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ABSTRACT
Interactive intelligent systems are increasingly being deployed
in safety critical contexts like Space Exploration. For humans to
safely and successfully complete collaborative tasks with robots in
these contexts, they must maintain Situational Awareness of their
task context without being cognitively overloaded – regardless of
whether they are co-located with robots or interacting with them
from a distance of thousands or millions of miles. In this paper, we
present a novel autonomy design strategy we term Performative
Autonomy, in which robots behave as if they have a lower level
of autonomy than they are truly capable of (i.e., asking for advice
they do not believe they truly need), for the sole purpose of main-
taining interactants’ Situational Awareness. In our first experiment
(n=264), we begin by demonstrating that Performative Autonomy
can increase Situational Awareness (SA) without overly increasing
workload, and that this is true across tasks with different baseline
levels of Mental Workload. In our second experiment (n=318), we
consider cases where robots do not believe they need advice, but in
fact have faulty perception or decision making capabilities. In this
experiment, we only observed benefits to Performative Autonomy
for specific types of questions, and only when there was signifi-
cant cognitive load imposed by a secondary task; yet we observed
uniform benefit on task performance for asking these types of ques-
tions regardless of task-imposed Mental workload. Our results from
these two studies (total n=582) thus provide strong support for us-
ing this autonomy design strategy in future safety-critical missions
as humanity explores the Moon, Mars, and beyond.

CCS CONCEPTS
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Computer systems organization→ Robotic autonomy.
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Figure 1: Simulation of anAstrobee Robot aboard the Interna-
tional Space Station, as shown to experimental participants.

1 INTRODUCTION
Many human-robot collaboration domains are safety-critical, char-
acterized by high cognitive load and by high costs that can be
incurred by teammate errors or from teammates becoming out-
of-the-loop. Subsets of these characteristics hold, for example, in
search and rescue [27, 30, 64], autonomous driving [45], industrial
robotics [9, 24, 25, 40], robot-assisted surgery [55, 66], conversa-
tional agents [4, 5, 46], and, a focus of this work, space robotics.

A key task of NASA mission control is the supervision of mis-
sions involving autonomous or semi-autonomous agents, including
lunar and planetary rovers, on-station robots like the Robonaut,
Valkyrie, and Astrobee, Cimon, and the ISS itself. With the construc-
tion of the Lunar Orbital Platform-Gateway (LOP-G) and NASA
missions increasingly more to MARS and beyond, stations and habi-
tats will increasingly be uncrewed for long periods of time, making
remote agent supervision an increasingly common task.
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While these robots promise substantial benefit, their supervision
imposes challenges for both robot-colocated astronauts and robot-
remote mission control workers. Supervision can impose serious
challenges from a human factors perspective, especially in terms of
cognitive load and situation awareness. NASA investigations have
shown that during complex robot operations like the deployment
of the Curiosity rover, the cognitive load of the mission control
room workers can reach especially high levels, leading to loss of
situational awareness and potentially hazardous situations. These
challenges must be addressed before autonomous solutions can be
confidently pursued in space exploration contexts [33].

Several approaches have been proposed in the HRI literature
to help human teammates maintain Situational Awareness. One
approach for language-capable robots in safety-critical domains
(like the free flying Astrobee and Cimon robots deployed on the
ISS to perform Inter-Vehicular Activities (IVAS)) is to communicate
task-relevant information to human teammates. However, simply
stating information in high-stress contexts in which teammates
are already cognitively overloaded may not sufficiently capture
teammate attention in order to promote the deep (Level 2 or Level
3) Situation Awareness (SA) needed to truly head off catastrophe.

We propose a novel autonomy design strategy that we term
Performative Autonomy, which could genuinely increase teammate
Situation Awareness in safety-critical domains without overly bur-
dening them in terms of Mental Workload. To briefly summarize
this strategy, our key insight is to allow robots to "perform" lower
levels of autonomy than they truly need to, by asking questions
that they do not (so far as they are aware) actually need answers to,
solely to encourage teammates to reflect on the robot’s situation
and stay "in the loop". In this paper we present this novel autonomy
design strategy, and then evaluate it across two human-subjects
experiments, each of which tests two key scientific hypotheses.

In our first experiment (n=264) crowdworkers performed a cargo
transport task with Astrobee [54] robots aboard a simulated ISS, as
shown in Fig. 1. By systematically varying robot communication
strategy and baseline levels of Imposed Mental Workload, we assess
two key research questions:

RQ1 In contexts where robots truly do not need assistance with
their tasks, can Performative Autonomy increase interactant Situa-
tion Awareness without overly increasing Mental Workload?

RQ2 If so, can these benefits be gleaned across tasks with differ-
ent baseline levels of Imposed Mental Workload?

While our first experiment assumes robots know the optimal
action to take, this is of course not always the case. Robot sensing
and decision making capabilities are, despite the wishes of roboti-
cists worldwide, still unfortunately prone to significant sources
of error. Yet we argue this should only reinforce the benefits of
our proposed autonomy design strategy. That is, in contexts where
robot autonomy inevitably falls short, the increased SA provided by
our approach should serve the exact intended purpose of enabling
human teammates to detect and correct suboptimal robot decisions
stemming from faulty robot perception.

In our second experiment (n=318), participants thus engaged
in a similar cargo transport scenario with a similar experimental
design, but with a robot with faulty sensor capabilities, leading to
situations in which robots, believing that they know precisely what
to do and only stating or asking about their intended decisions

for human benefit, nevertheless occasionally reveal their intent to
make a suboptimal decision. Through this experiment, we assess
two further research questions:

RQ3 In contexts where robots in fact do (unknowingly) need
assistance, assuming Performative Autonomy increase interactant
Situation Awareness without overly increasing perceived Mental
Workload, does this benefit lead to increased task performance as
interactants catch and correct robot error at increased rates?

RQ4 If so, as before, can these benefits be gleaned across tasks
with different baseline levels of Imposed Mental Workload?

2 RELATEDWORK
2.1 Human Factors Concerns in Space

Exploration
In this work we are interested in two key Human Factors con-
structs of relevance in Space Exploration contexts: Mental Work-
load and Situation Awareness. Mental Workload (MW) is a Human
Factors construct that captures the demand that a task places on a
human’s limited cognitive resources [36, 60]. Of particular impor-
tance for MW is the different ways that performance is impacted
on either side of the divide that defines the limits of one’s cogni-
tive resources [62]. Specifically, when MW exceeds these limits
and passes the “red line of workload” [22], performance quickly
degrades and breaks down.

Situation Awareness (SA) is a Human Factors construct that
captures human awareness of environmental stimuli and the ability
to comprehend and make predictions based on these stimuli [15, 18].
SA is correspondingly divided into three distinct levels: Level 1 SA
simply reflects a human’s awareness of important stimuli within
their environment; Level 2 reflects the ability to comprehend the
significance of these stimuli; Level 3 reflects the ability to predict the
future state of the environment based on this comprehension. SA
is typically difficult to develop due to human cognitive limitations.
Attentional limits prevent humans from juggling their attention in
a way that allows them to achieve their goals while maintaining
SA [2, 62]; Working memory limitations produce bottlenecks for
the information processing needed to maintain SA [19]; MW and
other stressors further constrain working memory and attentional
resources [18]; and human reliance on autonomy exacerbates these
problems through Out-of-the-Loop Syndrome [20, 62]

Both MW and SA are of significant importance to Space Ex-
ploration contexts. MW is especially critical to manage in haz-
ardous situations like on-station medical events [65]. Moreover,
task-imposed MW may magnify the existing physical and psycho-
logical toll taken on astronauts by long duration missions [6]. As
such, addressing MW concerns have long been a priority for Space
Exploration research [59]. MW is also of import due to its afore-
mentioned downstream effects on SA. Space exploration missions
often have significant SA demand both during mission planning and
execution [32], yet human participants in such missions often have
decreased SA [7], due to high MW and ongoing communication
challenges [7]. In the next section, we will discuss one category of
approach taken in previous work to try to address these challenges.
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2.2 Levels of Autonomy & Adaptive Automation
One way that robotics and automation researchers has traditionally
sought to manage the types of human factors concerns we have dis-
cussed is through adjustment of a robot’s level of autonomy [3, 52]
to meet the needs of the current context an approach known as
Adaptive Automation. In this paradigm, a robot may increase or
decrease its level of autonomy based on a number of contextual fac-
tors, such as changing goals [56] or changes in teammate workload
or performance [12, 13].

Adaptive autonomy could alleviateMWand SA concerns by help-
ing users avoid complacency. Previous research on the relationship
between autonomy, workload, and SA suggests that high-autonomy
robots may increase overall task performance and decrease team-
mate workload [26] by reducing response demands [42, 43]; but
high autonomy without interaction can lead to problematic misuse
and disuse [39], loss of SA [37], and Out of the Loop Unfamiliar-
ity [17, 20]. Researchers have thus investigated how robots can
strategically bringing humans back into the robot’s loop [38].

But in this paradigm, robots typically bolster interactant Situa-
tion Awareness through periodic status updates, or by explaining
their actions [14, 29, 31, 57]. We argue that this approach may run
the risk of promoting only shallow engagement, increasing Level 1
SA alone. In this work we thus consider how robots might proac-
tively attempt to encourage deeper reflection in order to facilitate
more advanced levels of SA.

Our approach towards this goal is grounded in a key inversion
of traditional approaches to Adaptive Automation. While adaptive
automation might typically seek to increase autonomy to help man-
age interactant MW, we instead seek to decrease autonomy to help
manage SA, at sufficiently sparse rate that MW is unaffected. We
term this approach to autonomy design Performative Autonomy.

3 PERFORMATIVE AUTONOMY
If a negative side effect of increasing autonomy (acting on one’s
own rather than asking for assistance, even if assistance would be
helpful) has the negative side effect of decreasing SA, perhaps we
can increase user SA by decreasing autonomy (engaging users for
assistance rather than acting on one’s own, even if assistance is not
clearly helpful). If a robot were to do so, it would act “as if” it had a
lower level of autonomy than it was truly capable of. We thus term
this strategic lowering of autonomy Performative Autonomy.

We specifically consider performance of lower levels of auton-
omy through human-robot dialogue. Dialogue-theoretic approaches
to autonomy design have a long history, including approaches
like Mixed-Initiative Interaction [1], Collaborative Control [21, 24,
44]. We propose six levels of dialogue autonomy, inspired by [41]
and [61]. These levels (shown in Tab. 1, Col. 2) are ordered from
demonstrating most autonomy to demonstrating least autonomy.

These six levels of dialogue autonomy can be understood through
a Speech Act theoretic perspective [51], as the six levels align with
six categories of Illocutionary Acts [50] (shown in Tab. 1, Col. 3).
From this perspective, we observe that (1) an agent’s choice of
illocutionary act has an associated level of autonomy, (2) its level of
autonomy changes from utterance to utterance, and (3) an agent can
use lower levels of autonomy to achieve various social goals, e.g.,
using indirect speech acts (ISAs) [49] whose literal and intended

Level Strategy Speech Act
6 Selecting option without proposal (None)
5 Proposing and selecting a single option

without opportunity for veto
Requests/
Commands

4 Proposing and selecting a single option
with opportunity for veto

Statements/
Assertions

3 Proposing a single option Suggestions
2 Requesting confirmation of a single op-

tion
YN-
Questions

1 Requesting selection between multiple
options

WH-
Questions

Table 1: Dialogue Autonomy Levels & associated Speech Acts

meanings differ. For example, a speaker desiring a listener to bring
them a wrench will often, for reasons of politeness [8], commu-
nicate indirectly, using an utterance like “Could you bring me a
wrench?”, which is literally a YN-Question (Yes/No Question) but
is understood by sociocultural convention as a Request/Command.

In this work, we are interested in dialogue-based Performative
Autonomy to achieve the social goal of facilitating interactant SA.
When viewed through this lens, we can see previous work in which
robots have sought to promote SA by proactively stating or explain-
ing their actions [10, 11, 35, 48] as special cases of this approach
that have restricted themselves to the top few levels of dialogue au-
tonomy. In contrast, we believe that Performative Autonomy stands
to be uniquely successful in achieving this goal when it extends
beyond these initial levels. In other areas of HRI, researchers have
considered the way that different types of dialogue strategies (in-
cluding different types of Speech Acts) could help interactants to
engage in deeper reflection [28, 58, 63, 67]. While much of that
work is focused on moral robotic communication, we believe the
same lessons could hold true. That is, by keeping interactants “in
the loop” by asking questions, robots may be able to promote deeper
reflection, and thus promote higher levels of SA.

One potential challenge for this approach, of course, is the work-
load cost imposed by this approach. As described above, higher
levels of autonomy are often taken to explicitly alleviate teammates’
MW. As such, it is possible that Performative Autonomy could in-
crease SA at the cost of increasing perceived MW; or it is possible
that increases in MW caused by Performative Autonomy could wash
out any effects on SA. Moreover, MW costs have varying impacts
based on the level of MW imposed by an underlying task; as such,
it’s possible that Performative Autonomy could be effective only in
contexts that are not already imposing a high level of MW.

Our intuition is that this should not be the case. A robot using
Performative Autonomy would only need to employ this strategy
when making certain decisions of high importance. As such, Perfor-
mative Autonomy should not consistently add to users’ MW. If this
is true, then Performative Autonomy should not impose significant
MW over the course of a task. In other words, benefits to SA should
outlast momentary costs to MW.

To verify these intuitions, we performed a human-subject ex-
periment studying the differences in induced SA and MW between
Dialogue Autonomy Levels 1, 2, and 6 for a robot capable of Level
6, across tasks imposing different baseline levels of MW.
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4 EXPERIMENT ONE
To understand the potential effectiveness of Performative Auton-
omy as an Autonomy Design Strategy, we specifically begin by
considering three key research hypotheses:

H1 In contexts where robots truly do not need assistance with
their tasks, Performative Autonomy will increase interactant Situa-
tion Awareness.

H2 These benefits will be gleaned across tasks with different
baseline levels of Imposed Mental Workload.

H3 These benefits will be gleaned without overly increasing
perceived Mental Workload.

To test these hypotheses, we conducted a human-subject ex-
periment in which we systematically varied two key independent
variables (Performative Autonomy strategy and baseline level of
Imposed Mental Workload); and systematically measured two key
dependent variables (SA and perceived MW). We will now describe
the design and results of this experiment.

4.1 Task Design
Prolific crowdworkers engaged in an eight-minute Cargo Transport
task in an online simulation of the ISS. Participants viewed the
robot’s traversal of the ISS through a video window, and were
tasked with providing assistance when (ostensibly) required (if
an obstacle prevented successful placement of cargo into a cargo
berth). The video feed watched by participants was composed at a
series of clips pre-recorded in RViz, which created the illusion of a
continuous live stream. While participants monitored the robot and
provided input, they participated in a secondary n-back: a classic
psychological method for imposing MW. In a separate window,
participants were presented with a sequence of numbers, after each
of which they are asked to enter the number that had appeared n
items back in the sequence. This was a demanding task that made
it difficult for participants to consistently monitor the robot.

Performative Autonomy was manipulated in this experiment
by changing the communication the robot would use when it en-
countered a blocked berth (every 80 seconds). In the Performed High
Autonomy condition, the robot did not communicate, and simply
took the optimal corrective action. This was equivalent to not using
Performative Autonomy at all. In the Performed Medium Autonomy
condition, the robot used a YN-Question to ask for confirmation
on its decision before acting on it. When using a YN-Question, if
the user rejected the robot’s suggestion, the robot followed up by
asking for clarification between which option they would prefer.
In the Performed Low Autonomy condition, the robot directly used
a WH-Question to ask for arbitration between multiple possible
solutions without first making its own proposal.

Imposed Mental Workload was manipulated by varying the n
in the secondary n-back task. In the LowMental Workload condition,
n was set to zero. That is, the user merely needed to repeat back
whatever number was shown. In the Medium Mental Workload
condition, n was set to one. That is, the user needed to report the
previously shown number in the sequence. In the High Mental
Workload condition, n was set to two. That is, the user needed
to report the number that had been shown before the previously
shown number in the sequence.

Low Medium High
Performed Autonomy
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Figure 2: Study 1: Effects of Performative Autonomy on SA.
In this and all future charts, error bars represent Standard
Deviation.

Situation Awareness was measured by periodically (every 100
seconds) asking participants to answer a question about the task
environment. Specifically, participants were asked which Berth was
currently blocked, with all three listed as options. During these
questions, the screen was blocked out, preventing visual inspection.
Correct answers were used as evidence for higher SA.

Perceived Mental Workload was measured by periodically
(every 50 seconds) asking participants to self report their level of
perceived Mental Workload on a 1-5 Likert Item.

4.2 Participants
263 American participants were recruited through Prolific (M=111,
F =145, Other=8). Participant ages ranged from 18 to 69 (M=33.83,
SD=11.50). Each was randomly assigned to one of our three Perfor-
mative Autonomy conditions and one of our three Imposed Mental
Workload conditions. All experimental data and analysis scripts can
be found at https://osf.io/xajpc/.

4.3 Results
4.3.1 Situation Awareness. To assess H1 and H2, we performed
a Bayesian Analysis of Variance of the effect of the Performa-
tive Autonomy and Imposed Mental Workload conditions on SA.
Our results provided extreme evidence for a main effect of Per-
formative Autonomy (𝐵𝐹 =30833.841). Post-Hoc Bayesian t-tests
revealed extreme evidence that Performed Low Autonomy promoted
more SA (M=0.62,SD=0.24) than did Performed High Autonomy
(M=0.44,SD=0.26) (BF=12016.97), as did Performed Medium Auton-
omy (M=0.60, SD=0.25) (BF=772.28) These results (Fig. 2) thus sup-
ported both H1 and H2.

4.3.2 Perceived Mental Workload. To assess H1 and H2, we per-
formed a Bayesian Analysis of Variance of the effect of the Per-
formative Autonomy and Imposed Mental Workload conditions on
perceived Mental Workload.

https://osf.io/xajpc/
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Figure 3: Study 1: Effects of Imposed Mental Workload on
perceived Mental Workload.

Our results provided extreme evidence for a main effect of Im-
posed Mental Workload condition 5.109 × 1012. Post-Hoc Bayesian
t-tests revealed extreme evidence that the LowMentalWorkload con-
dition led to less perceived Mental Workload (M=2.623,SD=1.037)
than did the Medium Mental Workload condition (M=3.42,SD=0.88)
(BF=63550.83) or the High Mental Workload condition (M=3.88,
SD=0.93) (BF=5.645 × 1011); and strong evidence that the Medium
Mental Workload condition led to less perceived Mental Workload
than did the High Mental Workload condition (BF=26.26). These
results (Fig. 2) serve as evidence that our Imposed Mental Workload
conditions successfully manipulated perceived Mental Workload.

Evidence was found against a main effect of Performative Auton-
omy (BF=0.04) or an interaction between Performative Autonomy
and Imposed Mental Workload (BF= 0.06), thus supporting H3.

4.4 Discussion
Our results support H1, H2 and H3. That is, (1) Performative Au-
tonomy was a successful autonomy design strategy for increasing
interactant SA, even in contexts with high baseline levels of cogni-
tive load, without meaningfully increasing cognitive load.

This confirms our key intuition: that by asking meaningful ques-
tions when making important decisions, robots can encourage
engagement with their actions. And because YN-Questions and
Wh-Questions were equally effective, yet neither resulted in any
meaningful increase in perceivedMentalWorkload over silence, our
results suggest that either level of performed autonomy represented
a reasonable and effective strategy for the robot to take.

One explicit assumption made by this experiment, however, was
that Performative Autonomy was a strategy to be used when robots
knew the optimal action to take, and thus did not actually require
the advice they requested from human teammates. However, it
may be valuable to consider cases where this assumption fails, as
robots’ perception and decision making capabilities are obviously
not flawless in practice. Yet we believe that in such situations,
Performative Autonomy as an autonomy design strategy should
be no less effective, and in fact it is in just such situations that

this strategy may truly shine. Specifically, contexts where robot
autonomy is imperfect are those in which interactant vigilance and
high SA are most critical to maintain. In these situations, the SA
gains promoted by Performative Autonomy may be just what is
needed to maintain high task performance and avoid catastrophic
error. In our second experiment, we aimed to test this intuition.

5 EXPERIMENT TWO
Our second experiment considered four research hypotheses:

H4 In contexts where robots need assistance with their tasks,
Performative Autonomy will, again, increase interactant Situation
Awareness.

H5 These benefits will be gleaned across tasks with different
baseline levels of Imposed Mental Workload.

H6 These benefits will be gleaned without overly increasing
perceived Mental Workload.

H7 Performative Autonomy will thus lead to increased task
performance.

5.1 Task Design
Our second experiment used an identical task design to Experiment
One with one small change: the robot’s decisions as to what to
do were occasionally faulty. That is, when detecting a blocked
berth, the robot misinterpreted which berth was blocked with some
probability, and erred in its judgment of where the cargo should
instead be placed in at least three out of five placement tasks. The
transparency of these errors thus varied by experimental condition.

Otherwise, this experiment used the same experimental manipu-
lations as our first experiment, but also included several key task
performance measures.

Task Performance was measured in terms of Accuracy and
Reaction Time. Accuracy was measured based on user responses to
robot questions, with responses deemed accurate if they led to the
robot performing the task-optimal action for the choice asked about
by the robot. Meanwhile, Reaction Time was measured by the time
taken by the user to respond to the robot’s queries. Since under
Performed High Autonomy the robot did not ask for user input, task
success was only measured under Performed Medium Autonomy
and Performed Low Autonomy.

5.2 Participants
318 American participants were recruited through Prolific (M=124,
F=168, Other=26).Participant ages ranged from 18 to 69 (M=35.25,
SD=12.24). Each was randomly assigned to one of our three Perfor-
mative Autonomy conditions and one of our three Imposed Mental
Workload conditions. All experimental data and analysis scripts can
be found at https://osf.io/xajpc/.

5.3 Results
5.3.1 Situation Awareness. To assess H4 and H5, we performed
a Bayesian Analysis of Variance of the effect of the Performative
Autonomy and Imposed Mental Workload conditions on SA. Our
results provided extreme evidence for an interaction effect between
Performative Autonomy and Imposed Mental Workload (BF=298.08),
as shown in Fig. 4, and strong evidence against a main effect of

https://osf.io/xajpc/
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Figure 4: Study 2: Effects of Performative Autonomy and
Imposed Mental Workload on SA.

Performative Autonomy (BF=0.09) or a main effect of Imposed Mental
Workload (BF=0.05). These results thus failed to support H4 or H5.

In the Low Mental Workload condition, Post-Hoc Bayesian t-
tests revealed extreme evidence (BF=236.58) that Performed High
Autonomy (M=0.59, SD=0.28) promoted more SA than Performed
Medium Autonomy (M=0.34,SD=0.24), and strong evidence (BF
11.87) that Performed Low Autonomy (M=0.53, SD=0.29) promoted
more SA than Performed Medium Autonomy. In the High Mental
Workload condition, Post-Hoc Bayesian t-tests revealed moder-
ate evidence (BF=6.76) that Performed Low Autonomy (M=0.57,
SD=0.30) promoted more SA than Performed Medium Autonomy
(M=0.38,SD=0.26), and moderate evidence (BF=5.10) that Performed
Low Autonomy promoted more SA than Performed High Autonomy
(M=0.38,SD=0.24). At least moderate evidence was found against all
other differences within each Imposed Mental Workload condition.

5.3.2 Perceived Mental Workload. To assess Hypothess H6, we
performed a Bayesian Analysis of Variance of the effect of the
Performative Autonomy and Imposed Mental Workload conditions
on perceived Mental Workload.

Our results provided extreme evidence in favor of a main effect
of Imposed Mental Workload (BF=4.168 × 1013), as shown in Fig. 5.
Strong evidence was found against a main effect of Performative
Autonomy (BF 0.07) and against an interaction effect (BF 0.07), thus
partially (due to the lack of support for H4) supporting H6.

Post-Hoc Bayesian t-tests revealed extreme evidence (15351.89)
that the High Mental Workload condition led to higher perceived
Mental Workload (M=3.75, SD=0.80) than did the Medium Men-
tal Workload condition (M=3.29, SD=0.82), extreme evidence (BF
9.550× 1012) that the High Mental Workload condition led to higher
perceived Mental Workload than did the Low Mental Workload con-
dition (M=2.68, SD=0.95), and extreme evidence (BF 201.04) that the
textitMedium Mental Workload condition led to higher perceived
Mental Workload than did the Low Mental Workload condition.
These results demonstrated that our Imposed Mental Workload con-
ditions successfully manipulated perceived Mental Workload.
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Figure 5: Study 2: Effects of Imposed Mental Workload on
perceived Mental Workload.

5.3.3 Task Performance. To assess H7, we performed a Bayesian
Analysis of Variance of the effect of the Performative Autonomy and
Imposed Mental Workload conditions on Task Performance, in terms
of Accuracy and Reaction Time. Because task performance was mea-
sured in this work in terms of how participants responded to robots’
questions, task performance was only analyzed in the Performed
Medium Autonomy and Performed Low Autonomy conditions.

Accuracy of Responses. Our results provided extreme evidence
for a main effect of Performative Autonomy (BF=8.635 × 107), as
shown in Fig. 6, suggesting that Performed Low Autonomy led
to a higher proportion of correct responses to the robot’s ques-
tions (M=77.9%, SD=23%) than did Performed Medium Autonomy
(M=53.7%, SD=21.7%. Moderate evidence was found against a main
effect of Imposed Mental Workload (BF 0.15). Anecdotal evidence
was found against an interaction effect (BF 0.07), as shown in Fig. 7.
Because an interaction effect could not be ruled out, we performed
a post-hoc analysis comprised of pairwise Bayesian t-tests.

In the Low Mental Workload condition, Post-Hoc Bayesian t-tests
revealed extreme evidence (BF=130323) that Performed Low Auton-
omy led to a higher proportion of correct responses to the robot’s
questions (M=.846, SD=.221) than Performed Medium Autonomy
(M=.559,SD=.202). In the Medium Mental Workload condition, Post-
Hoc Bayesian t-tests revealed anecdotal evidence (BF=0.92) against
a difference between Performed Low Autonomy (M=.71, SD=.22) and
Performed Medium Autonomy (M=.611,SD=.231). In the High Mental
Workload condition, Post-Hoc Bayesian t-tests revealed very strong
evidence (BF=63.15) that Performed Low Autonomy led to a higher
proportion of correct responses to the robot’s questions (M=.78,
SD=.23) than Performed Medium Autonomy (M=.57,SD=.22).

Reaction Time of Responses. Our results provided extreme evi-
dence in favor of amain effect of Performative Autonomy (BF=4.433×
1034), as shown in Fig. 8, suggesting that the Performed Low Au-
tonomy condition led to faster reaction times (M=8.74s, SD=2.85s)
than did the Performed Medium Autonomy condition (M=15.90s,
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Figure 6: Study 2: Effects of Performative Autonomy on Task
Performance: Accuracy.
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Figure 7: Study 2: Effects of Performative Autonomy and
Imposed Mental Workload on Task Performance: Accuracy.

SD=3.58s). Strong evidence was found against a main effect of Im-
posed Mental Workload (BF 0.18) or an interaction (BF 0.27).

5.4 Discussion
The results of our second experiment failed to support H4 or H5.
That is, while we had expected to see the same benefits of Performa-
tive Autonomy for SA as we had seen in Experiment One, this was
not the case. Specifically, we observed that Performative Autonomy
as an autonomy design strategy only promoted benefits to SA in
this experiment when participants were under high workload, and
thus more likely to be suffering from decreased awareness and most
in need of being brought back into the loop. But moreover, we ob-
served that when workload was especially low, Performed Medium
Autonomy did more harm than good. These results carried over into
our task performance metrics, supporting H7. That is, the places
where we saw benefits of Performed Low Autonomy over Performed
Medium Autonomy in terms of SA, we also saw benefits in terms
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Figure 8: Study 2: Effects of Performative Autonomy on Task
Performance: Reaction Time.

of task accuracy; and overall, Performed Low Autonomy required a
shorter reaction time than did Performed Medium Autonomy. These
results raise two key questions.

The first question raised by our results is why, in this experiment,
Performed Medium Autonomy (asking Yes/No Questions) did more
harm than good? These results may be primarily due to the extra
step needed by interactants under this autonomy strategy. While
under the Low Performed Autonomy strategy, the robot merely
asks for selection between multiple options. In contrast, under
the Medium Performed Autonomy strategy, the robot first asked
for approval or disapproval of its suggestion. While in the first
experiment, the robot’s suggestions were guaranteed optimal, and
thus participants were unlikely to reject these requests. In contrast,
in the second experiment, the robot’s suggestions were occasionally
incorrect. In such cases, the participant needed to reject the robot’s
suggestion before selecting a more appropriate one.

But moreover, the added time needed in these cases may have
gone beyond the need to simply make an additional selection, as re-
flected in the seven extra seconds needed on average in theMedium
Performed Autonomy condition. First, it is possible that process-
ing YN-Questions themselves required an extra cognitive step for
human interactants, as they needed to (1) determine the best op-
tion, and then (2) determine whether this aligned with the robot’s
choice, whereas WH-Questions only required the user to perform
that first step. That is, perhaps the YN-Question, although requiring
additional decision making by the robot, did not actually save the
human any cognitive effort. Second, it is possible that YN-Questions
in fact required a significantly deeper reasoning process involving
social or moral cognition. Following Malle et al. [34]’s Path Model
of Blame, while WH-Questions merely asked participants to make
a decision, YN-Questions may have further prompted participants
to consider whether an adverse or blameworthy event occurred,
and if so, decide how to address it. That is, there may have been
an extra cognitive cost to deciding whether an error had occurred,
and an extra cognitive cost to deciding how to respond to the event,
and whether and how to communicate blame and issue corrections.
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Overall, these results suggest a complicated nonlinear relation-
ship between Performative Autonomy and cognitive processing.
Differentiating between these possibilities will be important in
future work, both through refined experimental design and task
design, as well as through providing opportunities for free-response
through surveys or interviews post-experiment.

The second question raised by our results is why, in Experiment
Two, our results were moderated by Imposed Mental Workload when
they were not in Experiment One? It could be that robot error led to
increased cognitive load overall, changing the overall level of MW
imposed by each of our three conditions. Yet the perceived Mental
Workload levels in Experiment Two were nearly identical to those
observed in Experiment One, and certainly not higher. Moreover,
as in Experiment One, we saw no effect of Performative Autonomy
on perceived Mental Workload, supporting H6. However, given the
differences in reaction time observed in this experiment, it appears
that Performative Autonomy did affect participants’ cognitive pro-
cesses, even if they were not aware of these differences, and even if
these results were not felt as imposing on MW itself. This question
might be further investigated in future work through the use of
other measures of MW and related constructs.

6 GENERAL DISCUSSION
Through our two experiments, we demonstrated the benefits and
pitfalls of Performative Autonomy, a novel autonomy design strategy.
Our results suggest that for robots with deserved confidence in
their own decisions, Performative Autonomy may be a valuable
strategy for promoting SA without decreasing Cognitive Load. Yet
our results also suggest that for robots with undeserved confidence
in their own decisions, Performative Autonomymay only be effective
when underlying task-imposed MW is sufficiently high, and may
itself impose additional cognitive and temporal demands in cases
where the robot’s faults become observable.

Overall, our results should encourage robot designers to employ
Performative Autonomy when deserved. This autonomy design strat-
egy may not be effective or worthwhile in domains that are not
safety-critical: if errors or out-of-loop unfamiliarity do not come
at high costs, the SA benefits from this strategy may not be worth
the cost of interruption. Similarly, in domains where users do not
struggle to maintain SA due to overly high (or overly low) levels of
cognitive load, there may be little need to consider this type of strat-
egy. But we argue, based on our results, that this approach could
be a useful strategy across domains where these considerations do
hold, such as search and rescue, autonomous driving, industrial
robotics, robot-assisted surgery, and of course, space robotics.

These results should also encourage Human-Robot Interaction
scientists to further explore this autonomy design strategy in fu-
ture empirical work. A number of additional variables may be
manipulated and measured in future work to develop a deeper
understanding of the novel ideas presented in this work.

First, a wider range of strategies (corresponding to additional
levels of Tab. 1) can be explored as independent variables in future
work. In particular, we suggested that asking questions should
encourage deeper engagement with a robot’s situation, but we did
not test this as a formal hypothesis. Comparison of the Performative
Autonomy strategies explored in this work to mere Statements

or Explanations would allow us to test this hypothesis. Future
work could also consider the frequency of Performative Autonomy
strategies. It would be natural to expect that as this strategy is
used more frequently, SA benefits may increase, but so too may
MW consequences. Similarly, while in this work, we emphasized
imposedMental Workload, future work could also manipulate other
closely related dimensions of context, such as potential for harm
and time pressure, due to the role these play in mediating how
people choose whether and how to be polite [53].

Second, a wider array of measures may now be explored as de-
pendent variables in future work. Most directly, a key limitation of
this work is the abbreviated nature of our SA and Workload mea-
surements. In this work we used simple Likert items and awareness
questions so that we could repeatedly survey participants without
overly distracting them. However, it may have been valuable to sup-
plement these with infrequent yet more robust procedures, such as
the NASA TLX [23], Bedford scale [47], or SAGAT procedures [16].
Future work should also examine the effects of Performative Auton-
omy on human-robot trust, and the way that trust might moderate
or explain the findings observed in this paper. Of particular im-
portance, we note that Performed Low Autonomy (WH-Questions)
achieved the desired goal of providing an opportunity for inter-
actants to “check in” on their robot teammates, thus promoting
enhanced SA of the robot and the problems it may be encountering.
Yet this dialogue strategy would not demonstrate the flaws in the
robot’s perception or reasoning when these occurred. In contrast,
these flaws would be clear in the case of Performed Medium Auton-
omy (YN-Questions). While YN-Questions did “more harm than
good” in our second experiment in terms of SA and Task Perfor-
mance, it is possible that this strategy would have been beneficial in
terms of promoting transparency and calibrated trust. This presents
an intriguing design dichotomy worthy of future exploration.

7 CONCLUSION
We have presented a novel autonomy design strategy we term Per-
formative Autonomy, in which robots behave as if they have a lower
level of autonomy than they are truly capable of (i.e., asking for
advice they do not believe they truly need), for the sole purpose of
maintaining interactants’ Situational Awareness. Our experimental
assessment of this strategy suggest that for robots with deserved
confidence in their own decisions, Performative Autonomy may be
a valuable strategy for promoting Situation Awareness without
decreasing Cognitive Load, but that for robots with undeserved con-
fidence in their own decisions, Performative Autonomy may only
be effective when underlying task-imposed Mental Workload is
sufficiently high, and may itself impose additional cognitive and
temporal demands when the robot’s faults become observable. As
we have discussed, our results thus provide strong support for the
use of this autonomy design strategy in future safety-critical mis-
sions as humanity explores the Moon, Mars, and beyond, and open
a host of new directions for future research in service of this goal.
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