
Failure Explanation in Privacy-Sensitive Contexts:
An Integrated Systems Approach

Sihui Li†, Sriram Siva†, Terran Mott†, Tom Williams†, Hao Zhang‡, and Neil Dantam†

Abstract— In this paper, we explore how robots can properly
explain failures during navigation tasks with privacy concerns.
We present an integrated robotics approach to generate visual
failure explanations, by combining a language-capable cognitive
architecture (for recognizing intent behind commands), an
object- and location-based context recognition system (for
identifying the locations of people and classifying the context in
which those people are situated) and an infeasibility proof-based
motion planner (for explaining planning failures on the basis of
contextually mediated privacy concerns). The behavior of this
integrated system is validated using a series of experiments in
a simulated medical environment.

I. INTRODUCTION

Successful deployment of robots into human environments
requires appropriately calibrated trust in those robotic systems.
Accordingly, robots must be able to properly explain their
plans to humans to provide the transparency necessary for
such trust calibration transparency [1], [2], [3], [4], [5], [6].
This is especially important when plan failure happens and
when users are non-experts, but especially when plans fail
for reasons that humans cannot directly perceive [7], [8].

While robot explanations typically come in the form of
natural language, this is not always the best or easiest way
to communicate information, especially in the context of
mapping and navigation. In this work, we thus consider
how visual explanations might be generated in integrated
robot architectures, in these sorts of contexts. Specifically,
we consider how failure explanations can be represented
geometrically, projected onto maps, and visualized to users.

We argue that visual failure explanations, such as those
presented in this paper, may be especially useful in privacy-
sensitive contexts, where the reason for planning failure is
not itself physical, yet relates to readily visualizable spatial
extents. Privacy concerns are especially salient for mobile
robots, and in many domains where interactive robots are
being proposed to be used, including sensitive medical settings
like hospitals and doctor’s offices where privacy is both a
moral and legal issue [9], [10], [11], [12], [13]. Mobile robots
may record audio and video to support speech recognition,
facial recognition, object tracking, navigation, teleoperation,
and so forth. Such recordings may capture sensitive health
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Fig. 1: System Validation Scenario. For the robot to reach
a goal location in the context shown, it would need to enter
the physical privacy regions of the depicted humans. We
prove this by constructing an infeasibility polygon in the
map. This infeasibility polygon is a visual explanation that
informs planning failures to users on privacy grounds.

information, e.g., video recording of bandage changes, or
audio recording conversations regarding STD diagnoses [14].

We argue in this paper that mobile robots can minimize
these ethical and legal risks by intentionally circumventing
morally fraught situations according to their own sensory
capabilities, and providing visual explanations as to why this
is necessary. While there are many different lenses through
which privacy can be examined [15], [16], we consider how
robots might protect the physical privacy of the humans in
their environments by rejecting commands that would bring
them into “physical privacy regions”: users’ contextually
scoped personal zones within which sensitive conversations
could be overheard or sensitive procedures could be witnessed.
These physical privacy regions are contextually scoped. That
is, spatially grounded privacy concerns are mediated by
environmental and interaction context: the distance within
which a robot can come to passersby is likely to be a shorter
distance when in a busy hallway than a private hospital room;
and likely to be a farther distance when humans are obviously
engaged in conversation than when they are merely passing
by. Because of this change in scope, it is difficult for users
to directly perceive the physical privacy regions.

In this work, we thus introduce an integrated approach
enabling robots to provide visual failure explanations on
privacy grounds in navigation tasks. This approach extend



our previous demonstration of social robots using formal
representations of moral and social norms to reject inappro-
priate commands in a context-sensitive task planner [17].
In contrast, this work addresses how robots can similarly
reject commands that violate norms with respect to mo-
tion planning. Our integrated approach combines three key
architectural subsystems: (1) the Distributed, Integrated,
Affect, Reflection, Cognition (DIARC) robot architecture,
which we use for language and goal-driven cognition, (2)
a novel motion planning method to assess context-sensitive
feasibility of users’ commands on privacy grounds; and (3)
a ROS-based contextual reasoning system, which we use
for place recognition and object detection. The heart of this
integrated approach is our novel application of recent work
generating motion planning infeasibility polygons [18] on a
2D navigation map with privacy constraints. Figure 1 shows
an example scenario. The infeasibility polygon separates the
start and goal locations and demonstrates to users the precise
reason why the navigation plan fails on privacy grounds.

II. RELATED WORK

In this section, we discuss recent work in the context of (1)
failure explanation for transparent and trusted human-robot
interaction; (2) privacy concerns surrounding social robots;
(3) social navigation; and (4) infeasibility proofs.

A. Failure Explanation for Transparency and Trust

There has been a vast array of work on explaining robot
plans in natural language to improve (justifiable) human-
robot trust through increased robot transparency [1], [2], [3],
[4], [5], [6], [19], [20]. Our work seeks to generate visual
explanations when the plan fails. Recently, researchers have
also considered communication of plan failures, especially
in the context of command rejection [21], and explored
factors that influence when a robot should reject directives,
including not only factors like physical capacity, but also
normative permissibility [22]. While many approaches to
command rejection have been explicitly grounded in Deontic
Norms [23] and similar formalisms [24], [25], [26], [27], other
researchers have recently considered whether approaches
grounded in robots’ social roles and relationships may be
more effective [28], [29]. Our work builds on this by ensuring
that we not only detect when privacy violations could occur
(in the form of explainable polygons) but moreover whose
privacy would be violated (i.e, the identities of the persons
whose physical privacy regions intersects the infeasibility
polygon), in order to ensure compatibility with both norm-
driven and relation-driven approaches.

B. Privacy Concerns Surrounding Social Robots

While social robots are predominantly designed for pro-
social purposes (especially hospital robots, which seek to
reduce harm and enhance life- and health-oriented capabilities,
especially for vulnerable and structurally limited communities
(cf. [30], [31])), they nevertheless raise key concerns that
must be addressed for safe and successful deployment [32],
including privacy concerns [32], [33], [9], [10], [13]. Lee et

al. emphasize the relationship between these risks and issues
of transparency, by showing that most users were not able
to identify the types of information collected by robots [33].
Moreover, Lutz and Tamò-Larrieux demonstrate how users’
privacy concerns impact the ways they choose to interact
with robots. Other researchers have accordingly proposed
methods for improving data privacy and safe data handling
in the design of social robot systems [34], [11]. However,
we argue that because users have difficulty assessing what
information is actually being collected by robots, and because
privacy concerns can hamper effective interaction, we suggest
that robots be designed to avoid what would be perceived
as constituting a privacy violation even if the way data is
handled is privacy-sensitive and HIPAA-compliant [35].

C. Social Navigation

Social navigation allows robots to navigate in a way that
is sensitive to human social norms and social or cultural
expectations. Social navigation can increase humans’ comfort
while coexisting with mobile robots [36], [37], [38]. A
key aspect of social navigation is endowing robots with
an understanding of human proxemics. Proxemics are the
set of social norms that humans use to navigate around
one another, like standing in line and respecting others’
personal space [39]. Robots can perceive and react to human
proxemics, adjusting dynamically as people move or alter
their body language [40], [41], [42], [43], [44]. Socially aware
navigation allows robots to predict human motion and move
in ways that are more predictable themselves, which can result
in more effective navigation and interaction overall [45], [46].

Our work is closely related to social navigation in that
we are interested in navigation that is sensitive to normative
factors. However, our approach is unique with respect to
previous work on social navigation in terms of our emphasis
both on privacy considerations and on command rejection.

D. Infeasibility Proofs in Motion Planning

To enable privacy-sensitive social robot navigation, privacy
concerns need to be addressed at the motion-planning level.
In recent work, we have presented novel motion planning
techniques grounded in plan infeasibility analysis [18], which
we argue can be used to ensure privacy-sensitive social robot
navigation when privacy-driven constraints could cause plan
infeasibility. Infeasibility proof based motion planning differs
from traditional sampling-based planning [47], [48], [49] in
critical ways. Notably, while sampling-based motion planning
is only probabilistically complete, infeasibility proof based
motion planning offers stronger guarantees: it is guaranteed to
terminate with either a plan or an infeasibility proof. Such a
planner is important in privacy-sensitive scenarios not only for
ensuring privacy-sensitive behaviors but also for the purposes
of explainability since infeasibility proofs can be used to
provide exact explanations as to why a command cannot be
executed ethically. There have been some other approaches
that generate infeasibility proofs [50], [51], [52], [53], [54].
Our approach [18] has key advantages over those approaches
in terms of explainability, as our infeasibility proofs are



generated in the form of easily visualizable geometries, for
example, 2D polygons for holonomic mobile robots, which
facilitate analyzing and explaining plan failures.

III. TECHNICAL APPROACH

Our technical approach uses an integrated system with
three components: (1) the DIARC Robot Architecture, which
is responsible for natural language understanding and goal-
driven cognition; (2) the motion planning system, responsible
for privacy-based planning to achieve language-specified goals
in a context-sensitive manner and generate visual failure
explanations; (3) a ROS-based contextual reasoning system
for context/place recognition and object detection. Figure 2
illustrates this integrated system. In this section, we detail
each constituent sub-system.

A. Language Understanding and Goal-Driven Cognition

To decide whether to accept or reject a user’s command on
privacy grounds, we must first identify and manage the intent
behind that command. We achieve this using the Distributed,
Integrated, Affect, Reflection, Cognitive (DIARC) Robot
Architecture [55]: a hybrid deliberative-reactive robot archi-
tecture with a wide array of cognitive capabilities, with special
attention to language understanding and generation [56]. Our
configuration of DIARC is implemented using the Agent
Development Environment (ADE), a distributed multi-agent
system middleware [57]. Our ADE-implemented configuration
of DIARC leverages the capabilities of six key architectural
components: the Speech Recognition, Parsing, Pragmatic
Inference, Reference Resolution, a Spatial Consultant, the
Dialogue manager, and the Goal Manager.

When a user speaks to the robot, DIARC’s speech recog-
nition component converts their speech into text, which is
provided to the parser [58], [59]. The parser uses a Combina-
tory Categorial Grammar [60] to translate this text into a set
of logical predicates encoding the surface semantics of the
speaker’s utterance, along with a Givenness Hierarchy [61]
theoretic mapping of the variables used in those predicates
to their presumed cognitive statuses, indicating whether the
speaker’s phrasing suggests the people, objects, and locations
they referenced are in focus, activated, familiar, uniquely
identifiable, or type identifiable, to facilitate the understanding
of not only definite descriptions, but also anaphora, deictic
pronouns, indefinite noun phrases, and so forth [62]. The
predicates produced by this parser are organized into a list P
whose head P0 represents the primary semantics encoding
the (surface-level) intent of the utterance, and whose tail P1:n

represents the supplemental semantics encoding the properties
ascribed in the utterance to any objects, locations, and people
mentioned in the utterance.

The primary semantics are then sent to the pragmatics
component, which uses context sensitive rules encoding, e.g.,
Indirect Speech Act theoretic politeness norms [63], [64], to
determine the intended meaning of the speaker’s utterance—
e.g., from the semantic representation of an utterance such
as “Can you go to the kitchen?” the pragmatics component
would typically (depending on context) infer that the speaker

wishes the listener to have a goal to go to the kitchen.
The supplemental semantics are then sent to the reference
resolution component, which uses consultants (such as the
spatial consultant) to identify the objects, locations, and
people described in the utterance. This component uses the
DIST-POWER [65] algorithm (see also [66]), which enables
reference resolution under conditions of both uncertainty
(when the robot is unsure whether a property holds for a
given entity) and ignorance (when the robot can determine
that an object being described was previously not known to
it, and thus that it must create a new mental representation
for that object), and which can operate with information
regarding entities distributed across different components, on
different machines, using different knowledge representations.
This algorithm is used as integrated into the Giveness
and Relevance-Theoretic Open World Reference Resolution
(GROWLER) algorithm [67], which facilitates the resolution
of a wide array of linguistic forms [68], [62].

Once the intent behind an utterance and the entities refer-
enced within that utterance are identified, a bound utterance
structure is provided to the Dialogue manager, which, if the
robot decides to do so, uptakes that intention; optionally
uptaking the propositions behind any assertions, forming
an intention to respond to any requests for information, or
adopting the goals associated with any commands or requests
for action. If a goal is adopted, the user’s intention is sent
to the Goal Manager [69], [59], which is responsible for
prioritizing between and managing possibly competing goals
and selecting actions in service of those goals. In this work,
we equip the Goal Manager with a Motion Action Selector
that extracts the location specified from navigation goals
and sends this navigation goal to the motion planning part,
through a REST API similar to that specified by Jackson et
al. [17], awaiting a response that either (a) indicates motion
planning success, or (b) provides the information necessary
to generate an appropriate failure explanation.

B. Motion Planning

We integrate privacy regions into the motion planning
problem formulation to ensure that valid plans adhere to
privacy constraints. Specifically, we consider privacy regions
as part of the configuration space obstacle region. Then,
we produce either a feasible motion plan or a proof—and
explanation—of motion planning infeasibility.

A motion planning problem [70] consists of a configuration
space C of dimension n, a start configuration qstart, and a
goal configuration qgoal. The configuration space C is the
union of the disjoint obstacle region Cobs and free space
Cfree. Both qstart and qgoal are in Cfree. We define a human’s
privacy region as an area function PR of the location of the
human in the workspace (hi), the privacy range of the human
(ri), and the context the human is in (ci), where the range
ri is also determined by the context ci. The motion planning
obstacle region Cobs is the union of the space with physical
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Fig. 3: Example of the motion planning infeasibility polygon
construction steps from (a) to (d).

obstacles Cobs,phys and the privacy region of each human,

Cobs = Cobs,phys
n⋃

i=1

PR(hi, ri(ci), ci) . (1)

For example, in Figure 1, the black regions are the physical
obstacle regions caused by walls and objects in a 3D space,
and the grey regions around the locations of the humans are
the privacy regions. The union of these two types of obstacle
regions forms the final configuration space Cobs.

With this definition of Cobs, we use the algorithm in [18]
to find a plan if the motion planning problem is solvable or
construct an infeasibility proof when no such plans exist. In
contrast to most classic motion planners [71], [49], which may
generate a plan when one exists but cannot show infeasibility,
this algorithm with infeasibility proof construction is a good
fit for our application because infeasibility proofs provide

information about why a command must be rejected.
The motion planner runs two separate threads in parallel

(Figure 2). The planning thread runs a sampling-based
motion planner to find a plan, e.g., RRT-connect [71] or
Probabilistic RoadMap (PRM) [49], and saves all the sampled
configurations. In our system, we use PRM since its multi-
directional sampling strategy can cover a complex 2D map
more efficiently. Another thread attempts to construct an
infeasibility proof using the sampled configurations. We
explain the infeasibility proof construction steps using the 2D
example in Figure 3. First, with samples from the planning
thread, the algorithm groups all the Cfree points connectable
to the goal point as one class and all other Cfree points as
another class, as shown in Figure 3 (a). Then, we train a
classifier with the two classes (Figure 3 (b)). Geometrically,
the classifier is a manifold that separates the two classes.
Next, we triangulate the manifold to construct a 2D polygon
(Figure 3 (c)). If every line segment of the 2D polygon is
in Cobs, then the 2D polygon is an infeasibility proof. In
2D, we call it an infeasibility polygon. An infeasibility proof
is a closed manifold that exists entirely in Cobs and that
separates the start and the goal [18]. If an infeasibility proof
exists, it means there is no collision path connecting the
start and the goal. The final infeasibility polygon is shown in
Figure 3 (d). With the planning thread and the infeasibility
proof construction thread, our 2D motion planner returns
either a valid path or an infeasibility polygon.

The infeasibility polygon explains visually why plans do
not exist, since it creates a geometrical separation in the
configuration space and in the map. With the infeasibility
polygon, the user can understand why planning fails, analyze
this result, and decides on alternate actions. For example, if
the infeasibility polygon’s edges overlap with some humans’
privacy regions, then the privacy regions could cause failure.
Figure 1 shows the 2D configuration space of a holonomic
mobile robot. The red polygon is the infeasibility polygon,
which exists entirely in Cobs (the three humans’ privacy
regions are parts of Cobs) and explains why the plan fails by
separating the start and the goal. One part of future work is
to collect the humans’ locations his and privacy ranges ris



causing failure, and send these to the language understanding
module to explain the failure using natural language.

Note that the infeasibility proof construction algorithm
works for kinematic motion planning problems only and does
not consider dynamic constraints. Thus, our current system
assumes a holonomic mobile robot without considering
control uncertainties, steering functions or dynamics.
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Fig. 4: Simulated Robot Environment.

C. Place Recognition and Object Detection

The capabilities described in the previous section are
facilitated by a place recognition and object detection based
context recognition system. Place recognition [72] seeks
to identify a given location from a set of templates and
is an essential capability for mobile robots. It reduces
ambiguity and accumulated errors during mapping and robot
localization, thereby significantly improving robot mapping
and localization accuracy. Long-term Place recognition [73]
addresses the key challenge that many robot navigation
environments are dynamic in nature and change over time.
For example, when navigating in indoor environments with
changing lighting conditions, arrangement of furniture, and
human movements that vary on a daily basis.

We perform long-term place recognition using voxel-based
representation learning [74] (VBRL). The VBRL method
uses 3D point clouds obtained from a LiDAR sensor to form
representations of the environment and then learns from these
representations to recognize previously visited locations by
comparing the new point cloud scan with an existing 3D point
cloud map. We use VBRL to recognize the context from a
360-degree field of view of the LiDAR sensor. This capability
is helpful in indoor environments where some objects or even
humans may occlude the limited file of view of a traditional
RGB camera. This VBRL approach divides the input 3D point
clouds into multiple voxels in a 3D space and extracts multi-
modal features from each voxel. Then, VBRL uses regularized
optimization to learn the importance of each feature modality
within every voxel and the representativeness of voxels. The

voxel importance learning is inspired by the insight that
certain voxels in a 3D space are more important as they can
better encode location-based context. For example, a LiDAR
sensor obtains more information from points closer to it, and
thus, voxels near the sensors have more information, and their
importance should be learned accordingly. Mathematically, the
voxel representations are achieved by using sparsity inducing
regularization norms in the objective function.

Context-recognition is further improved by pairing long-
term place recognition with object detection. Object detection
allows the robot to find all instances of one or more given
object classes irrespective of their scale, location, pose, view
concerning the robot, or even illumination conditions. We
detect the objects as seen by the robot’s RGB camera using
You Only Look Once (YOLO) [75], and then compare them
with the location context to check if these objects belong in
the context. For example, if a robot recognizes the location
context as office-room through VBRL, YOLO cross-checks
this information by looking for objects such as monitors,
people, tables, etc., which are common in office spaces.
YOLO is also used to estimate the distance of humans from
the robot and ground their locations in the robot’s map.

Together, these capabilities are thus leveraged to identify
people and their locations, to identify the context needed to
parameterize those peoples’ physical privacy regions, and to
generate the visual explanations for the robot’s decisions.

IV. EXPERIMENTAL VALIDATION

We validate our system on a Clearpath Husky ground robot
simulated in a Gazebo environment, as illustrated in Figure 4.
The robot is equipped with an Intel Realsense D435 camera,
Ouster OS-1 64 LiDAR and a ReSpeaker Mic Array v2.0
microphone which is capable of detecting voices upto 5m
away. We assume the robot’s mic is omnidirectional and sound
travels equally in all directions in an indoor environment,
such that we can simplify the privacy regions to be circular
areas centered at the location of the human. Figure 4 shows
the simulated world consists of multiple rooms, the closet, the
offices, the commons, and the hallway. In addition to the 3D
map used for place recognition, we built a 2D robot collision
map to enable motion planning using the 3D point cloud
from the LiDAR sensor. Using elevation mapping [76], we
detect the elevation of each point in the 3D point cloud with
respect to the robot. We then use traversability estimation to
evaluate the traversable regions in the map by considering
the robot footprint and step height. The robot considers the
region as an obstacle if (1) the robot’s step height is less than
the elevation of the point cloud and (2) the distance between
these elevation clouds is less than the robot’s footprint. Hence,
we construct a 2D traversability map of free space the robot
can traverse. Figure 5 shows parts of the traversability map
(the collision regions are black and the free spaces are white).

To simulate a real-world environment where humans’
privacy regions might interfere with planning, we randomly
sample a group of three or two humans’ locations and
orientations in three types of rooms, the offices, the hallway,
and the commons. We use F-formations to create the locations
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Fig. 5: We run 50 trials for each command (closet, office 1, office 2) and each privacy context (office 1, hallway, commons)
with randomized human groups’ location. Figures showing eight representative experimental results among the 450 trials.
Top: Four plan infeasible cases caused by the humans’ physical privacy regions, infeasibility polygons are constructed.
Bottom: Four cases with valid paths, the paths avoid entering the humans’ privacy regions.

of humans inside a group [77]. We use one type of three-
person group formation and one type of two-person group
formation (see Figure 5 for marked human groups’ locations).
To emphasize context changes, we use three different privacy
region radii for the three types of location-based context.
Humans in the office, the hallway, and the commons have
privacy regions’ radii of 1.5, 1.0, and 1.25 meters respectively.
Further studies are needed to precisely determine the PR
functions and ranges of social navigation robots in different
contexts, which is a separate body of work.

In the experiments, the robot starts in the commons, and has
three different goal locations associated with three commands,
(1) Go to the closet (whose constituent referring expression
can be resolved to the room at the leftmost end of the hall), (2)
Go to office number 2 (whose constituent referring expression
can be resolved to the room in the middle), and (3) Go to
the office number 1 (whose constituent referring expression
can be resolved to the room at the rightmost end of the hall).
With no humans in the environment, the robot can travel
to all three rooms. When random human groups are added,
paths to the goal locations might be infeasible. We run 50
trials for each command and each location-based context.

The experiments show successful performance on all
three validation utterances in all 450 trials. Figure 5 shows
visualizations automatically generated to explain the robots’
privacy-grounded decisions. When humans’ privacy regions
make the planning problem infeasible, the system constructs
infeasibility proof visualizations (Figure 5, top) to explain the
failure. When the planning problem is feasible with humans’

Infeasible vs Valid Runtime Result, mean±std (s)
Location context Both Infeasible Valid

Office Counts 150 6 144
Runtime (s) 0.25±2.04 4.71±9.93 0.06±0.04

Commons Counts 150 0 150
Runtime (s) 0.06±0.04 NAN 0.06±0.04

Hallway Counts 150 19 131
Runtime (s) 0.15±0.33 0.66±0.74 0.08±0.09

All Counts 450 25 425
Runtime (s) 0.15±1.19 1.63±4.90 0.07±0.06

TABLE I: Counts and runtime (mean±std) results of infeasi-
ble vs valid cases for each location based context.

privacy regions, the planner generates valid paths for the robot
to execute, and visualizations of those valid paths (Figure 5,
bottom). Table I shows the counts and average runtime of
the valid/infeasible cases for each context. Human groups’
locations in the hallway create the most infeasible cases.
Constructing infeasibility proofs in the infeasible cases takes
slightly longer than finding a path in the valid cases. The
overall average planning time is 0.15 seconds, which makes
dynamic real-time applications possible in the future.

V. CONCLUSION AND FUTURE WORK

We have presented an integrated systems approach to enable
failure explanation in privacy-sensitive robot navigation tasks.
Now that we have shown that failure explanations can be
visualized in the forms of maps containing obstacle regions
and infeasibility polygons, future work should explore the
usability and interpretability of these visualizations to users,
as displayed on a physical screen [78] or using Augmented
Reality techniques [79], [80], [81]. In future work, we are



also interested in combining natural language with these
visualizations into multimodal explanations.

Our approach also has several limitations. First, our current
approach does not apply to dynamic scenarios. This could be
addressed in future work through constant re-planning. While
this would address situations where previously infeasible
scenes become feasible, the converse is not necessarily true:
If a command is issued while a motion is feasible, but the
situation changes, it may be too late for the robot to issue a re-
jection. In such cases, a privacy violation may yet occur. This
raises interesting questions as to how such violations might
be mitigated and which entities might be held accountable.
For robots in medical settings, researchers have considered
whether patients should be instructed on how to disable
the robot’s recording features to protect their own privacy.
Similarly, institutions could implement predefined procedures
for the treatment of accidental recordings of nonconsenting
individuals, consistent with existing regulations [14].

Second, further research is needed to improve the general-
izability of our approach across a wide variety of contexts.
This includes exploring different methods of parameterizing
privacy regions, considering how those methods are differ-
ently perceived by users, and exploring how F-formation
detection [82] might be used to automatically detect when
humans are in fact in conversation rather than merely standing
near each other.

Third, future work should consider how the privacy risks
presented by the sensing capabilities needed to enable our
approach might themselves be addressed. Our approach
inherently requires determination of where people are located,
and could require information about those people if social
roles are taken into account. While these capabilities do not
inherently require identifying specific individuals, this could
nevertheless itself present a privacy risk. Future work should
thus explore how these risks can be enumerated (sensitive
so social and structural context[83]), and the techniques for
mitigating those risks (use of physical tokens to eliminate
the need for certain visual sensor inputs; limited sensing
capabilities; or data use policies) that are most compatible
with stakeholder values and priorities[31].

Finally, the work presented in this paper could be com-
bined with the task-planning oriented work presented in
previous work [17]. Moreover, the method presented in
this paper should be evaluated with live human subjects
to better understand how people will make sense of and
react to both robots’ privacy-sensitive navigation behaviors
(for those whose privacy would otherwise be violated) and
robots’ privacy-sensitive command rejections (for those whose
commands would violate others’ privacy).
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[10] C. Lutz and A. Tamó-Larrieux, “The robot privacy paradox: Under-
standing how privacy concerns shape intentions to use social robots,”
Human-Machine Communication Journal (HMC), 2020.

[11] E. Sedenberg, J. Chuang, and D. Mulligan, “Designing commercial
therapeutic robots for privacy preserving systems and ethical research
practices within the home,” Int’l Journal of Social Robotics, 2016.

[12] E. Fosch-Villaronga, C. Lutz, and A. Tamò-Larrieux, “Gathering expert
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