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Abstract

Working Memory (WM) plays a key role in natural language
understanding and generation. To enable a human-like breadth
and flexibility of language understanding and generation capa-
bilities, cognitive systems for language-capable robots should
feature a human-like WM system in a similarly central role.
However, it is still quite unclear how robotic WM should be
designed, as a variety of models of human WM have been
proposed in cognitive psychology. Moreover, human reliance
on WM during language production is sometimes to help the
speaker rather than to help hearers. Thus, it is unclear whether
different robotic WM systems might harm certain dimensions
of interaction for the sake of the robot speaker’s ostensible ease
of cognitive processing. In this paper we demonstrate how dif-
ferent models of human WM can be implemented into robot
cognitive architectures. Our results suggest that these models
can be effective in terms of accuracy, perceived naturalness,
and perceived human-likeness.
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Introduction
Working Memory (WM) is a central component of human
cognition, providing temporary storage and manipulation
of information necessary for core cognitive tasks (Badde-
ley, 1992). The dynamics of WM steer key cognitive pro-
cesses, such as reasoning (Kyllonen & Christal, 1990; Süß et
al., 2002), comprehension (Halford et al., 1998), and learn-
ing (Baddeley, 2010). WM also plays a key role in lan-
guage processing, including natural language understand-
ing (Rönnberg et al., 2010), generation (Gundel et al., 1993),
and acquisition (Baddeley et al., 1998; Denhovska et al.,
2016). For example, WM may steer Referring Expression
Generation (REG) (Bannon, 2019; Gatt et al., 2011; Goud-
beek & Krahmer, 2011), during which humans select the set
of properties and relations they will use to describe entities
(e.g., objects and locations) to other people (Van Deemter,
2016). Yet, despite the centrality of WM in human cognition,
it has rarely played a significant role in robotic approaches
to language understanding and generation (including REG,
which we specifically consider in this work) even within the
cognitive systems tradition.

Cognitive Robotics seeks to create genuinely capable and
interactive robots through cognitive architectures whose mod-
ules, data structures, processes, and architectural design are
inspired by key theories from cognitive psychology (Ku-
rup & Lebiere, 2012; Laird et al., 2012, 2017). Research

in this tradition includes much work on robot communica-
tion, including language acquisition (Attamimi et al., 2016;
Miyazawa et al., 2019; Scheutz et al., 2019), reference resolu-
tion (Williams et al., 2016), referring form selection (Moulin-
Frier et al., 2017), and REG (Liu et al., 2022; Williams et al.,
2020; Williams & Scheutz, 2017).

In cognitive architectures like ACT-R and SOAR, WM is
typically modeled through buffers of ”activated entities” that
serve as a short-term cache, but which do not explicitly aim to
model what is known about the dynamics of this cache (Bax-
ter & Browne, 2010). Moreover, these approaches do not typ-
ically model the connections between WM and natural lan-
guage generation. As such, it is unclear whether REG models
that leverage robotic WM systems with human-like dynamics
will be able to produce human-like, natural, and easy to un-
derstand referring expressions.

To address these gaps, research must explore how compet-
ing models of WM dynamics can be implemented in robot
cognitive architectures, and how language produced accord-
ing to those dynamics will be perceived. Substantial research
focus has been given to the limited storage of WM (Ma et
al., 2014), and the ways information leaves WM through for-
getting. Two popular theories model forgetting in terms of
either decay (systematic removal of unrehearsed information
from WM buffers over time) and interference (limited storage
capacity (Brown, 1958; Waugh & Norman, 1965)).

In this work, we ask whether human-like models of WM
forgetting would make robot REG natural and human-like –
or negatively and unnecessarily harm performance. To do so,
we (1) demonstrate how an entity-based model of WM can be
integrated into a cognitive architecture, (2) demonstrate how
different WM forgetting models can be implemented within
that approach, and (3) experimentally validate this approach
through a user study with an autonomous cognitive architec-
ture.

Related Work
Working Memory in Psychology
Although the first mentions of Working Memory come out
of early literature on artificial intelligence (Newell & Simon,
1956), the most influential model of WM in psychology was
introduced by Baddeley (1983). This model is comprised of
a multi-modal short-term memory structure in which a cen-



tral controller coordinates information and strategies from
three subsystems: the visuospatial sketchpad, the phonologi-
cal loop, and the episodic buffer (Baddeley, 2000).

Since Baddeley’s seminal work, new theories have di-
verged along foundational criteria (Cowan, 2017), including
whether WM should be divided into multiple stores, WM’s
relationship with LTM, and the grounding of WM capacity
in representational quantity vs quality (Ma et al., 2014). Re-
gardless of these differences, WM researchers agree that at
its core, WM is a set of mechanisms and processes for main-
taining and operating on the available mental representations
most relevant for an ongoing cognitive task (Oberauer, 2019).

Memory researchers also agree on the highly influential
role that WM plays across disparate cognitive processes,
like reasoning ability (Kyllonen & Christal, 1990; Süß et
al., 2002), concept formation (Halford et al., 1998), and at-
tentional control (Gilchrist & Cowan, 2011; Kane & Engle,
2003; Kiyonaga & Egner, 2013; Oberauer, 2013). WM also
informs language processing. Since the late 1800s, psycholo-
gists have recognized the influence of memory on human lan-
guage production (EbbingHaus, 1885), and recent evidence
suggests that WM itself may arise from our need to com-
municate (Schwering & MacDonald, 2020). As such, many
language-related tasks naturally rely on WM, such as vocab-
ulary acquisition (Baddeley et al., 1998) and language com-
prehension (Daneman & Merikle, 1996). In language produc-
tion, WM plays a key role in maintaining multiple possible
structures that could be used (Myachykov et al., 2013), se-
quencing of syntactic constituents (Ivanova & Ferreira, 2019)
and pre-articulatory monitoring (Pickering & Garrod, 2014).
These tasks are critical to language capability, regardless of
whether the speaker is a human or a robot. But little attention
has been given to the dynamics of WM in robot cognitive ar-
chitectures.

Computational Models of WM
While a number of processes govern WM dynamics, in this
work, we focus on forgetting. Two key models of forgetting in
WM have been proposed: the theory of decay (Brown, 1958)
posits that memory items leave WM after a certain amount
of time if not rehearsed or reinforced, while the theory of in-
terference (Waugh & Norman, 1965) posits that WM buffers
have limited capacity, and items that are not maintained get
replaced by newer entries. Both models are supported by
strong empirical evidence (e.g. Jonides et al. (2008); Muter
(1980); Oberauer & Lewandowsky (2014); Reiter & Dale
(1997)), and have been computationally modeled in various
ways, such as through the interference-based Serial Order in a
Box-Complex Span (SOB-CS) model (Oberauer et al., 2012)
and the decay-based Time-Based Resource-Sharing (TBRS)
model (Barrouillet et al., 2004; Oberauer & Lewandowsky,
2011).

While these models were not developed or evaluated as
parts of general, integrated systems, complex cognitive ar-
chitectures like ACT-R and SOAR have modeled WM in
ways that allow for influence over general cognitive pro-

cesses. These approaches typically reduce WM to limited-
size buffers that can hold a fixed number of arbitrary chunks
or representations (Giorgi et al., 2021; Lindes & Laird, 2017;
Martı́n et al., 2020; Rodgers et al., 2013) or as a literal phono-
logical loop for rehearsing inner speech (Chella & Pipitone,
2020). However, these models typically focus more on the
storage of entities as a whole rather than the storage of prop-
erties of those entities, whose importance is emphasized by
recent WM research (Ma et al., 2014).

In contrast, some HRI researchers have begun augment-
ing existing robot architectural components with short-term
buffers that maintain properties of recently activated enti-
ties (Williams, Thielstrom, et al., 2018). Yet there has been
little formal exploration of this approach, and how different
interference and decay strategies might be implemented and
parameterized. Nor has there been significant investigation of
how these approaches might guide natural language genera-
tion. In short, it is still unclear how these WM systems can
be implemented, and whether robots whose WM systems are
governed by forgetting dynamics can produce human-like,
natural, and effective language.

Given the scarcity of robotic computational models of WM
forgetting dynamics, we investigate how decay and interfer-
ence can function within a cognitive architecture in order to
answer two key research questions:

RQ1: How can working memory modules based on the de-
cay and interference models of forgetting be integrated into
a robot cognitive architecture?

RQ2: Will a robot cognitive architecture using these mod-
els produce effective natural language, in terms of human
accuracy, ease of the listener’s cognitive processing, per-
ceived naturalness, and perceived human-likeness?

In the next section, we will explain the architectural ap-
proach used to answer these research question.

Architectural Approach
Our computational models were developed on the Dis-
tributed, Integrated, Affect, Reflection, and Cognition (DI-
ARC) architecture, which incorporates key theories from
cognitive psychology and linguistics to enable language-
capable robots (Scheutz et al., 2019, 2013). DIARC
is implemented in the Agent Development Environment
(ADE) (Scheutz, 2006) middleware, a secure and fault-
tolerant robotic framework that allows architectural compo-
nents to operate in parallel and communicate asynchronously.

DIARC maintains a decentralized long-term memory store
through a set of components that function as distributed het-
erogeneous knowledge bases (DHKBs) (Williams & Scheutz,
2016). Each DHKB holds information about a set of en-
tities that may be referenced by a robot in dialogue. Enti-
ties within a DHKB fit a distinct type of world object, such
as people, locations, and observable objects. A consultant
framework (Williams, 2017) provides DIARC components



with domain-independent access to DHKBs. That is, consul-
tants provide information about entities without needing to
share how the domain-specific processes are handled within
a DHKB. Each DHKB is managed by a consultant.

Building on Williams, Thielstrom, et al. (2018), we take an
Entity-Based Resource Management approach, in which each
DHKB maintains a WM buffer storing a set of features for
each entity. That is, rather than encoding a small set of enti-
ties, these buffers encode a small set of properties for every
entity known of within the DHKB, along with a memory trace
back to a full representation of that entity stored elsewhere in
the DHKB (cp. (Nozari & Novick, 2017)). Figure 1 illus-
trates how these buffers are structured under an Entity-Based
Resource Management approach.

Figure 1: People and Food represent two DIARC consul-
tants, each containing two entities. Each entity is equipped
with a resource manager (triangles) that determines how
properties are placed and removed from WM buffers, which
are queues containing properties that describe the given en-
tity. Entities adapted from ”User Avatar Icons” by Users In-
sights (usersinsights.com/user-avatar-icons), used under CC
BY (creativecommons.org/licenses/by/3.0). This figure is li-
censed under CC BY by Sousa Silva et al.

Decay and interference WM models of forgetting are
implemented in these buffers through the WM Man-
ager (Williams et al., 2020), which automatically detects and
connects to DHKBs when they register with the architecture,
and is responsible for adding or removing properties from en-
tity buffers according to the selected WM dynamics model.

Most WM decay models are based on activation and the
fact that it takes a certain amount of time for this activation
to decay. In addition, reuse of information bumps activation,
restoring the amount of time for items to decay. In this model,
for the sake of computational efficiency, we only model the
total amount of decay time rather than activation as a proxy.
The Decay model removes elements from each DHKB’s WM
buffers at set intervals according to parameter δ. That is,
the WM Manager removes the least-recently-added property
from each WM Buffer every δ seconds.

Most WM interference models assume a limited capacity.
Thus, the Interference model removes elements from each
DHKB’s WM buffers based on their set storage capacities ac-
cording to parameter α. That is, the WM Manager removes

the least-recently-added property from each WM Buffer that
contains more than α properties.

System Description
DIARC is a flexible, modular architecture, in which compo-
nents (1) are used in different configurations based on task
requirements, and (2) can be dynamically started and stopped
within and between tasks. As such, to understand how our
WM implementation influences REG, it is necessary to un-
derstand the full set of architectural components that must be
run in parallel for these capabilities to interact. Depending
on the architectural configuration, DIARC modules might be
instantiated as distinct components, or subsumed by a nar-
rower set of components. In our configuration (Fig. 2), we
attempt to minimize the number of components used, to most
effectively validate the Working Memory Manager alone.

This configuration involves at least three key modules: (1)
the WM Manager, which manages WM buffers as described
above; (2) the Referential Executive (REX) Component,
which oversees all tasks related to Natural Language Refer-
ence, and which maintains modules for Reference Resolu-
tion and Referring Expression Generation; and (3) a Task
Component, which serves as a DHKB, and simulates speech
recognition, parsing, surface-level natural language genera-
tion, and speech synthesis. That is, based on user selections
in our Task Component interface (as we will describe later on)
the Task Component compiles the Natural Language Packet
(NLPACKET) representation that would have been generated
if the robot’s interactant had been speaking out loud rather
than using the Task Component interface. And, based on the
robot’s decisions, text is visualized within the Task Compo-
nent rather than spoken out loud by the robot. The ultimate
vision of this work is to have a robot replace the interface and
fully manage speech communication.

Figure 2: DIARC architectural diagram.

Interaction thus proceeds as follows: First, the user de-
scribes an entity to the robot using the Task Component in-
terface, which turns this description into an NLPACKET that
is sent to the REX Component (Figure 2, step 1). The REX
Component then submits a reference resolution request to its
Reference Resolution module.

Reference Resolution uses the GROWLER algo-
rithm (Williams et al., 2018) for Givenness and Relevance-
Theoretic Open World Reference Resolution, which builds
off the GH-POWER algorithm (Williams et al., 2016;
Williams, 2019). GROWLER maintains a set of data



structures informed by the Givenness Hierarchy (Gundel
et al., 1993), containing pointers to entities whose full
representations are stored in DIARC’s DHKBs.

Depending on the type of referring form used by an
interlocutor (e.g., “it”, “this”, “that”, “this-⟨N’⟩”, “that-
⟨N’⟩”, “the-⟨N’⟩”, “a-⟨N’⟩”), GROWLER determines which
buffers need to be searched through (e.g., when “it” is
used, GROWLER considers representations in the “In Fo-
cus” Buffer). For certain referring forms (e.g., “the-⟨N’⟩”),
GROWLER will effect a full search of long-term memory
(i.e., the DHKBs) as a last resort, using the POWER algo-
rithm (Williams & Scheutz, 2015, 2016) (cp. (Culpepper et
al., 2022)). A Consultant Framework (Williams, 2017) medi-
ates the interface between GROWLER and these DHKBs.

While algorithms like GH-POWER return the first candi-
date referent found to satisfy the semantic constraints im-
posed by an utterance, GROWLER instead continues until a
sufficiently relevant candidate referent is found (according to
discourse salience and relevance metrics), retaining all suit-
able (but not necessarily relevant) options found along the
way. GROWLER then returns all candidates that are at least
half as relevant as the most relevant candidate. While oth-
ers have used the full set of candidates to generate clarifi-
cation requests (Jackson & Williams, 2022; Williams et al.,
2019), our configuration returns only the most relevant can-
didate (Figure 2, step 2).

The Task Component then requests the REX Component to
generate a description of the inferred entity (Figure 2, step 3).
The REX component uses the SD-PIA algorithm (Williams
et al., 2018) to generate these descriptions as a set of logical
predicates that uniquely describe the target entity. SD-PIA
extends the Incremental Algorithm for natural language gen-
eration (Dale & Reiter, 1995) in two ways.

First, SD-PIA’s knowledge of the world entities and the
properties that hold for them is grounded in the DHKBs con-
nected to the Referential Executive. That is, the Referential
Executive automatically connects to new architectural com-
ponents as they come online, allowing SD-PIA to know of
new entities and their corresponding properties.

Second, SD-PIA leverages the WM buffers maintained by
each DHKB as a “first stop” for properties to use to describe
an entity. That is, while other algorithms, such as DIST-
PIA (Williams & Scheutz, 2017), will use all available prop-
erties to describe an entity, SD-PIA will first attempt to de-
scribe the entity only using the properties currently retained
for that entity in WM, resorting to other properties only if
this is not sufficient to craft a fully distinguishable descrip-
tion. The set of properties selected by SD-PIA are returned
to the Task Component, which generates and displays a text
realization of that description (Figure 2, step 4).

Validation Methodology
Experimental Design
To validate our approach, we conducted a human-subjects
study in which participants interacted with our architecture

in the context of a “Guess Who” game. Each participant
played two (order counterbalanced) games with the architec-
ture: one in which the architecture used a decay model, and
one in which the architecture used an interference model. For
each game, this model was randomly parameterized in one
of three ways: for the decay model, δ was set to either 10,
15, or 20 seconds; For the interference model, α was set to
either 2, 3, or 4 (as under an Entity-Based WM model, even
a small number of properties maintained per entity yield a
large number of total remembered properties, depending on
the total amount of entities in memory).

Experimental Context
In the Guess-Who game, the user and the robot architecture
were each presented with a set of human faces. They took
turns describing designated faces and then trying to guess the
face the other player had been referring to. The game in-
terface shown to human participants consisted of a grid of
sixteen faces positioned above an interactive panel where the
player would either (1) select properties to describe a face, if
they were describing; or (2) select a face from a drop-down
menu, if they were guessing.

On player turns, the interactive panel displayed 23 buttons
with properties such as long hair, no glasses, lab coat in a
randomized order. As new properties were clicked, a text box
above the buttons was updated to reflect the changes in the
sentence that was going to be sent to the robot. The pro-
gram accounted for the selection of properties that contra-
dicted each other, using newly selected properties to replace
any previously selected properties they would contradict. For
example, if the player had clicked the properties sad, female,
square glasses, and dark hair, the text box would display
”The sad woman with square glasses and dark hair.” If, subse-
quently, the player selected the property happy, this would be
updated to “The happy woman with square glasses and dark
hair.” The robot architecture would then guess which face was
being described, and this guess was conveyed to the partici-
pant.

On robot turns, players were shown the sentence generated
by the robot architecture to describe its designated face, and
then selected the face they believed the robot was referring
to. To generate these sentences, DIARC’s WM-enabled REG
algorithm was used to select a set of properties to describe the
designated face, using the forgetting policy assigned to their
condition. These properties were then fed into a template-
based sentence realization system to create a standardized
American English sentence string.

Measures
To validate our approach, we collected four key measures:
Human accuracy was measured as the percentage of cor-
rect player guesses. Response time was used as a proxy for
difficulty of cognitive processing, and was measured as the
average time the player took to guess faces across rounds.
Naturalness was measured through surveys administered ev-
ery five rounds, which asked how natural the robot sen-



Table 1: Results
Model Decay Interference

Parameter 10 seconds 15 seconds 20 seconds 2 items 3 items 4 items
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Accuracy 0.955 0.060 0.975 0.056 0.961 0.045 0.968 0.039 0.979 0.026 0.967 0.029
Naturalness 3.951 1.052 3.666 0.984 4.124 0.594 4.049 0.790 3.774 0.839 3.700 0.750
Response Time [s] 15.115 4.197 16.506 5.498 15.934 3.955 14.941 2.974 15.286 5.146 17.186 2.928
Human-likeness 0.638 0.236 0.645 0.198 0.640 0.226 0.629 0.222 0.605 0.232 0.632 0.216

tences had been in those rounds (highly unnatural, slightly
unnatural, neutral, slightly natural, highly natural). Values
for each game were translated to a 1-5 scale and averaged.
Human-likeness was measured through Jensen-Shannon di-
vergence (Lin, 1991) between the properties selected by the
architecture and those selected by humans, across all games.

Procedure
After providing informed consent, participants were taken to
an experiment room where a computer had the game inter-
face open. The experimenter then explained that the game
was going to take 15 minutes and that in some rounds, the
participant would have to describe a face to the robot while in
other rounds they would have to guess which face the robot
was referring to. After answering participants’ questions (if
any), the experimenter started the game timer and headed to a
control room. After the timer reached 15 minutes, the experi-
menter ushered the participant to a waiting room and returned
to the control room to set up the second game, which used a
different model of forgetting from the first game. The par-
ticipant was then ushered back to the experiment room and
played the second game for 15 minutes. After the second
game was over, participants were debriefed and paid.

Participants
Students, faculty, and staff (39 female, 51 male) were re-
cruited from the anonymous academic body, and reached a
total of 90 participants. Each participant played two fifteen-
minute games with the robot. Participants received $10 for
participation at the end of their experiment.

Results
While the purpose of this paper is not to prove that certain
parameterizations for forgetting models are better than oth-
ers, for the reader’s sake, we will briefly touch on how the
different parameterizations used throughout our experiments
compare to each other. Because the first game served as
an opportunity for participants to get used to the interface
and the game mechanics, only the second game’s data were
used for our final analysis. Our descriptive results are sum-
marized in Table 1. Data files have been uploaded to OSF
(https://bit.ly/cogsci2023-1785).

Human Accuracy
Mean human accuracy was above 95% across all six configu-
rations, demonstrating that regardless of model our approach

enabled high accuracy. Among the parameterizations consid-
ered, the interference parameterization using an α value of
3 enabled the highest accuracy (M=0.979, SD=0.029), while
the decay parameterization using a δ value of 10 enabled the
lowest accuracy (M=0.955, SD=0.06).

Perceived Naturalness
Mean perceived naturalness was above 3.5 in all conditions,
demonstrating that regardless of model our approach was per-
ceived as fairly natural. Among the parameterizations consid-
ered, the decay parameterization using a δ value of 20 enabled
the highest perceived naturalness (M=4.124, SD=0.594), and
the decay parameterization using a δ value of 15 enabled the
lowest perceived naturalness (M=3.666, SD=0.984).

Response Time
Participants were slow to respond regardless of model, with
a mean listener response time of over 14 seconds in all con-
ditions. Among the parameterizations considered, the inter-
ference parameterization using a α value of 2 enabled the
shortest response times (M=14.941, SD=2.974), and the in-
terference parameterization using a α value of 4 enabled the
longest response times (M=17.186, SD=2.928).

Perceived Human-likeness of Referring Expression
Generation
Mean Jensen-Shannon Divergence was above 0.500 in all
conditions, suggesting significant deviation from human re-
sponse patterns regardless of model. Among the parameteri-
zations considered, the interference parameterization using a
α value of 3 enabled the most human-like property distribu-
tions (M=0.605, SD=0.232), and the decay parameterization
using a δ value of 15 enabled the least human-like property
distributions (M=0.645, SD=0.198).

Discussion
Assessment of Results
Human Accuracy Our human accuracy results suggest that
our approach allowed users to successfully identify target ref-
erents, as all configurations enabled mean accuracy above
95%. However, our accuracy results also suggest a clear
ceiling effect. These results could have been influenced by
the lack of time constraints. That is, when guessing which
face the robot was referring to, players had unlimited time
to search for the correct referent before making their final



guess. In contexts where time is limited, differences in ac-
curacy across models might be more pronounced.

Perceived Naturalness Perceived naturalness results man-
ifested differently for our two model categories. This differ-
ence can be further investigated in future work. Models of
decay with a δ value of 20, which stored items in WM for
longer, were perceived to be slightly more natural than the
other decay parameterizations, although the differences be-
tween these parameterizations was not pronounced. In con-
trast, when the interference model of forgetting was used,
perceived naturalness results dropped as α values increased,
suggesting that lower resource caps may have enabled more
natural speech. We note that despite the low values of α con-
sidered, even the lowest value of α used in our study puts the
total amount of items in the robot’s WM above human storage
capacity (i.e. with α = 2 and 16 entities within our domain,
there can be a maximum of 32 properties stored in working
memory at any given point). These limitations are inherent
to our Entity-Based resource management framework. To ex-
plore whether naturalness might further increase by impos-
ing more significant resource caps, researchers would need to
consider alternate WM architectures where each entity repre-
sentation is not guaranteed space in WM.

Listener’s Response Time For interference models, lower
α values enabled faster average response times, suggesting
that smaller WM storage capacities might lead to generation
of more easily comprehensible utterances due to inability to
rely on “stale” properties. Similarly, decay models achieved
faster average response times when features decayed out of
memory more quickly. That being said, all models yielded
slow mean response times, close to 15 seconds. We believe
this outcome is due to the lack of time pressure; imposing
time constraints may have led to more immediately visible
differences between parameterizations.

Perceived Human-likeness of Referring Expression Gen-
eration All model parameterizations had mean Jensen-
Shannon divergence values suggesting a moderate difference
between the set of properties used by the robot architecture
and by human players. However, it was not clear whether this
difference was inherent to our approach, or due to individual
differences between the descriptions provided by each partic-
ipant. We thus conducted a supplemental analysis using the
same methodology, and compared the set of properties used
by each participant to the set of properties used by all other
participants. Interference models with α = 4 produced the
best Jensen-Shannon results (M=0.585, SD=0.241) and de-
cay models with δ= 20 produced the worst results (M=0.660,
SD=0.226). These results suggest similar results for both the
robot architecture and the human players, and suggests that
the low values obtained from the Jensen-Shannon divergence
might be a product of individual differences between player
descriptions rather than being endemic to our approach.

Overall, our results provide promising support for our ar-
chitectural approach, and motivate further research to more

formally interrogate differences in parameterizations and,
most importantly, compare the proposed architecture to a
baseline model that does not implement WM forgetting.

Future Work Guidelines

The purpose of this paper was not to prove whether specific
forgetting models are better or worse than others, but rather
to show how they can be effectively implemented within a
robotic cognitive architecture and explore the effects of dif-
ferent parameterizations. We see five key directions for fu-
ture work. First, we are interested in comparing these results
to a model that does not use WM at all. Second, we will
address our possible ceiling effects by improving task com-
plexity and investigate why decay and interference presented
opposite trends for perceived naturalness. Third, future work
should consider the way that different decay strategies may
or may not unintentionally align with the boundaries between
interaction turns. Fourth, a wider variety of parameteriza-
tions should be considered. Finally, in this work, we only use
one consultant because we are measuring performance at an
entity-level. However, multi-modal contexts in which robots
interact with people, locations, and objects present an oppor-
tunity to explore a global resource management strategy for
situations in which multiple consultants are needed.

Conclusion

In this paper, we investigated (1) how working memory mod-
ules based on the decay and interference models of forgetting
could be integrated into a robot cognitive architecture, and
(2) whether a robot cognitive architecture using these mod-
els would produce effective natural language in terms of hu-
man accuracy, ease of the listener’s cognitive processing, per-
ceived naturalness, and perceived human-likeness.

To do so, we use a cognitive architectural approach in
which we (1) demonstrated how an Entity-Based model of
WM can be integrated into a robot cognitive architecture,
(2) demonstrated how different WM forgetting models can
be implemented within that approach, and (3) experimen-
tally validated this approach through a user study with an au-
tonomous robotic cognitive architecture.

Through this work we were able to provide two key classes
of insights for both technical and experimental cognitive HRI
research: our architectural approach provides new insights
into how these models can be integrated into robot cognitive
architectures, and our experimental validation provides assur-
ance that even with forgetting dynamics employed, robots can
produce natural, accurate, and human-like behavior and lan-
guage, regardless of which forgetting model is used or the
way that model is parameterized.

Overall, this work provides the foundation for future tech-
nical work to explore a wider array of model parameteriza-
tions and resource management strategies, and for future ex-
perimental work to more acutely investigate the performance
differences between these different possible approaches.
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