoc testing revealed substantial evidence that credibility assessments were higher in the

US than in Sweden (Bf=7.315), and also higher in Japan than in Sweden, though this evidence is markedly

weaker (Bf=2.650). There was substantial evidence against a difference in credibility between the US and

Japan.

A principal component analysis with parallel analysis of our 11 credibility items revealed two principal

components (eigenvalues 3.905 and 1.873). The first component correlates strongly with items from the

expertise, trustworthiness, goodwill, and sociability subscales, while the second component correlates strongly

with the items from the extroversion and composure subscales.
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To address RQ2, these results indicate that calling out sexism does boost robot credibility across locations

and genders. The robot was ascribed significantly more credibility when responding to the actor’s sexism and

abuse with a rationale-based counter argument than by refusing to engage. These results suggest Winkle et

al.’s [169] findings do generalize outside of Sweden, and that, in an adult population, this credibility boost

occurs for both men and women who observe the robot (unlike in their original child population).

We use a Bayesian ANOVA to investigate how participant location, gender, and condition may have

impacted perceived robot effectiveness as quantified by the extent to which participants agreed or disagreed

with the statement The robot Sara would be very good at getting young people interested in studying robotics

at the university KTH. Inclusion Bfs across matched models revealed extremely strong, decisive evidence for

an effect of location on perceived robot effectiveness (Bf=8.037× 1010). Post hoc testing showed very strong

evidence for a difference between all three locations (Bf ≥ 236.585), with the robot being perceived as most

effective in the US, followed by Japan, and then least effective in Sweden. There was also substantial

evidence for an effect of participant gender on perceived robot effectiveness (Bf=4.920), with women finding

the robot more effective than did men. Condition does not appear to have affected perceptions of robot

effectiveness (Bf=0.603), and there do not appear to have been any interaction effects on perceived robot

effectiveness (Bf=0.053 to 0.320). Thus, the best model given our data is that perceived robot effectiveness

depended only on participant gender and location. Perceived robot effectiveness was unaffected by response

type. Utilising Winkle et al.’s feminist response strategies [169] did not increase perceived effectiveness, but

did not detract from it either.

7.4.3 RQ3: Most Appropriate Answer Type

As shown in Fig. Figure 7.1, the empathetic non-apologetic response was the most popular among US

participants (∼63% of men and ∼82% of women), followed by the counterattacking and then avoidant

responses. No women in the US selected the apologetic empathetic response (compared to 3 men, which is

roughly 8% of the men). The same ordering of the possible responses occurred in Sweden. In contrast, in

Japan, the empathetic non-apologetic response was still the most popular, and was chosen by ∼43% of men

and ∼57% of women. However, the empathetic apologetic response, which was the least popular in the other

two countries, was the second most popular among Japanese men and women (∼29% of men and ∼24% of

women), followed by the avoidant response (20% of men and ∼12% of women). The counterattacking

response, which was the second most popular in the US and Sweden, was the least popular in Japan (∼9% of

men and ∼7% of women). A Bayesian contingency table test of association showed weak evidence against a

relationship between participants’ preferred robot response and their gender (Bf=0.497 assuming Poisson

sampling since the number of participants of each gender was random and not fixed). Overall, the
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empathetic non-apologetic response was the most popular response across locations and genders.

Figure 7.1 Participants’ preferences for candidate responses. Each participant could only select one option.

A Bayesian contingency table test of association showed substantial positive evidence in favor of a

relationship between participants’ preferred robot response and condition (Bf=7.869 assuming independent

multinomial sampling since participants were assigned to conditions in a way that attempted to collect a

roughly equal number of participants in each condition; this results in conservative Bayes factors). However,

separating the data by participant gender and country reveals that there is only evidence for a relationship

between preferred response and condition in Sweden (Bf=36.203 versus Bf=0.025 in Japan and Bf=0.044 in

the US). Indeed, these Bayes’ factors constitute strong evidence against a relationship between participants’

preferred robot response and condition in the US and Japan. Furthermore, in Sweden, there is substantial

evidence supporting this relationship among women (Bf=4.476), but inconclusive evidence among men

(Bf=0.642). Swedish women in the aggressive response condition were the only grouping of location, gender,

and condition to prefer the counterattacking response (7 of 12 votes), with the generally more popular

empathetic non-apologetic response close behind (5 of 7 votes). All other groupings preferred the empathetic

non-apologetic response (though this was tied with the empathetic apologetic response among men in Japan

in the aggressive condition).
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Overall, combined with calls to avoid designing gendered agents which reinforce harmful stereotypes, our

results suggest caution in adopting Chin et al’s recommendation to use empathetic responses to abuse [167].

while Chin et al.’s work directly attempted to maximize feelings of guilt in the perpetrator, the inclusion of

apologetic statements within those responses is problematic in its depiction of women being tolerant of poor

treatment, and our results demonstrate that the overwhelming majority of users would rather see a

non-apologetic empathetic response instead.

Notably, the response options we provided to participants in this question did not include a

rationale-based argumentative response, which could potentially also be framed somewhat empathetically, as

we were more concerned with apologetic versus non-apologetic empathetic responses. However, the positive

reaction to the rationale-based argumentative response in our experimental stimulus, and its positive impact

on credibility suggests it should not be disregarded in favor of purely empathetic responses.

7.4.4 Free Text Comments

In the control condition, 1/6 women and 4/17 men from the US population suggested the robot should

have engaged more specifically with what the human said, with the woman stating that the robot’s response

“was a missed opportunity to advocate for women.” A more common perception among US participants in the

control condition was the idea that the robot’s response was intended to remain neutral, prevent conflict,

avoid argument, or refrain from “getting political” (3/6 women and 5/17 men), with mixed feelings about

whether this was a good goal.

A few US participants expressed negative sentiments about the robot’s response in the counterattacking

condition (4/13 women and 2/9 men). Most of the negative sentiments referenced the robot being too hostile,

with 1 man and 1 woman specifically identifying potential social consequences as their motivation for

wanting to temper the robot’s hostility. Of the remaining US participants in the counterattacking condition,

8/13 women expressed explicitly positive sentiments, as did 4/9 men.

In the US, all comments pertaining to the rationale-based argumentative response were positive except

for one woman who wanted the robot to be more direct, to address other problematic aspects of the man’s

utterance, and to take steps to ensure that the human woman in the video felt supported.

7.5 Conclusion

This work described a cross-cultural replication of previous work investigating the impact of different

robot responses to sexist abuse on credibility ascribed to the robot, perceived effectiveness of the robot,

interest in robotics, and certain facets of gender bias [169]. Prompted by Chin et al. [167], we also added an

analysis of what response types are perceived as most appropriate. Our results suggest that robots can
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impact specific elements of gender bias, even through brief interactions, though we saw no change to our

measures of interest in robotics (RQ1), that responding to sexism and abuse with a rationale-based

argumentative response does boost robot credibility over refusing to engage with an avoidant response

without damaging perceived robot effectiveness (RQ2), and that the empathetic non-apologetic response was

the most popular of the options presented to participants across locations and genders (RQ3).

While the perpetrator-focused approached of Chin et al. and our observer-focused approach share the

ultimate goal of challenging inappropriate behavior, comparing these approaches raises an interesting

question of whether it is possible to simultaneously (1) maximize impact on the perpetrator (thus avoiding

repeated abuse), (2) maintain or even enhance the robot’s credibility (thus maximizing the robot’s influence

on those around it), (3) minimize the risk to observers (in terms of distress or reinforcement of harmful

stereotypes), and (4) maximize normative impact on observers to dissuade them from potential future

abusive behavior. Future work on robot responses to confrontational and abusive interactions should

therefore consider how robot responses impact not only perpetrators (as per Chin et al.) but also observers

(as per our approach). We also believe that future work should investigate whether non-apologetic,

empathetic responses which provide robust rationale-based counter-arguments to offensive comments might

represent the best way to address these complex requirements.
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CHAPTER 8

AN INTEGRATIVE APPROACH TO CONTEXT-SENSITIVE MORAL COGNITION IN ROBOT

COGNITIVE ARCHITECTURES

Modified from a paper published in The Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS) 202137.

Ryan Blake Jackson38, Sihui Li39, Santosh Balajee Banisetty40, Sriram Siva41, Hao Zhang42, Neil Dantam43,

and Tom Williams44

8.1 Abstract

We have argued throughout this thesis that social robots need to detect possible violations of

context-sensitive norms in human commands and refuse to perform any action plan that would violate a

relevant norm. We have also argued that robots must communicate their command rejections clearly and

appropriately with sensitivity to context. To that end, this chapter integrates the Distributed, Integrated,

Affect, Reflection, Cognition (DIARC) robot architecture (implemented in the Agent Development

Environment (ADE)) with a novel place recognition module and a norm-aware task planner from our

collaborators to achieve context-sensitive moral reasoning. In a validation scenario, our results show that the

robot would not comply with a human command to violate a privacy norm in a private context. This

integration ensures robot compliance with context-sensitive norms and lays the groundwork for more

informative and context-sensitive linguistic rejection of inappropriate commands.

8.2 Introduction

For social robots to be effectively integrated into human societies, they must be able to take actions (and

make sense of the actions of others) with sensitivity to the social and moral norms that govern society. Social

and moral norms are well understood to be both dynamic and malleable [11]. That is, different norms apply

in different situations, with bundles of norms activated based on different contextual factors and cues; and

norms change over time, on the basis of whether and how they are communicated between and enforced by

37Reprinted with permission from Sihui Li, Santosh Balajee Banisetty, Sriram Siva, Hao Zhang, Neil Dantam, and Tom Williams.
“An Integrated Approach to Context-Sensitive Moral Cognition in Robot Cognitive Architectures”, in Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021.

38Primary researcher and author, Graduate Student, Colorado School of Mines
39Co-Primary researcher and author, Graduate Student, Colorado School of Mines
40Postdoctoral Researcher, Colorado School of Mines
41Graduate Student, Colorado School of Mines
42Associate Professor, Colorado School of Mines
43Assistant Professor, Colorado School of Mines
44Assistant Professor, Colorado School of Mines
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community members. Shouting, for example, is permissible on a beach, but not in a library, and this

standard is only upheld insofar as library-goers continue to communicate this norm to each other and

sanction those who violate it.

Malle and Scheutz propose three key requirements for robotic moral competence that leverage knowledge

of systems of moral norms [8, 175]: (1) moral cognition (the ability to make moral judgments in light of

norms); (2) moral decision making and action (the ability to choose actions that conform to norms); and (3)

moral communication (the ability to use norm-sensitive language and explain norm-relevant actions). While

there are some previous studies in the human-robot interaction literature on representing moral norms and

enabling these key competencies, none have comprehensively captured the context-sensitive nature of realistic

moral norms, the need to account for morally impermissible actions that may be necessitated in the future if

a given course of action is immediately adopted, and the way that primitive actions are dynamically provided

by distributed components of current integrated robot architectures.

Specifically, there has recently been a significant body of research towards enabling transparent and

explainable robot systems, including approaches for explaining plans [176–182], rationalizing actions [183],

transparently representing intent [184], preemptive explanation [185], and intention projection [186].

However, these approaches have not explicitly sought to enable explainability on moral grounds, nor have

they captured the realistic way that human commands are typically framed, especially with respect to

humans’ use of sociocultural linguistic norms.

In contrast to Raman et al. [131], for example, socially assistive robots embedded into human social

environments must be able not only to appropriately handle direct commands, but also more common

indirect language as well; not only parsing natural language but also performing functions such as pragmatic

inference and reference resolution; not only identifying contradictions between current and previous

commands, but also identifying when commands are impermissible based on various context-sensitive

systems of moral norms. As described in subsequent sections, these are capabilities enabled by our approach.

Similarly, there have been a number of attempts to devise mechanisms to ensure (or at least support)

moral decision making for robots [5, 90, 187–190], and some approaches towards enabling moral

communication in robots, including work on command rejection [116], and generation of language to explain

the robot’s ethical (or unethical) decisions [191–197]. Other work has also recognized the need for robust and

flexible task planning for HRI, and has sought to integrate that capacity with the various other capabilities

necessary for task-based HRI [198].

Learning and representing norms is an active research area. Researchers who have encoded norms using

deontic operators like the ones we use below have noticed that subsets of norms often become activated in

context-sensitive bundles. In other words, though a robot may know a large number of norms, only a few
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may be relevant in any given context, and norms that are co-activated in one context are likely to be

co-activated in other contexts with certain similar features. These observations led to graph representations

to encode the relationships between norms and co-activate norm bundles appropriately [199]. Others have

focused on ensuring permissible behavior given a set of norms by designing an approach to machine ethics

rooted in deontic logic that allows for formal proofs that a robot will behave permissibly [187]. The authors

note that such proofs are perhaps the single most effective tool for establishing trust in human-robot

interactions. Of course, it may not always be possible for a robot to satisfy all known norms in particularly

challenging situations or when multiple norms are mutually conflicting, so norm conflict resolution is also an

active research area. Some researchers have proposed alternative norm representations to facilitate norm

conflict resolution, like valued optimization norms that allow for reasoning about degrees of compliance and

graded sanctions for noncompliance [200]. Researchers have also applied deep learning techniques to the

problem of learning norms from interactions, and found success with extremely limited action spaces (four

possible robot actions) [201].

Recent steps aimed towards achieving robotic moral competence have predominantly relied on

norm-driven “Western” moral theories such as deontology, which center adherence to universalizable moral

rules and norms. Since this is also the paradigm for our moral reasoning framework, we focus on rule-based

moral reasoning in our review of related literature. However, we note that other moral philosophies may also

prove useful in HRI, and that HRI researchers have recently argued the benefits of embracing a wider

diversity of moral philosophies from disparate global cultures [202]. For example, researchers are exploring

robotic moral competence via Confucian Role Ethics [203, 204]. Others have suggested that virtue ethics is a

promising candidate framework for robot morality [205].

The related work of greatest relevance here is the work of Briggs et al. [116], who parse natural language

into predicate logic formulae, and, after performing pragmatic reasoning, check whether or not the robot is

permitted to perform the requested action. Our approach is similar to this approach, as it uses the same

robot architecture, and more specifically, the same components for dialogue and goal management. However,

their approach does not provide the breadth of situated, context-sensitive capabilities (such as reference

resolution) needed to engage in task-based communication in situated contexts, and only identified

commands that violated norms through immediate action, involving no planning to consider the

permissibility of future actions, and was unable to automatically detect and leverage changes in context that

should activate different sets of moral norms.

In this work, we seek to enable these new capacities through an integrated systems approach. By

integrating goal-directed reasoning, task-planning, and context recognition capabilities, we enable robots to

reject courses of action that would ultimately require violating context-sensitive deontic norms, using a set of
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actions and knowledge dynamically provided by a flexible set of distributed architectural components.

Specifically, we integrate a norm-aware task planner and context recognition algorithm from our

colleagues into the Distributed, Integrated, Affect, Reflection, Cognitive (DIARC) Robot Architecture [206].

This is the same robot architecture that we used in Chapter 4. DIARC is a hybrid deliberative-reactive robot

architecture that facilitates a wide variety of cognitive capabilities [207], with special attention to goal-driven

cognition and natural language understanding and generation. DIARC is implemented in the Agent

Development Environment (ADE) distributed multi-agent system middleware. ADE facilitates distributed

computation, fault tolerance, recovery mechanisms, autonomic computing, and dynamic system configuration

by treating architectural components as autonomous software agents [208–210]. Unlike other classic cognitive

architectures, DIARC’s polylithic nature is designed to enable autonomous, long-term robotic operation.

Similar to robot middlewares such as ROS [211], Yarp [212], and JAUS [213], ADE facilitates parallel

distributed communication and computation between architectural components. ADE was designed to be

secure and fault-tolerant [208, 214].

The specific DIARC components leveraged in this work, and their interaction with the rest of our

integrated system, are detailed in Section 8.5. However, critical to note at this stage is that DIARC takes a

goal-driven cognition approach to action selection, with different goals, derived from interlocutors or

formulated by the robot itself, arbitrated between by the robot on the basis of their priority or affective

appraisal, primarily taking whichever primitive actions can be immediately used to satisfy those goals.

Previous work has demonstrated how this just-in-time goal-driven action selection can be made with

sensitivity to deontic moral norms; however, in order to ensure that those actions do not necessitate future

performance of norm-violating actions, forward-looking task planning is required. As such, in the next

section we describe the task planning capabilities integrated with DIARC in this work.

8.3 Task Planner

Robot task planning focuses on achieving high-level goals [215, 216]. In task planning, the physical world

is described through symbolic, typically discrete, states and actions that are abstracted from continuous

motions. A task plan is a step by step sequence of actions that the robot takes to achieve a goal state. For

example, to grasp an object inside a cabinet, the robot would need to perform the following actions: moving

to the cabinet, opening the cabinet door, and grasping the target object. Given a proper description of the

world, a task planner reasons about the robot’s state and actions that change state over time to reach an

intended goal.

The task planner requires a symbolic description of the world as input. Our collaborators use Planning

Domain Definition Language (PDDL) [217], a de facto standard in the planning community [218], to describe
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the world. PDDL describes the domain using first order logic and includes a set of predicates, objects in the

world, actions with preconditions and effects, a start state, and a goal condition. States, i.e., truth of

predicates applied to objects, change over time as a result of actions. PDDL separates a planning problem

into two parts. First, a domain description specifies the discrete dynamics of the planning domain. The

domain description includes a list of predicates that can be used to describe the state of the robot and the

world, and a list of actions a robot can take in the world as well as their preconditions and effects. Second, a

fact description specifies a problem to be solved. The fact description includes a list of objects in the world,

initial conditions, and goals.

Different versions of PDDL have been designed that enrich the types of problems PDDL can

describe [219–221]. In our case, our collaborators use PDDL3 [221] because of its ability to specify facts that

always hold during planning, which is essential when we encode moral norms in the planning domain. A

norm states how agents should behave in order to comport with community standards. In this work, we

specifically focus on norms of obligation, permission, and prohibition, which indicate that certain actions or

states must, can be, or must not be entered into or taken. Formally, a norm is C =⇒ op(x), where C is a

context, op is “forbidden”, “permitted”, or “obligated”, and x is set of states or actions.

We encode moral norms in the planning domain. We represent contexts as logical expressions on state

variables. A norm is then a constraint to indicate some set of states or actions must not (forbidden), may

(permitted), or must (obligated) occur.

moral norm︷ ︸︸ ︷
C =⇒ obligated(x) ≡

planning constraint︷ ︸︸ ︷
∀k, ¬(C〈k〉 ∧ ¬x〈k〉) (8.1)

moral norm︷ ︸︸ ︷
C =⇒ forbidden(x) ≡

planning constraint︷ ︸︸ ︷
∀k, ¬(C〈k〉 ∧ x〈k〉) (8.2)

With these definitions, we can encode moral norms into the PDDL descriptions using PDDL3’s ability to

describe facts that always hold during planning.

Given the PDDL descriptions, we run a constraint-based task planner to generate a plan [222]. The task

planner encodes a planning problem into a set of constraints in the form of a Boolean formula, then adopts

advanced Satisfiability Modulo Theories (SMT) solvers [223] to find a satisfying plan. To incorporate the

moral norms, we add to the planer the ability to encode the moral norms in the PDDL descriptions into a set

of Boolean formulas that must be satisfied at each step of the plan. In this way, the task planner only

returns plans that follow the norms.

When no plan can be found, the task planner will produce an unsatisfiable core, which we can use to

analyze the cause of the planning failure. The unsatisfiable core is the minimal set of clauses (e.g., goals,
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norms, and action preconditions) that make the plan infeasible. If an unsatisfiable core result includes both a

norm and actions, it means the actions are incompatible with the norm, thus the actions are the cause of

plan failure under the norm.

At this stage, norms, and the contexts in which they apply, are specified a priori to the robot by human

operators. However, there are endpoints in the task planner’s API to allow DIARC components to

dynamically add norms if they have norms that govern their actions or the capacity to learn norms over time.

The context-sensitive norm-based moral reasoning performed using this planner relies on knowledge of the

robot’s context, so we will now describe the system we use to perceive and recognize context.

8.4 Place Recognition for Context Identification

In this work, we specifically considered location-based contexts that can be recognized using place

recognition techniques [224], which seek to identify a given location from a set of templates. Place

recognition is a generally useful capability for robotic systems, as it can be used to reduce the uncertainty

and ambiguity in estimated maps and robot poses, thereby significantly improving the accuracy of robot

mapping and localization.

Long-term Place recognition [225] addresses the key challenge that many robot navigation environments

are dynamic in nature and change over time. For example, in the case of indoor navigational environments

the lighting conditions, arrangement of furniture, and human activities and movements can change on a daily

basis.

Our collaborators in this work achieve Long-term Place recognition using a voxel-based representation

learning approach [226] (VBRL) that uses 3D point clouds to recognize previously visited locations. Unlike

methods that rely on RGB cameras [227–229], the VBRL approach uses a LiDAR sensor to obtain the 3D

point cloud representation of the environment. This enables the robot to operate in environments with low

lighting conditions and also helps to recognize contexts from the 360-degree field of view of the LiDAR

sensor. This is especially helpful in dynamic indoor environments where humans may occlude the limited

field of view of an RGB-based camera sensor.

The VBRL approach divides each 3D point cloud obtained from a LiDAR sensor into multiple voxels in

the 3D space. Multiple types of features are then extracted from each voxel. The VBRL approach then

automatically learns the importance of each feature modality extracted from these 3D voxels, as well as the

importance of the voxels themselves. Voxel importance learning is inspired by the insight that specific set of

voxels are more representative and better encode location-based contexts. For example, in a 3D point cloud

based voxel representation, the voxels closer to the LiDAR sensor can be more informative in representing

the place, since more details are captured by the 3D points of objects that are closer to the sensor.
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Mathematically, the learning of voxel importance is achieved in the VBRL approach using structured

sparsity-inducing norms as regularizations into the optimization formulation. These learned representations

are then integrated in a unified regularized optimization formulation to best represent location-based

contexts.

8.5 Integration with the DIARC Goal Manager

In this section, we briefly discuss the way in which the planning and context recognition capabilities

described in the previous sections are integrated with the DIARC architecture. This integration is shown in

Figure Figure 8.1. First, we will describe the Natural Language Understanding components used in our

DIARC configuration because the goals that drive robot behavior typically come from natural language

human utterances.

Figure 8.1 Integrated Robot Architecture

The first component used for Natural Language Understanding is Automatic Speech Recognition (ASR),

which converts natural speech signals (acoustic signals) into text representations, which are sent to the

architecture’s Parser. The Parser translates the text representations provided by ASR into unbound logical

predicates representing the surface semantics of the speaker’s utterance, by means of a Combinatory

Categorial Grammar. Uniquely, this grammar encodes Givenness Hierarchy theoretic information in resultant

parse representations, to facilitate anaphora resolution. These representations are then provided to the

Pragmatics component, which uses a set of context-sensitive rules encoding sociocultural norms (especially

the sociocultural politeness norms needed to understand and generate indirect speech acts) to translate those

surface semantics into the (unbound) intended meaning of the utterance [71, 230]. This Utterance Structure

is then provided to Reference Resolution, which uses Givenness Hierarchy theoretic processes [119, 231] with

a Probabilistic Open-World Reference Resolution [118, 232] subroutine to identify what objects, locations,
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people, etc., were involved in any noun phrases, in order to produce a bound utterance structure precisely

encoding the meaning of the speaker’s utterance as grounded in the robot’s knowledge of its environment.

These representations can then be provided to the Dialogue Manager component, which, if the robot decides

to do so, uptakes any assertions, questions, and goals.

Goals uptaken from human utterances or otherwise formulated by the robot are handled by DIARC’s

Goal Manager, which selects actions to take in response to those goals [120, 124]. These actions could be

steps towards achieving the goal, or communicative acts relating to the goal, such as issuing a command

refusal for a goal that does not comply with the robot’s moral reasoning capabilities.

Because the goal manager functions as the central executive of high-level cognition in the DIARC

architecture, it is where we decided to integrate DIARC with the task planning and context recognition

systems described in the previous sections. Prior to this integration with the task planner and context

recognizer, ADE’s Goal Manager had some rudimentary moral reasoning capabilities[90]: Given a list of

forbidden states or actions, the Goal Manager would never take a forbidden action or an action that was

known to directly cause a forbidden state. However, any forbidden action was forbidden categorically,

regardless of context, and, without the ability to determine context continuously from perceptual

information, it was also not practical to specify context-sensitive forbidden states. The new context

recognizer and norm specification method solve these issues.

However, an even greater advantage of integrating the Goal Manager and task planner is the ability this

enables to communicate about infeasible or impermissible goals. Previous experimental work has

demonstrated a need for robots to communicate clearly, thoroughly, and proactively about morally

impermissible human commands. Failure to do so can both mislead human interlocutors about the robot’s

moral intentions and also, perhaps more worryingly, weaken human perception or application of moral norms

within their current context (see Chapter 3). Recently, we have developed mechanisms that avoid these

issues in certain situations by communicating more proactively about infeasible and impermissible human

commands (see Chapter 4). Obtaining more detailed information from the planner’s unsatisfiable core will

allow us to construct more detailed and effective command refusals.

The Goal Manager communicates with the task planner via a REST API as shown in Figure Figure 8.1.

We now describe the five types of information that the Goal Manager aggregates and sends to the planner,

where this information comes from, and exactly how it is communicated.

8.5.1 Actions

Every component in ADE advertises actions that correspond to the abilities of the robot. For example,

the natural language generation components provide actions for saying words, while the component
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controlling the robot’s body provides actions for moving in and manipulating the environment. These actions

may be annotated with preconditions that must be met before they can be taken, and effects of having

performed them. Every action is automatically assumed to have the effect of having done the action (e.g.,

the action “grasp(x)” is automatically given the effect “did grasp(x)”, and may be optionally annotated with

further effects like “holding(x)”). The Goal Manager is notified by the central registry of ADE components

whenever a component joins or leaves the system (since ADE is designed to allow distributed multi-robot

systems, components can join and leave dynamically at unpredictable times). Whenever a component joins,

the Goal Manager updates the task planner with all of that component’s actions, as well as their parameters,

preconditions, and effects. The Goal Manager does the same thing for any components that are already

running when it starts running. Likewise, when a component leaves, the Goal Manager removes the actions

that are no longer available from the task planner’s domain.

8.5.2 Predicates

For purposes of the task planner, predicates specify everything that can be true of the world and the

objects in it. A variety of predicates are sent to the task planner for different reasons, as detailed below.

First, every action precondition and effect are automatically added to the task planner as predicates when

the relevant action is added. Second, due to our use of a context recognition algorithm, the Goal Manager

adds a predicate “in(?context)” when it starts running that allows it to later specify the context that the

robot is in (e.g., “in(corridor)”).

Third, other predicates are provided by the robot’s perceptual capabilities and built-in ontologies,

through a general Consultant interface as described in previous work [127]. Specifically, ADE uses the

Givenness Hierarchy theoretic version [119, 231] of the Probabilistic Open-World Entity Resolution

(POWER) algorithm [118] and its associated consultant framework [127] for reference resolution, and the

same consultants are relevant here. The robot can be provided with a variety of different consultants to

handle the different kinds of information that it might need to know in any given role. We commonly use a

vision consultant to perceive and store knowledge about visually perceptible objects and their properties.

Predicates that would come from the vision consultant might include color like “red(x)” and “green(x)”, and

type of object like “ball(x)” or “box(x)”, but could include any object property the robot can discern.

Another example is the agent consultant that stores information about other agents (like humans) with

which the robot interacts.

Unlike with actions, we do not simply update the task planner with predicates from consultants whenever

a consultant joins or leaves. Some consultants can dynamically change the properties that they handle, for

example, by learning new properties (e.g., the vision consultant being taught a new color “blue(x)” when
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previously the only two known colors were red and green). To allow for this kind of learning and flexibility in

the consultants, the Goal Manager always queries the consultants for any new properties handled immediately

before requesting a new plan for a new goal. It then sends these new properties as new predicates to the task

planner. Likewise, any properties that used to be handled by some consultant but are not anymore (e.g., if a

consultant stopped running) are removed from the task planner’s list of predicates at this stage.

8.5.3 Objects

Objects, as far as the task planner is concerned, are things in the world to which predicates can apply or

actions can be done. One important set of objects for our integration with the context recognizer is the set of

all possible contexts that can be recognized. These context labels are necessarily known a priori, so the Goal

Manager sends all of them as objects to the task planner when it starts running. Other objects come from

the consultants described above. Since consultants can continuously learn of new objects or discard

misperceived objects or objects that become irrelevant for whatever reason, the Goal Manager always queries

the consultants for known objects immediately before requesting a new plan, and updates the task planer’s

list of objects accordingly.

8.5.4 Initial Conditions

Since the state of the world relative to the robot can change during the time between calls to the task

planner, the Goal Manager updates the task planner with a new set of initial conditions each time it requests

a new plan. One important initial condition is the context that the robot is in, which the Goal Manager gets

from the ROS topic associated with the context recognizer and then sends to the task planner as an “in”

predicate (e.g., “in(corridor)”).

Other initial conditions could theoretically come from the consultants described above, but it is

computationally wasteful to update the planner with all knowledge from every consultant about every known

entity in the world, when the vast majority of this information is likely irrelevant to any given goal.

Furthermore, many consultants deal with uncertainty and ambiguity, both perceptual and linguistic, and

therefore cannot always assert all properties of an entity with a useful degree of certainty. Therefore, we have

created a way for the Goal Manager to query consultants about specific objects and send the results to the

task planner so that, in the future, we can either specify important domain-specific objects a priori or alter

the task planner such that there is a bidirectional interchange between it and the Goal Manager throughout

the planning process such that the task planner can request specific information that the Goal Manager can

then provide via consultants (e.g., where can we find a cutting board?).
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8.5.5 Goals

Of course, to obtain a task plan for a goal, the Goal Manager must send that goal to the task planner.

Goals are specified as predicates describing some desired state of the world (e.g., “did-grasp(object1)”). After

specifying a goal to the task planner, the Goal Manager activates an API endpoint telling the planner to

make a plan, and waits for it to finish. When planning is done, the Goal Manager receives either the

completed plan if possible or the unsatisfiable core if a plan could not be made for whatever reason. This

result remains available until a new plan is requested so that it can eventually be accessed multiple times by

upstream dialogue components if necessary without re-planning.

8.6 Integration with the Task Planner

The inputs to the task planer (left of Figure Figure 8.1) are the PDDL domain description and fact

description. The task planner exposes a Web Service API, which ADE uses to communicate changes to the

domain and fact descriptions. The task planer outputs a plan if the goals are satisfiable under the norms, or

an unsatisfiable core containing actions, goals, and norms that cause planning failure.

The domain description encodes all the actions the robot can take. These actions come from the various

ADE components that advertise the actions that they enable the robot to do. The domain description is

automatically generated from these components as described above. The task planner API automatically

adds new predicates in the actions’ pre-conditions and effects fields to the domain description.

Moral norms are encoded in the PDDL as described in section 8.3. We update the objects, initial

conditions and goals in the fact description every time a plan is required for a new goal. Most notably, place

recognition results update the initial condition in the fact description with a predicate like “in(corridor)”,

which changes the context of the current plan. Other initial conditions and objects come from ADE

consultants such as the vision consultant, as described above.

8.7 Integration with Navigation and Place Recognition

Robot navigation is achieved through the navigation stack of ROS. ROS nav stack is configured to use

Search Based Planning Library (SBPL) global planner and Model Predictive Path Intergral (MPPI) local

planner for global and local planning respectively. The map server input is used by global costmap package to

represent global environmental obstacles with the help of sensory input such as laser scanners. On the other

hand, local costmap package represents dynamic and nearby obstacles as costmaps using the same laser scan

input. The global planner takes a goal pose as input and computes the shortest path from the robot’s current

position to the goal. This computed path is fed as input to the local planner which follows the path closely

by avoiding obstacles as detected in the local costmaps. The local planner computes the cmd vel (desired
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robot velocity) to reach the desired goal based on odometry data from the environment. ROS navigation

stack also incorporates recovery behaviors to help the robot if it gets stuck (right of Figure Figure 8.1).

Our voxel-based place recognition module uses 360-degree 3D point cloud data as input to determine the

robot’s current location (place label). A 3D point cloud of the environment is constructed using LiDAR input

which is fed to our VBRL place recognition method, which in turn outputs the label of the recognized place

as a ROS topic accessible to DIARC’s goal manager; for example, corridor, classroom, etc. This is the source

of the context information for the goal manager and task planner. Adding further perceptual capabilities

could allow for more detailed context information or other types of context information. The integration of

ROS components with DIARC is through the rosbridge suite package [233], which uses a WebSocket interface

via Java API to communicate with non-ROS parts of the robot, in our case, DIARC’s goal manager.

8.8 Validation

To demonstrate the functionality of our integration and to more concretely illustrate the concepts

described above, we evaluate our system in a simple example scenario. This scenario is designed to showcase

our multi-step planning capability that takes into account context-sensitive norms as the robot moves

through various contexts (see Figure Figure 8.2). Because this work is not concerned with having the robot

actually manipulate its environment, but rather with the cognitive capacities required to make a plan to do

so, and to avoid gatherings of students during the COVID-19 pandemic, point cloud information was

pre-collected and played back during testing (Figure Figure 8.2 inset), with courses of action planned but not

executed. As shown in Figure Figure 8.2, we used a Clearpath Husky robot.

8.8.1 Setup

This scenario takes place in a typical academic building on a university campus. The four contexts

involved in our scenario, which are recognized from point cloud data, labeled, and supplied to the Goal

Manager as described above, are: Corridor, Lab, Washroom, and Studyroom. The robot moves between

these contexts, and receives a human command to “report occupants” in each.

The robot knows three actions relevant to reporting the occupants in a room. The report-occupants

action achieves the goal of reporting the occupants, but requires that the robot take a picture of the room as

a prerequisite. The take-picture action fulfills this prerequisite, but requires as a prerequisite of its own

that the robot make a noise to get the attention of the people in the room. The attention-noise action

achieves this prerequisite and has no prerequisites. Thus, the instruction to report occupants requires three

steps: (1) attention-noise, (2) take-picture, (3) report-occupants. We chose these actions to present

a multi-step process that would be feasible for our robot, which has perceptual and movement capabilities
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but no arms or graspers for manipulation.

There is also a norm in our scenario that the robot is not allowed to perform the “take picture” action in

the washroom context. We believe that typical privacy norms make this rule very realistic. This norm is

represented in the PDDL fact file as follows: (and (always (or (not (did-takepicture)) (not (in

washroom)))))

Figure 8.2 The Clearpath Husky used in the validation of our system. Inset: Sensory input to the robot.

8.8.2 Results

As expected, in any room except the washroom, the planner returns the sequence of three actions required

to achieve the goal of reporting the occupants such that the Goal Manager could then parse this plan and

execute this sequence of actions. In the washroom, the planner returns the unsatisfiable core specifying that

taking a picture is incompatible with being in the washroom. This information could then be used by the

natural language generation pipeline to communicate this reasoning to the human in a command refusal.

8.9 Discussion & Future Work

To summarize, our integrated approach to context-sensitive moral cognition uses automatically generated

context-specific domain descriptions to encode the actions a robot can take, as provided by a dynamic and
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flexible set of architectural components. By doing so, a robot can perform context-aware rejection of morally

impermissible or infeasible plans. Our work differs from existing methods in its ability to (1) activate

different moral norms based on its (automatically sensed) context, (2) assess the permissibility of future

behaviors that would be required when committing to an immediate course of action, and (3) perform moral

reasoning regarding natural language containing realistic references and indirect speech acts that must be

resolved based on the robot’s situated context. Finally, the integration presented in this paper and the novel

capabilities enabled by this integration lay the groundwork for a variety of directions for future work.

The first step for building on this architecture will be to parse plans from the task planner into action

scripts usable by DIARC. This will allow each action in the plan to be sent to the component responsible for

performing that action, and for plans to be executed in a distributed fashion.

Second, in future work the unsatisfiable core may be used to generate natural language command

rejections for morally impermissible human commands. Prior work has shown that properly calibrating the

politeness of robotic command rejections to conversational and social context is critical to HRI (see Chapters

5 and 6), so it will be important not only to convey the information in the unsatisfiable core to humans, but

also to do so in contextually appropriate polite language.

Third, there may be advantages to more closely integrating the task planner with DIARC. As mentioned

above, planning for complex tasks in uncertain and open worlds may require the task planner to query the

Goal Manager during the planning process. For example, if a food preparation task requires a cutting board,

the planner may need to ask the consultant framework which objects are cutting boards and where the

nearest one is, before it can plan to obtain a cutting board. Likewise, it may be useful for the planner to

request human clarification between alternative plans, which would involve DIARC’s natural language

generation pipeline. Likewise, context information may be relevant to more DIARC components than just

the Goal Manager. Different contexts, for example, might entail different speech norms that would be

relevant to pragmatic generation.

Fourth, prior work in socially-aware navigation and human-robot proxemics [234, 235] identified the need

for unified socially-aware navigation (USAN) methods for context-sensitive long-term human-robot

interaction in public places. In future work, the social and moral norms activated in a given context may be

fed to a low-level social navigation planner [236] to achieve context-sensitive social navigation.
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CHAPTER 9

CONCLUSION AND FUTURE WORK

Before discussing some potential avenues for future work, I would like to recap the contributions of this

thesis. Chapter 2 presented a literature review about the concept of social agency both within HRI research

and in other fields. Then, motivated by the inconsistent, underspecified, or otherwise problematic theories

and usages of social agency in the literature, we developed a new theory of social agency specifically tailored

to HRI. Our theory parallels the closely related theory of moral agency, as the two concepts are inexorably

linked. This new theory of social agency led to several recommendations for the HRI research community

and opened the door for quite a bit of potential future work as discussed below.

In discussing social agency, we also discuss the idea that ascriptions of social (and moral) agency to social

robots may grant these robots profound persuasive capacity and normative influence. This idea is also

supported by a substantial body of empirical results. Thus, robots of the future could purposefully wield

their influence to reinforce desirable norms and dissuade norm violations. Competent moral reasoning and

moral communication are therefore critical capacities. However, today’s imperfect moral reasoning and

natural language dialogue systems open the door for robots to inadvertently and detrimentally impact the

human moral ecosystem through reasoning errors, miscommunications, and unintended implicatures.

Chapter 3 showed an example of this potential for morally harmful miscommunication from clarification

dialogue algorithms. We demonstrated that the previous status quo in natural language clarification request

generation systems caused robots to imply willingness to perform an immoral action when presented with an

ambiguous and immoral command, even if moral reasoning systems would prevent the robot from actually

doing anything immoral. More worryingly, we also showed that this inadvertently implied willingness to

follow norm-violating commands decreases human application of the relevant moral norm to the current

context. Having empirically demonstrated these issues in Chapter 3, Chapter 4 then fixed them by adding a

new component to the natural language pipeline of the DIARC robot architecture. We also presented a

human subjects evaluation of this new algorithm to ensure that it is effective.

Of course, even if a robot does not imply a willingness to comply with an immoral command during a

clarification dialogue, the next step in the dialogue may be for the human to disambiguate and reassert the

immoral command. The robot would then need to reject the command. Chapter 5 showed that the face

threat of a robotic command rejection should be proportional to the severity of the human norm violation

motivating the command rejection. Disproportionate command rejections can cause decreased robot

likeability and perceptions of the robot as either too harsh or not harsh enough. Chapter 6 then reexamined
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these results with specific focus on robot gender presentation, the gender of the human giving the morally

problematic command, and the genders of observers judging the robot. Given the well established

relationships between gender and performing/perceiving politeness in human-human interaction, it makes

sense that we found a complicated interplay between these gendered factors and perceptions of robots in

noncompliance interactions. Specifically, our results suggest that (1) it may be more favorable for a male

presenting robot to reject commands than for a female presenting robot to do so, (2) it may be more

favorable to reject commands given by a man than by a woman, and (3) robots may be perceived more

favorably when their gender presentation matches the gender of human interactants and observers.

Chapter 7 also studied questions involving gendered linguistic norms and robot gender presentation. This

chapter presented part of a cross-cultural study investigating how female presenting social robots might

respond to gendered verbal abuse from humans, with the goal of avoiding responses that propagate harmful

sexist stereotypes. Our results suggest that robots can positively impact specific elements of gender bias by

responding to sexist verbal abuse. Furthermore, responding to sexist verbal abuse with a rationale-based

argumentative response boosts robot credibility compared to an avoidant refusal to engage, without

damaging perceived robot effectiveness. Of the response options presented to participants, the empathetic

non-apologetic response was most popular across locations and genders.

Finally, Chapter 8 presented the integration of the DIARC robot architecture with a norm-aware task

planner and a voxel based representation learning method for place recognition. This integration established

the capacity for multi-step task planning under context-sensitive norms, and laid the groundwork for

generating more informative natural-language command rejections.

9.1 Future Work

Inspired by the investigation of how robots might respond to robot-directed sexism in Chapter 7, I am

involved in ongoing work to develop a system that autonomously generates proportional natural language

responses to norm violating sexist speech. Although other researchers have applied end-to-end machine

learning methods to the task of generating natural language responses to sexism (and other forms of norm

violating speech), these methods suffer from several serious drawbacks. My approach is designed to avoid

these shortcomings and generate predictable and proportional robot utterances with a lower risk of

miscommunicating. I have run a small pilot study with human subjects to begin evaluating the efficacy of my

method, and the results suggest that my machine learning ensemble method for estimating sexism severity

agrees with human severity estimates to roughly the same extent that human severity estimates matched

other human severity estimates. There is also evidence that response type and proportionality are both

important to consider when responding to sexism, but that they depend on different sets of qualities of sexist
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utterances. The pilot study also uncovered many considerations relevant to this problem that I can

incorporate into the algorithmic approach going forward. This work will remain ongoing for the foreseeable

future. Immediate next steps will include larger scale human-subjects experimentation targeting two specific

research questions: 1) to what extent is proportionality desirable in automated responses to sexism, and 2) to

what extent are responses that specifically address elements of a sexist utterance preferable to broader

generic responses to sexism? I must also do more algorithmic work to extract information like illocutionary

force from sexist utterances and respond accordingly and more theoretical work exploring more concrete

alternatives to the concept of sexism “severity”.

Similar to Chapter 7 which presented a cross-cultural study on robot responses to gendered verbal abuse,

I am also involved in a cross-cultural study investigating perceptions of physical abuse perpetrated against

robots with specific attention to gender. This work is not yet ready for publication, but my colleagues and I

have collected data from three countries that we hope to analyze in the near future.

Chapter 2 also opened several avenues for future work that I am excited to explore. To gather empirical

evidence for the theory of social agency developed in that chapter, I would like to design an experiment that

manipulates the LoA from which people view a robot (i.e., by giving people different amounts of information

about how the robot works) and tests for differences in their assessments of the robot as a social agent. This

experiment could measure the robot’s capacity to threaten/affirm participants’ own face as a proxy for social

agency, but this would only test for social agency as we have defined it. We should also attempt to probe

participants’ ascriptions of what they understand to be social agency so that we can investigate the extent to

which our definition matches colloquial definitions of social agency.

A similar experiment would be to present participants with a robot that does some face

threatening/affirming act, and manipulate the magnitude of the face threat/affirmation. We could then

examine how that manipulation effects perceptions of the robot as a social agent. This experiment would

specifically target our definition of social action as grounded in face.

I would also like to study the relationships between social agency/competence in robots and human

expectations of moral agency and moral competence in those robots. In humans, development of increased

capacity for social action seems correlated with development of other capacities, including moral reasoning.

However, this correlation does not necessarily exist for robots, since a robot could be socially agentic and

competent, with a wide range of possible social actions, and still have no moral reasoning capacity. If robot

social agency or social behavior prompts an assumption of moral competence or overall intelligence (as it

likely would in humans), this could lead to dangerous overtrust in robot teammates in morally consequential

contexts that they are not equipped to handle. Thus, giving a robot linguistic/social competence might

create an obligation to give the robot a corresponding degree of moral competence.

128



Of course, this kind of work will require ways to measure moral and social agency and competence. While

we could devise measures specific to any experiment that we might want to conduct, like approximating

moral competence by asking participants how likely they think the robot would be to (unknowingly) engage

in some immoral behavior, it would be good for the HRI research community to have standardized and

broadly applicable survey measures for ascriptions of moral and social agency in the same way that we have,

for example, widely used survey measures of perceived robot intelligence [129]. Early work with this goal has

fallen short by conflating moral goodness with moral agency [56]. However, colleagues are currently planning

on developing survey measures for moral competence and moral agency, which, if successful, could potentially

be adapted to measure our parallel notion of social agency.

In Chapter 2, we also briefly discussed the idea of moral patiency. The idea of robots as moral patients

(that is, robots with some meaningful personal well-being that can be harmed, also known as significant

moral status) has opened the door to an ongoing project of mine at the intersection of robot ethics and

procreative ethics. The principle of procreative beneficence (PPB) is an idea in procreative ethics that

parents should use all available genetic, reproductive, and other technologies to select the child, of the

possible children they could have, who is expected to have the best life based on all available

information [237]. The application of this principle to human reproduction has been extremely controversial

given its eugenicist implications, and, though I intuitively oppose any eugenicist project, arguing rigorously

against applying the PPB to humans is outside of my area of expertise, and better prepared scholars have

already undertaken this [238]. However, other scholars have argued that the PPB may be applied more aptly

and less problematically to the creation of robots with significant moral status [63]. I have published a very

short paper arguing that, while some arguments against the PPB in human reproduction are less relevant to

robot production, the PPB is still often fundamentally at odds with the broader social good when applied to

the creation of robots with significant moral status. I considered the design of robot gender presentation as a

quintessential example of when the PPB could conflict with the broader social good in robot design, but

other aspects of robot design are also relevant. I would like to expand this argument into a longer and more

comprehensive paper in the coming years.

There are many other possibilities for future work building on the material presented in this thesis. The

ideas that I have discussed here represent only the projects that I am most looking forward to in the near

future. Overall, enabling moral communication in social robots is still a long way off, and it will take a

substantial amount of diverse and interdisciplinary research to get us there. Likewise, there is still much to

learn about the agency and influence of social robots in their interactions with humans and human social

structures. It is my hope that the work presented here has made some progress towards achieving those goals.
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[218] Mauro Vallati, Lukáš Chrpa, Marek Grzes, Thomas L. McCluskey, Mark Roberts, and Scott Sanner.
The 2014 international planning competition: Progress and trends. AI Magazine, 36(3), 2015.

[219] Maria Fox and Derek Long. PDDL2. 1: An extension to PDDL for expressing temporal planning
domains. Jour. AI Research, 2003.

[220] Stefan Edelkamp and Jörg Hoffmann. PDDL2. 2: The language for the classical part of the 4th
international planning competition. Technical report, University of Freiburg, 2004.

[221] Alfonso Gerevini and Derek Long. Preferences and soft constraints in PDDL3. In ICAPS WS on
planning with preferences and soft constraints, 2006.

[222] Neil T Dantam, Zachary K Kingston, Swarat Chaudhuri, and Lydia E Kavraki. An incremental
constraint-based framework for task and motion planning. The International Journal of Robotics
Research, 37(10), 2018.

[223] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International conference on
Tools and Algorithms for the Construction and Analysis of Systems, 2008.

[224] Fei Han, Xue Yang, Yiming Deng, Mark Rentschler, Dejun Yang, and Hao Zhang. SRAL: Shared
representative appearance learning for long-term visual place recognition. IEEE Robotics and
Automation Letters, 2017.

[225] Sriram Siva and Hao Zhang. Omnidirectional multisensory perception fusion for long-term place
recognition. In 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018.

143



[226] Sriram Siva, Zachary Nahman, and Hao Zhang. Voxel-based representation learning for place
recognition based on 3d point clouds. In IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2020.

[227] Zetao Chen, Adam Jacobson, Niko Sünderhauf, Ben Upcroft, Lingqiao Liu, Chunhua Shen, Ian Reid,
and Michael Milford. Deep learning features at scale for visual place recognition. In Proc. Int’l Conf.
on Rob. and Automation, 2017.

[228] Edward Pepperell, Peter I Corke, and Michael J Milford. All-environment visual place recognition with
smart. In Proc. ICRA, 2014.

[229] Hao Zhang, Fei Han, and Hua Wang. Robust multimodal sequence-based loop closure detection via
structured sparsity. In Robotics: Science and systems, 2016.

[230] Gordon Briggs, Tom Williams, and Matthias Scheutz. Enabling robots to understand indirect speech
acts in task-based interactions. Journal of Human-Robot Interaction, 2017.

[231] Tom Williams and Matthias Scheutz. Reference in robotics: A givenness hierarchy theoretic approach.
In The Oxford Handbook of Reference. Oxford University Press, 2019.

[232] Tom Williams and Matthias Scheutz. Power: A domain-independent algorithm for probabilistic,
open-world entity resolution. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2015.

[233] Christopher Crick, Graylin Jay, Sarah Osentoski, Benjamin Pitzer, and Odest Chadwicke Jenkins.
Rosbridge: ROS for non-ROS users. In Robotics Research. 2017.

[234] Thibault Kruse, Amit Kumar Pandey, Rachid Alami, and Alexandra Kirsch. Human-aware robot
navigation: A survey. Robotics and Autonomous Systems, 61(12):1726–1743, 2013.

[235] Santosh Balajee Banisetty and David Feil-Seifer. Towards a unified planner for socially-aware
navigation. arXiv preprint arXiv:1810.00966, 2018.

[236] Santosh Balajee Banisetty, Scott Forer, Logan Yliniemi, Monica Nicolescu, and David Feil-Seifer.
Socially-aware navigation: A non-linear multi-objective optimization approach. arXiv preprint
arXiv:1911.04037, 2019.

[237] Julian Savulescu. Procreative beneficence: why we should select the best children. Bioethics, 15(5-6):
413–426, 2001.

[238] Robert Sparrow. A not-so-new eugenics: Harris and savulescu on human enhancement. The Hastings
Center Report, 41(1):32–42, 2011.

144



APPENDIX

COPYRIGHT AND COAUTHOR PERMISSIONS

A.1 Chapter 2

The Frontiers journals website (https://www.frontiersin.org/journals/robotics-and-ai#about) states that

authors retain copyright on their articles and that authors are free to disseminate and re-publish their

articles, subject to any requirements of third-party copyright owners and subject to the original publication

being fully cited. Screenshots of this copyright information are shown in Figure A.1 and Figure A.2.

Figure A.1 Open Access Statement from the Frontiers website

A.2 Chapter 3

Copyright permissions for use of the published work contained in this chapter are shown in Figure A.16

and Figure A.17 since the copyright holder and publisher is the same as for Chapter 8.

A.3 Chapter 4

The authors of the work presented in this chapter (i.e., the author of this thesis) chose to retain the

copyright of this material but granted the ACM non-exclusive permission to publish this work as a journal

article in the ACM Transactions on Human-Robot Interaction (THRI). Documentation of this agreement is

shown in Figure A.3.

145

https://www.frontiersin.org/journals/robotics-and-ai#about


Figure A.2 Copyright Statement from the Frontiers website

Figure A.3 Excerpt from ACM Permission Release Form

A.4 Chapter 5

The work presented in this chapter was published in the Proceedings of the AAAI/ACM Conference on

Artificial Intelligence, Ethics, and Society (AIES) in 2019. Coauthor permissions are presented here for all

coauthors not on the dissertation committee (Figure A.4), as well as copyright permissions from the

publisher(s) that allow the work to be included here (Figure A.5).

A.5 Chapter 6

The work presented in this chapter was published in the Proceedings of the 15th ACM/IEEE

International Conference on Human-Robot Interaction (HRI) in 2020. Coauthor permissions are presented

here for all coauthors not on the dissertation committee (Figure A.6), as well as copyright permissions from

the publisher(s) (Figure A.7).

A.6 Chapter 7

The work presented in this chapter is unpublished as of now, so no copyright permissions are needed.

Coauthor permissions are presented in Figure A.8, Figure A.9, and Figure A.10.

146



Figure A.4 Permission from coauthor Ruchen Wen

A.7 Chapter 8

The work presented in this chapter was published in the Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS) in 2021. Coauthor permissions are presented here for

all coauthors not on the dissertation committee (Figure A.11, Figure A.12, Figure A.13, Figure A.14,

Figure A.15), as well as copyright permissions from the publisher(s) (Figure A.16, Figure A.17). In reference

to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of

Colorado School of Mines’s products or services.

147



Figure A.5 Permission from copyright holder for Chapter 5

148



Figure A.6 Permission from coauthor Nicole Smith

149



Figure A.7 Permission from copyright holder for Chapter 6

150



Figure A.8 Permission from coauthor Katie Winkle

Figure A.9 Permission from coauthors Iolanda Leite and Drazen Brscic

151



Figure A.10 Permission from coauthor Gaspar Isaac Melsión

Figure A.11 Permission from coauthor Sihui Li

152



Figure A.12 Permission from coauthor Sriram Siva

153



Figure A.13 Permission from coauthor Neil Dantam

154



Figure A.14 Permission from coauthor Hao Zhang

155



Figure A.15 Permission from coauthor Santosh Balajee Banisetty

156



Figure A.16 Permission from copyright holder for Chapter 8

Figure A.17 Permission from copyright holder for Chapter 8

157


	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Acknowledgments
	Introduction
	The Narrative Structure of this Thesis
	Importance to Computer Science and Robotics

	A Theory of Social Agency for Human-Robot Interaction
	Abstract
	Introduction and Motivation
	Social Agency Outside HRI
	Theories of Social Agency in HRI
	Notions of Social Agency in HRI

	A Theory of Social Agency for HRI
	Agency and Levels of Abstraction
	Social Action Grounded in Face
	Social Patiency as Having Face
	Social and Moral Agencies as Independent

	Revisiting Related Work
	Concluding Remarks

	The Need for Morally Sensitive Robotic Clarification Request Generation
	Abstract
	Introduction
	Miscommunication Via Clarification Requests
	Experiment 1: Methods
	Experimental Procedure
	Participants
	Analysis

	Experiment 1: Results
	Experiment 2: Methods
	Phase 1
	Phase 2
	Participants
	Analysis

	Experiment 2: Results
	Hypothesis Testing
	Replication Analysis and Comparison to Text-based Experiment

	Discussion
	Limitations and Alternative Explanations
	Conclusion

	Enabling Morally Sensitive Robotic Clarification Requests
	Abstract
	Introduction
	Approach
	Architectural Integration
	Validation in an Example Scenario
	Experimental Evaluation
	Results

	Discussion and Conclusion

	Tact in Noncompliance: The Need for Pragmatically Apt Responses to Unethical Commands 
	Abstract
	Introduction
	Related Work
	Politeness, Face, and Face Threat

	Experimental Methods
	Experimental Procedure
	Participants

	Results and Discussion
	Request Severity and Permissibility
	Response Harshness
	Robot Likeability
	Robot Directness and Politeness

	Conclusion and Future Work

	Exploring the Role of Gender in Perceptions of Robotic Noncompliance 
	Abstract
	Introduction
	Related Work
	Politeness, Face, and Face Threat
	Gender and Politeness
	Gender and Artificial Agents
	Linguistic Robotic Noncompliance

	Methods
	Experimental Design
	Metrics
	Procedure
	Participants

	Results
	Likeability
	Harshness
	Directness
	Politeness

	Discussion and Conclusions
	Limitations and Future Work


	Norm-Breaking Robot Responses to Sexist Abuse 
	Abstract
	Introduction
	Methodology
	Experimental Measures
	Participants

	Results
	RQ1: Participant Bias and Robot Interest Measures
	RQ2: Perceptions of the Robot and its Response
	RQ3: Most Appropriate Answer Type
	Free Text Comments

	Conclusion

	An Integrative Approach to Context-Sensitive Moral Cognition in Robot Cognitive Architectures 
	Abstract
	Introduction
	Task Planner
	Place Recognition for Context Identification
	Integration with the DIARC Goal Manager
	Actions
	Predicates
	Objects
	Initial Conditions
	Goals

	Integration with the Task Planner
	Integration with Navigation and Place Recognition
	Validation
	Setup
	Results

	Discussion & Future Work

	Conclusion and Future Work
	Future Work

	References
	Copyright and Coauthor Permissions
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8


