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Abstract

We present a computational cognitive model of referential
choice that models and explains the choice between a wide va-
riety of referring forms using a small set of features important
to situated contexts. By combining explainable machine learn-
ing techniques, data collected in situated contexts, and recent
computational models of cognitive status, we produce an accu-
rate and explainable model of referential choice that provides
an intuitive pragmatic account of this process in humans, and
an intuitive method for computationally enabling this capabil-
ity in robots and other autonomous agents.

Keywords: cognitive status; anaphora generation; natural lan-
guage generation; referential choice

Introduction
A central feature of human language is the use of reference,
through which interlocutors pick out or introduce entities.
When making reference to target referents, people use a wide
variety of referring forms, including definite and indefinite
noun phrases (i.e., the 〈N’〉, a 〈N’〉) and various deictic and
pronominal forms (e.g., it, this, that, this 〈N’〉, that 〈N’〉)1. A
vast amount of research has been performed seeking to ex-
plain and model how humans generate definite descriptions,
as described by Van Deemter (2016); and to enable robots
and other autonomous systems to efficiently generate effec-
tive and natural referring expressions, as described by Gatt
and Krahmer (2018). However, there has been substantially
less work in both communities seeking to explain and model
the use of referring forms beyond definite descriptions.

As highlighted by Gundel, Hedberg, and Zacharski (1993),
humans use this wider variety of referring forms in curi-
ously flexible and strategic ways. Referring forms such as
it, this, and that, for example, provide little semantic infor-
mation about their targets, and yet humans strategically use
these forms not only to express themselves more concisely
but moreover to provide subtle cues that allow their inter-
locutors to more quickly and effectively identify target ref-
erents. Moreover, referential choice (the selection between
these different forms) is widely accepted to be an impor-
tant first step in the natural language process (Kibrik et al.,

1The examples used in this paper are in English, but the vari-
ety of referring forms we consider and the way they are used has
been well documented across a wide variety of languages, including
Mandarin, Japanese, Spanish, Russian, Eegimaa, Kumyk, Ojibwe,
Arabic, Irish, Norwegian, Persian, and Turkish (Hedberg, 2013).

2016), made before descriptive content is considered for in-
clusion (Krahmer & Van Deemter, 2012). Accordingly, un-
derstanding and modeling the process by which humans se-
lect between referring forms is critical both from a psycholin-
guistics perspective as well as for those in the artificial in-
telligence community seeking to build robots and other au-
tonomous agents capable of effectively and naturally commu-
nicating with human collaborators through natural language.

Various theories of reference have sought to explain the
types of factors that determine what referring forms can be
used felicitously in different contexts. For example, and
of particular interest in this work, the Givenness Hierar-
chy (Gundel et al., 1993) suggests that different referring
forms signal different cognitive statuses, with “this” signaling
that the speaker believes their referent to be at least Activated
in the current conversation and/or in the mind of their inter-
locutor (Rosa & Arnold, 2011). But while theories such as
the Givenness Hierarchy provide critical linguistic insights,
they do not attempt to explain or algorithmically model the
cognitive process of referential choice. And while there has
been vast literature from both psycholinguistic and artificial
intelligence perspectives on both the understanding of refer-
ring language (including deictic and anaphoric language), and
the generation of non-anaphoric language, there has been rel-
atively little work on computationally modeling the selection
between anaphoric forms during the natural language gener-
ation process. Finally, work on computational modeling of
referential choice has typically been focused on predicting
whether or not to use a pronoun using the set of features that
can be carefully annotated in textual domains.

We propose a cognitive model of referential choice that
predicts the choice between a wide variety of referring forms
using a small set of features well established as important in
situated contexts. By combining explainable machine learn-
ing techniques, data collected in situated contexts, and recent
work on the computational modeling of Givenness Hierarchy
theoretic notions of cognitive status, we produce an accurate
and explainable model of human referring form that provides
an intuitive account of this process in humans and an intuitive
method for computationally enabling this capability in robots
and other autonomous agents.



Related Work
Linguistic Models of Referential Choice
As discussed by Arnold and Zerkle (2019), linguistic mod-
els seeking to explain the use of different referring forms,
especially pronouns, fall into two broad categories. Ratio-
nal model seek to explain the production of pronouns as a
matter of egocentric analysis of the costs of generating and
processing different referring forms, with pronouns typically
preferred due to their ease of production (Aylett & Turk,
2004; Frank & Goodman, 2012). Pragmatic models suggest
that reduced forms like pronouns are special forms that hu-
mans have learned to associate with referents that are highly
activated or focused; an allocentric framing that highlights
pronouns’ ability to enhance not just ease of speaker pro-
duction but also ease of listener interpretation. As argued
by Arnold and Zerkle (2019), while pragmatic models may
differ in terms of the theoretical constructs they use to explain
differences in information status (i.e., focus (Grosz, Joshi, &
Weinstein, 1995; Brennan, Friedman, & Pollard, 1987; Grosz
& Sidner, 1986), salience and accessibility(Ariel, 1991), or
givenness (Gundel et al., 1993), and accordingly differ as to
whether they regard information status as a difference of lin-
guistic category, psychological state, or presumption of psy-
chological state, all of these models share a common assump-
tion that use of different referring forms is grounded in a re-
lationship between discourse status and psychological states,
especially memory and attention.

While both classes of theories have promise, neither does
a terribly good job at explaining the choice between differ-
ent types of reduced expressions, e.g., between it, this, and
that. As Arnold describes, this problem is particularly salient
for rational models, which should suggest much more fre-
quent use of reduced forms than is actually seen in prac-
tice, and fails to account for patterns of selection between
referring forms that are equally short. Moreover, Arnold
and Zerkle highlights that linguists have tended to focus on
explaining individual phenomena, and that there has not to
date been an attempt to provide a comprehensive explanation
for reference production as a whole. This perspective aligns
with that argued by Grüning and Kibrik (2005) who high-
light that many linguists have focused narrowly on individ-
ual factors that may impact referential choice, such as linear
(linguistic) distance (Givón, 1983), rhetorical distance (Fox,
1993; Mann, Matthiessen, & Thompson, 1989), and narrative
episodic structure (Tomlin, 1987; Marslen-Wilson, Levy, &
Tyler, 1982). Finally, we would add to this analysis that mod-
els of both varieties suffer from an overemphasis on textual
analysis, failing to adequately model the aspects of situated
contexts.

In this work, our first goal is thus to provide a more com-
prehensive account of referential choice, that accounts for
generation of a wide set of referring forms in situated con-
texts. Specifically, we take a cognitivist perspective grounded
in the theory of the Givenness Hierarchy (GH) (Gundel et al.,
1993). The Givenness Hierarchy suggests that a speaker’s

choice of referring form is made based on their assumptions
as to the cognitive status of their target within the mind of
their interlocutor or within the conversation. If they assume
their target is “In Focus” they may choose a form such as it;
if they assume their target is “Activated” (a category which
subsumes “In Focus”) they may choose a form such as this
or that; and so on. The GH delineates six hierarchically
nested tiers of cognitive status (In Focus, Activated, Famil-
iar, Uniquely Identifiable, Referential, and Type Identifiable),
each associated with a different set of referring forms.

We choose the GH from the pragmatic family of models
discussed above because (1) the GH provides perhaps the
closest account of the connection between referring forms
and information status as mediated by cognitive structures
and processes, (2) the GH provides a commonsense expla-
nation for how a wide variety of referring forms are related to
different information statuses, and (3) there has been recent
promising work within the robotics community for develop-
ing computational cognitive models of understanding wide
varieties of referring forms using the GH (Williams, Acharya,
Schreitter, & Scheutz, 2016; Williams & Scheutz, 2019).
Our second goal is to furthermore provide similar computa-
tional cognitive GH-theoretic language generation that could
be similarly implemented into robotics and other situated au-
tonomous agents. As such, it will now be helpful to discuss
related work that has been formed on computationally mod-
eling referential choice.

Computational Models of Referential Choice
Much of this work on computational modeling of the process
of referential choice (Poesio, Stevenson, Eugenio, & Hitze-
man, 2004; McCoy & Strube, 1999; Ge, Hale, & Charniak,
1998; Kibrik et al., 2016; Kibrik, 2011; Callaway & Lester,
2002; Kibble & Power, 2004) falls under the broad catego-
rization of multi-factorial process modeling, with selection of
referential form viewed as a problem of classification based
on animacy, grammatical role, and factors related to discourse
structure, coherence, and salience. A discussion of the vari-
ous predictive features that have been proposed and the ma-
chine learning approaches that have made use of these fea-
tures, are surveyed by Kibrik (2011) (see also Van Deemter
et al. (2012) and Gatt et al. (2014)).

These models have primarily made classification decisions
between a small number of classes, such as pronoun vs de-
scription, or pronoun vs proper noun vs description, on the
basis of large numbers of annotated features. This approach is
directly related to the non-situated textual domains in which
previous approaches have focused. First, previous approaches
have been able to focus on simple classification decisions
such as pronouns vs proper nouns vs descriptions as textual
domains such as news reports in which there are a relatively
small number of candidate referents, many of which are read-
ily discriminable and which can be uniquely picked out using
proper nouns. Second, previous approaches have made pre-
dictive decisions based on the large number of annotated fea-
tures that are readily available in large-scale textual corpora.



In comparison, in situated domains present a number of
complications. First, there are typically a large number of
highly similar candidate referents, few of which can be re-
ferred to using proper names. For example, many previous
applications have sought to model referential choice using
corpora of Wall Street Journal articles, in which a given ar-
ticle may revolve around a small number of people, govern-
ments, institutions, and so forth, each of which can be readily
referred to through a proper name, and about which a host
of information has been annotated (Krasavina & Chiarcos,
2007). In contrast, in situated domains, speakers may need
to distinguish between a large number of highly similar task-
relevant entities (e.g., when collaboratively loading a dish-
washer or setting a table, interlocutors may need to distin-
guish between many cups, plates, and so forth, which may be
functionally identical and which are unlikely to have proper
names). Moreover, robots operating in these domains must
make classification decisions on the basis of features they can
automatically assess, rather than the wider set of features that
linguists can annotate. Moreover, in situated domains, the
need for careful selection between ambiguous referring forms
becomes arguably more important, both because certain re-
ferring forms (e.g., “this” and “that”) are differentially used
in situated contexts based on inherently situated features such
as physical distance (as well as nonverbal cues such as gaze
and gesture, although we do not consider them in this work
either), and because overly ambiguous utterances in situated
domains leads to expensive repair dialogues.

It is also valuable to consider the features used in previ-
ous computational cognitive models of referential choice, and
their relation to linguistic theories of reference. While theo-
ries such as the Givenness Hierarchy have been widely suc-
cessful in explaining from a linguistic perspective how the
use of different referring forms can be motivated by speakers’
presumptions regarding their referents’ cognitive status, there
has been little work seeking to explain the cognitive mecha-
nisms and psycholinguistic processes by which cognitive sta-
tus is used during language generation (Arnold, 2016), and
neither has cognitive status been used as a feature in prior
models of referential choice. This is natural, as cognitive sta-
tus is a concept that exists in the mind of speakers, and is thus
difficult to definitively annotate.

However, recent work in the cognitive science literature
has begun to explore methods by which presumed cognitive
status can be assessed from user judgments in human subject
experiments, and how data from such experiments can thus be
used to train predictive models to automatically predict pre-
sumed cognitive status (Pal et al., 2020). In this work, we
leverage this recent work in order to directly predict referen-
tial choice from presumed cognitive status, along with a small
number of theoretically-informed features of critical impor-
tance for situated interaction. Due to linguistic evidence that
pragmatic models of referential choice are most naturally
compatible with rule-based cognitive mechanisms, and due
to the long history of linguists seeking to model referential

choice using rule-based decision procedures (Levelt, 1993),
the data-driven model we present in this work is learned us-
ing a highly explainable rule-based decision tree framework,
to produce a model that is at once easily implementable in
autonomous systems yet also readily mineable for linguistic
and psycholinguistic insights.

Materials

Before describing our computational modeling approach, we
will briefly describe the data modeled by our approach.

Situated Interaction Corpus

We used the dataset collected by Bennett et al. (2017), which
involves a human instructor collaborating with human and
robot learners in a spatially situated collaborative task, in the
environment shown in Fig. 1. This environment contained
four boxes labeled A-D (imposing some ambiguity despite
the name-enabling label), three colored towers (yellow, red,
blue), four walls, and a set of tapelines dividing the room
into four quadrants. For simplicity, only the boxes and towers
were annotated in this dataset.

The dataset consists of transcripts of videos of human par-
ticipants (instructors) instructing human and robot teammates
(learners) to rearrange the experimental environment, step
by step, to achieve a reconfiguration of their choosing. Each
participant performed this task twice, once with a human
and once with a robot, with order counterbalanced. In both
cases, the learner followed directions without responding.
The dataset contains 66 monologues from 33 participants,
each containing between 5 to 24 utterances referring to boxes
or towers, for a total of 485 such utterances and a total of
603 such referring expressions. Two sample monologues are
included below:

Monologue 1
So in front of you will be a box.
Hm, can you grab the second box?
You can move the box, actually, don’t move you.
Take your hands, grab out, outside the box.
Just push it.
Now push that box over till I say stop.
Align with the box a little bit more.

Monologue 2
Um, first, we’re gonna go push block A to the back-center of
box 1.
Um, and knock over the blue tower.
Then we’re gonna take box B and move it to the center of the
3rd quadrant.
Um, box C is going to go right on the number 4.
Um, and then box D is going to go to the corner on the line
with box 1 on it, up against the wall.
Um, box C needs to be on the number 4.
Um, box D needs to be closer to the line.



Figure 1: Situated Interaction Context (Bennett et al., 2017)

Classes
Each referring expression in this dataset was assigned a class
label corresponding to the referring form used in that expres-
sion. Six class labels were used: it, this, that, this 〈N’〉, that
〈N’〉, and the 〈N’〉. The few indefinite noun phrases occur-
ring in the dataset were not coded, leaving handling of such
expressions to future work. Because this work sought to han-
dle the main categories of referring forms handled by the GH,
and these main categories do not include bare NPs, we take
for convenience sake a descriptivist view (Frege, 1892; Rus-
sell, 2001; Nelson, 2002) and code bare noun phrases such as
“Box A” as definite noun phrases (i.e., the 〈N’〉), leaving the
distinction between definite descriptions and pseudo-proper
names to future work.

Features
Each referring expression was annotated using cognitive sta-
tus as well as three additional features well acknowledged
to be critical to situated description: number of distractors,
physical distance, and temporal distance. As discussed above,
previous approaches to computational modeling of multi-
factorial referential choice have tended to use large numbers
of features that are readily available in large-scale annotated
text corpora. In this work, however, we instead elected to
focus on a small number of features of high theoretical rele-
vance to the speaker’s situated context that could be extracted
on-line by situated autonomous agents such as robots. This
approach should provide a model that is readily interpretable,
efficient, and unlikely to be the result of overfitting to feature
noise. We discuss each feature below.
Cognitive Status: The central thesis of this work is that ref-
erential choice may be more effectively modeled by primarily
relying on the cognitive status referents are expected to hold
in the mind of their interlocutors or in their current conver-
sation (depending on one’s theoretical interpretation of the
Givenness Hierarchy). In order to use this as a feature in our
computational models, each monologue was provided as in-
put to a Cognitive Status Engine (Pal et al., 2020), comprised

of a set of Cognitive Status Filters: Bayes Filters of the form:
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Each such cognitive status filter recursively estimates, for
a given object o, the probability distribution over cognitive
statuses S for o at time t, on the basis of linguistic features
L. To estimate these distributions for a set of known objects,
O = {o1, ...,on} at each time step, we use a Cognitive Status
Modeling Engine C, consisting of a set of CSFs {c0, ...,c1},
one for each object believed to be of a status familiar or higher
within the conversation.

In this work we used a CSE with one CSF for each task-
relevant object. Using this CSE, we annotated each referring
expression with the most likely cognitive status for its target
referent (per its associated CSF) at the time of its utterance.
Number of Distractors: Much evidence suggests that speak-
ers respond to the presence of distractors when speaking,
avoiding pronouns when they would be ambiguous (Ferreira,
Slevc, & Rogers, 2005), providing evidence for pragmatic
models of referential choice (Ariel, 2014; Chafe, 1976;
Givón, 1983; Gundel et al., 1993). However, while the pres-
ence of distractors is considered to be a determinant of ac-
cessibility (Ariel, 2014) and topicality (Givón, 1983), it is
not viewed as a determinant of givenness, but rather as a fac-
tor that interacts with givenness when determining referential
choice. As such, we include the number of distractors as a
key feature in our model of referential choice. The number of
distractors for a target referent was calculated as the number
of other towers and boxes whose most likely cognitive status
was estimated to be of the same GH-theoretic tier or higher as
the target referent at the time of utterance, using the cognitive
status estimation procedure discussed above.
Physical Distance: Due to our focus on situated contexts, we
also included physical distance from speaker to target refer-
ent. There is substantial prior evidence of the role of physical
distance in selecting between demonstratives such as “this”
and “that” (Dixon, 2003). We encoded distance through
video analysis of Bennett et al. (2017)’s corpus. Referents
were classified as “close”, “mid-distance”, or “far” based on
whether they were before, at, or beyond the most salient hor-
izontal landmark (a line running the width of the room at
roughly half the maximum distance into the room). While
this means of classification is obviously tailored to this spe-
cific evaluation corpus, the general approach of considering
whether a referent is in the nearer or farther half of a given
task context is one that may easily generalize.
Temporal Distance: Finally, like most previous works on
computational cognitive modeling of multi-factorial referen-
tial choice (Kibrik et al., 2016), we include a measure of
linear or temporal distance, i.e., recency of mention (Givón,
1983). Specifically, we encode recency of mention for a tar-
get referent as 1/n, where n is the number of referring expres-
sions since the last mention of the target, with 1 meaning the
target was the most recently mentioned object, and 0 meaning
it has not yet been mentioned in the dialogue.



Computational Modeling
In this section we describe our computational cognitive
model. We approach GH-informed referential choice as a
classification problem of predicting class labels from input
features. To solve this problem we chose to use the REP-
Tree (Reduced Error Pruning Tree) implementation (Quinlan,
1987) from the open source WEKA software package (Hall et
al., 2009). REPTrees are an extension of the classic C4.5 de-
cision tree algorithm that builds a decision tree using an infor-
mation gain based splitting criteria which is then pruned us-
ing a reduced-error pruning technique (Witten & Frank, 2002;
Quinlan, 1993). Like previous approaches to computational
cognitive modeling of multi-factorial referential choice, we
selected a decision tree approach due to the ready inter-
petability of such approaches, which enables them to achieve
reasonable accuracy while facilitating theory-building.

Five REPTree models were trained: a complete model
(M1), and four ablated models removing either cognitive sta-
tus (M2) distractors (M3), physical distance (M4), or tempo-
ral distance (M5). Models were evaluated via accuracy, root
mean squared error (RMSE), precision, recall, and F1 score.
All five models were trained by WEKA using stratified 15-
fold cross-validation. Stratified evaluation was used to ac-
count for severe class imbalance between referring forms.
The increased number of folds was chosen based on the pref-
erences of the lead author.

Results
As shown in Tab. 1, all models achieved high accuracy, with
the M5 model (excluding only temporal distance) achieving
the best scores across primary metrics. The overall accuracy
range for the top-performing models of 83-86% for six-class
classification on the basis of four features is highly competi-
tive with other recent models, which have received accuracy
in the range of 72-75% for three-class classification on the
basis of a greater number of features (Kibrik et al., 2016).

We compare to Kibrik et al. here because their work is
most similar to our own. Critically, however, their work
examined a substantially different (non-situated) domain.
Moreover, they sought to model the choice between proper
names, descriptions, and pronouns, which is an overlapping
set of classes to our own but not a strict subset. As such,
our comparison here is not intended as formal evidence of
“greater” performance of our approach, but merely a signifier
of comparable results to the most similar prior work.

Our top performing models performed roughly equiva-
lently; selection between these models can be used on the
basis of other factors, such as those shown in the last two
rows of Tab. 1: coverage (modeled as number of classes in-
cluded in model predictions) and model simplicity (modeled
as number of leaves). Intuitively, a model should be able to
predict the use of all referring forms included as class labels,
without being overly complex (a sign of overfitting). Our re-
sults show that only the full model (despite its high number
of leaves) accounted for all referring forms included as class

labels. As such, we analyze only this full model.

Table 1: Evaluation Metrics

M1 M2 M3 M4 M5
Accuracy 84.74 79.6 71.97 83.58 86.07
RMSE 0.197 0.230 0.244 0.208 0.195
Precision 0.858 0.820 0.710 0.840 0.882
Recall 0.847 0.796 0.720 0.836 0.861
F1 score 0.843 0.811 0.716 0.838 0.858
Coverage 6/6 5/6 3/6 3/6 3/6
Leaves 13 9 5 9 6

Figure 2: Unablated (M1) Model. FOC = In Focus; ACT =
Activated; FAM = Familiar; UID = Uniquely Identifiable

As shown in Fig. 2, the M1 model can be interpreted as
follows. First, the model begins by considering the cognitive
status of the target referent. If the target is at most uniquely
identifiable, the model selects the 〈N’〉. If the target is at most
familiar, the model selects that 〈N’〉. If the target is at most
activated, a substantially more complicated chain of reason-
ing is performed, as described below. Finally, if the target is
at most in focus, then if there are no other referents in focus,
the model selects it, and otherwise selects the 〈N’〉. The jump
directly from pronoun to definite description is interesting,
as the model does not even consider forms like this or that,
which would also be felicitous. This is perhaps because those
forms would within a pragmatic account signal the target to
be at most activated rather than in focus.

When the target is at most activated, the model first con-
siders physical distance to the referent. If the target is neither
close nor far, the model chooses the 〈N’〉. If close, the deci-
sion depends on number of distractors: If there are no other
activated entities, the model chooses this; if there is a single
activated distractor, the model chooses this 〈N’〉; otherwise
the model chooses the 〈N’〉. If far, the decision depends on
both number of distractors and temporal distance: if there is



a single familiar distractor, the model chooses that; otherwise
if there is a single other entity that was mentioned more re-
cently, and there are only 1-2 distractors, the model chooses
that 〈N’〉; otherwise the model chooses the 〈N’〉.

Discussion and Conclusion
Our results demonstrate the efficacy of cognitive status as a
practical means of predicting referential choice in situated
contexts, especially when combined with other features criti-
cal to situated contexts, such as speaker-referent distance and
number of distractors of equivalent status. For the psycholin-
guistics (and linguistics) communities, these results support
previous arguments framing referential choice as a rule-based
process guided by mental assumptions regarding cognitive
status, and present a straightforward and easily interpretable
model of the cognitive process of referential choice. For
the artificial intelligence community, our results represent a
straightforward model that can easily be integrated into robot
cognitive architectures to guide referential choice, which will
allow for more accurate and natural human-robot interaction.
This work also raises a number of questions and directions
which we are seeking to address in ongoing and future work.

First, while our model predicts a wider range of referring
forms than previous work, it does not cover the complete di-
versity of referring forms, including bare noun phrases, indef-
inite noun phrases, personal pronouns, and so forth. The suc-
cess of the approach presented in this work suggests that this
approach would likely also be successful when trained on an
expanded dataset with a larger number of annotated classes.
Doing so, however, will require collection of a larger dataset
in which this broader variety of referring forms are used.

Second and similarly, our training corpus was limited to a
few objects, and did not include references to environmen-
tal geometry, events, people, and so forth. Handling these
additional entities would likely further increase our model’s
performance, due to a more accurate modeling of the set of
distractors.

Third, while the model predicts referring forms on the ba-
sis of cognitive status, it does not account for the mechanisms
by which humans use gaze and gesture to manipulate the sta-
tus of entities. E.g., a referent may not be activated at the
time a speaker decides to refer to it, but it may be activated
by the time the user commences speaking. This suggests that
the model presented in this work may benefit from being em-
bedded within a larger strategic model of this form.

Fourth, while the key predictive feature of our model was
cognitive status, the model of cognitive status we used was
not itself perfectly accurate. As discussed by Pal et al. (2020),
their Cognitive Status Filtering accuracy is around 82%; as
such, a refined model of cognitive status that itself uses a
greater number of predictive features to enhance accuracy
would likely result in equivalently increased accuracy for our
own model of referential choice.

Fifth, while the choice of decision tree model was not of
significant interest to us in this work, in future work we plan

to compare the REPTrees used in this work to more common-
place or modern alternatives such as J48 and XGBoost (Chen
& Guestrin, 2016).

Finally, similar to what has been noted by Kibrik et
al. (2016), while models of multi-factorial referential choice
may predict individual referential choices, in a given situa-
tion many choices may be equally acceptable, and choice be-
tween those options may be a matter of speaker preference,
especially given the range of referring forms considered in
this work. This means that “incorrect” predictions made by
our model may not actually be problematic and in need of im-
provement. This suggests the need for task-based evaluations
of the effectiveness and naturality of selected forms, similar
to evaluations performed by Kibrik et al. (2016), Williams
and Scheutz (2017), and van der Lee et al. (2020).
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