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Abstract

To enable natural and fluid human-robot interactions, robots
need to not only be able to communicate with humans through
natural language, but also do so in a way that complies with
the norms of human interaction, such as politeness norms. Do-
ing so is particularly challenging, however, in part due to the
sensitivity of such norms to a host of different contextual and
intentional factors. In this work, we explore computational
models of context-sensitive human politeness norms, using ex-
plainable machine learning models to demonstrate the value of
both speaker intention and task context in predicting adherence
with indirect speech norms. We argue that this type of model,
if integrated into a robot cognitive architecture, could be highly
successful at enabling robots to predict when they themselves
should similarly adhere to these norms.

Keywords: Politeness; Linguistic Norms; Human-Robot In-
teraction

Introduction

Social robots stand to advance human capabilities and well-
being across a wide span of domains like education (Mubin,
Stevens, Shahid, Al Mahmud, & Dong, 2013; Belpaeme,
Kennedy, Ramachandran, Scassellati, & Tanaka, 2018) and
healthcare (Broekens, Heerink, Rosendal, et al., 2009;
Breazeal, 2011; Cifuentes, Pinto, Céspedes, & Miinera,
2020). For social robots to be successfully integrated into
the society (especially those designed as sociable part-
ners (Breazeal, 2004)), they are expected to behave in accor-
dance with human social norms (Bartneck & Forlizzi, 2004);
failure to do so can risk interaction breakdowns (Porfirio,
Sauppé, Albarghouthi, & Mutlu, 2018; Mutlu & Forlizzi,
2008). Social norms not only govern how people behave, but
also how people communicate. To engage in natural and fluid
human-robot interactions, robots must thus not only commu-
nicate with humans through language (cf. (Tellex, Gopalan,
Kress-Gazit, & Matuszek, 2020)), but do so in a way that
complies with social norms. One of the key categories of so-
cial norms that require such adherence by social robots are
politeness norms (Lee, Kim, Kim, & Kwon, 2017).
According to Brown and Levinson’s Politeness The-
ory (Brown, Levinson, & Levinson, 1987), human interac-
tants regularly negotiate the level of threat to one another’s
Face: the public image that the other person wants to main-
tain and enhance (Brown et al., 1987). Face consist of two
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aspects: Positive Face (i.e., one’s want for a desirable self-
image) and Negative Face (i.e., one’s desire to be free from
imposition and to have freedom of action) (Brown et al.,
1987). To comply with politeness norms and mitigate the face
threat behind potentially face threatening acts, people employ
a variety of politeness strategies (Goffman, 1955). For exam-
ple, when ordering food in a restaurant, instead of saying “Get
me some coffee”, people typically phrase their requests in a
more indirect manner, such as “I would like some coffee”.
While this utterance is literally a statement of fact, listeners
in this context can easily understand the true intention behind
the utterance, which is a request for some coffee. This type
of utterance, in which the utterance’s literal meaning does not
match its intended meaning, is called an Indirect Speech Act
(ISA) (Searle, 1975). Indirect language can be particularly
effective for reducing face threat by obscuring threats to au-
tonomy. Accordingly, ISAs are one of the most effective and
commonly used linguistic politeness strategies.

Robots capable of applying linguistic politeness strate-
gies are perceived as more likeable, considerate and engag-
ing (Castro-Gonzalez et al., 2016; Torrey, Fussell, & Kiesler,
2013). Yet ISA use is highly context-sensitive. Williams,
Thames, Novakoff, and Scheutz (2018a) showed that Ameri-
cans tend to use more ISAs in contexts with strong social con-
ventions (which come along with strong sociocultural norms
and contracts) such as restaurants (cf. (Seok, Hwang, Choi, &
Lim, 2022)). Moreover, ISA use depends on nuanced dimen-
sions of the context in which an interaction occurs, which
may determine whether it is appropriate to use indirect lan-
guage. While indirect language can effectively decrease face
threat through mechanisms such as hedging, it also has other
effects that may potentially increase the threat to one’s auton-
omy, (e.g. longer utterances with many hedges necessarily
impose on the listener’s time, and thus, on their autonomy).
For example, in the case of search and rescue, using ISAs
could be ineffective as a politeness strategy given the time
pressure and potential for harm in those domains. Similarly,
researchers have shown that politeness strategies, including
ISAs, lead to less compliance with robots in healthcare do-
mains, perhaps for the same reasons (Lee et al., 2017).

Adherence to linguistic politeness norms is also important
due to their connection with Grice’s conversational maxims.
Grice stipulates that humans assume that cooperative inter-
actants will generally strive to “Make [their] conversational



contribution such as is required, at the stage at which it oc-
curs, by the accepted purpose or direction of the talk ex-
change in which you are engaged.”’(Grice, 1975). However,
the way in which interactants do so is again highly context-
dependent. Indirect speech acts avoid violating sociocul-
tural politeness norms, but in doing so simultaneously vio-
late Grice’s Maxim of Manner (“Be perspicuous”). Accord-
ingly, speakers need to be sensitive to the contextually sensi-
tive tradeoffs between these conversational requirements. As
above, individuals may differentially weight these considera-
tions when solving time-sensitive issues than when they are
engaging in routine tasks. Humans demonstrate exactly this
type of context sensitivity when arbitrating between these
tradeoffs, both in human-human interaction (Agha, 2006)
and human-robot interaction (Williams, Thames, Novakoff,
& Scheutz, 2018b). Moreover, robots that are sensitive to
changing social and conversational contexts are viewed more
favorably (Ritschel, Baur, & André, 2017; Jackson, Wen, &
Williams, 2019). Thus, it is crucial for robots to not only
be able to use ISAs, but moreover to be able to intelligently
decide whether to use ISAs based on interaction context.

Lockshin and Williams (2020) previously examined the
impact of three key contextual factors (potential for harm,
interlocutor authority and time pressure) on people’s use of
ISAs in human-human interaction, and found that ISA use
varies based on these more nuanced contextual dimensions.
However, task context alone is not sufficient to capture ev-
erything behind why people use ISAs. In fact, we argue that
these are unlikely to be even the primary dimensions that dic-
tate ISA use. Instead, the decision to use an ISA is more
likely grounded primarily in the the information that a per-
son is trying to convey. Different types of utterances and dif-
ferent intentions fundamentally have different levels of face
threat, and thus the appropriateness of ISA use should signif-
icantly vary based on these intentional factors. For instance,
in cases where a person wants to acknowledge that they have
received information (“I understand”), using direct language
may be more appropriate because self-directed acknowledge-
ments are often likely to have low levels of face threats; while
in cases where a speaker shares information about another
person (“You are going to do this”), using indirect language
may be more appropriate because statements about what a
listener will do inherently constricts the listener’s autonomy
(imposing constraints on the listener’s time and future ac-
tions). As such, these intentional dimensions of interactions
need to be analyzed alongside the contextual domains previ-
ously investigated by Lockshin and Williams (2020).

In this work, we thus investigate whether contextual and in-
tentional factors enable more effective prediction of ISA use
than does the use of contextual factors alone. To perform this
investigation, we use the same public dataset previously used
and provided by Lockshin and Williams (2020). In the fol-
lowing section we will explain our conceptualizations of con-
textual and intentional factors. We will then describe how we
augmented Lockshin and Williams (2020)’s dataset to newly

account for intentional factors. Next, we will describe how
we trained an explainable machine learning model on this
dataset to better predict linguistic norm adherence. Finally,
we will evaluate the performance of that model and investi-
gate the claims made by that trained model.

Contextual and Intentional Factors

In this section we define the contextual and intentional factors
we use in this work to predict linguistic norm adherence.

Contextual Factors

Lockshin and Williams (2020) examined the ability of three
key contextual factors to predict linguistic norm adherence:
potential for harm, interlocutor authority, and time pressure.
These contextual factors were chosen by considering contexts
where these norms might or might not be followed (especially
context in which a robot might reasonably be involved as hu-
man teammates), and hypothesizing that those factors repre-
sented key dimensions of variance between those contexts.
As defined in Lockshin and Williams (2020), potential for
harm is present when there is a high likelihood for negative
outcomes to occur if actors within a situation do not respond
correctly. Interlocutor authority is present when a speaker
possesses authority over the hearer. Time pressure is present
when there is a limited amount of time to complete a task.

Intentions

As described above, the key aim of this work is to expand on
these types of contextual factors to additionally consider the
speaker’s intentionality, under the hypothesis that there is a
strong correlation between the intended purpose of an utter-
ance and whether it is phrased directly or indirectly. Because
of the nuanced and complex nature of intent, we decided to
use a multidimensional model of intent, thus enabling us to
determine not only whether intent is helpful for predicting
ISA use, but moreover, what aspects of intent are most infor-
mative for making such predictions.

We conceptualized speaker intent in a way that broke intent
into three key dimensions: direction, target, and force.
Direction: We first considered whether an utterance requests
or provides information. For example, “Where is the salt?”
requests information, whereas “The salt is in the cabinet”
provides information. Critically, an utterance like “Can you
pass the salt?” is framed as a request, but is not typically a
true request for information, and more likely provides infor-
mation about (a desired) future action of the listener.

Target: We next considered whether an utterance is request-
ing or providing information about an action of the speaker
or the hearer. For example, “I’'m going to get the salt” could
be viewed as providing information about the speaker’s own
future actions, whereas “You should pass me the salt” is pro-
viding information about the future actions the speaker de-
sires the hearer to perform.

Force: Finally, we considered the action the utterance is fo-
cusing on, from a dialogic or illocutionary perspective. For
example, “You should get the salt” is directly concerned with



the action being conveyed by the utterance. In contrast, “Why
are you getting the salt?” asks for explanation about a pre-
viously communicated course of action; “Which salt are you
going to get?” asks for clarification about the action; and
“Alright?” (after “I'm going to get the salt” asks for ac-
knowledgement about a previously communicated course of
action. We thus delineate between four types of forces we are
concerned with: action-centered, explanation-centered, clar-
ification-centered, or acknowledgement-centered.

Data Context

We will now describe the dataset used in this work. We used
the public dataset collected by Lockshin and Williams (2020);
a corpus of transcripts of participants playing the board
game Pandemic. Lockshin and Williams (2020) used this
board game to collect their dataset because it allowed for the
systematic control of the three contextual factors described
above, and because Pandemic is a highly cooperative game
which promotes teamwork and team communication. Using
this game, Lockshin and Williams (2020) collected six game
transcripts, each from a game with a new trio of three players,
ranging from 526 to 1200 dialogue moves each.

After collecting this dataset, Lockshin and Williams (2020)
annotated each utterance in their dataset with binary feature
values indicating whether the game state at the time of that
utterance was one in which there was potential for harm, in-
terlocutor authority, and/or time pressure.

Potential for harm was considered to be present if players
were close to losing the game. Lockshin and Williams intro-
duce an equation for measuring this within the specific con-
text of Pandemic. Interlocutor authority was considered to
be present if it was currently the speaker’s turn. In Pandemic,
speakers take turns, but on each player’s turn, the whole group
debates and suggests to that player what they should choose
to do. That is, the player whose turn it is has the final deci-
sion on how they use their turn but can receive advice from
other players. Turns rotate between players, so interlocutor
authority shifts to a different player each turn. Time pressure
was considered to be present if players had a limited amount
of time to make decisions about how to use their turn. While
Pandemic does not traditionally include this type of time pres-
sure, Lockshin and Williams ran 50% of their games using a
variant ruleset in which time limits on turns were introduced.
Out of the six games of Pandemic played, three were ran-
domly assigned to this variant ruleset condition. In the games
with time pressure, players had 90 seconds to decide their
moves each turn, whereas players had unlimited time to de-
cide their moves in the games without time pressure.

Data Annotation

We will now describe how we augmented Lockshin and
Williams (2020)’s dataset to include intentional factors. After
revising Lockshin and Williams (2020)’s original labels for
improved dataset quality and splitting utterances into distinct
dialogue moves, four coders coded the dataset for each in-
tentional factor described above. Two coders annotated each

datapoint, and if their codes disagreed, all coders discussed
the datapoint to collectively select an appropriate code. These
disagreements occurred for 5.17% of all annotations: 3.75%
for utterance target, 2.31% for utterance direction, and 9.46%
for illocutionary force. In (extremely rare) cases where agree-
ment could not be reached with four coders, two supervisors
provided further comment, and a final vote was taken.
Before moving on, we will provide examples of utterances
from Lockshin and Williams (2020)’s dataset that were coded
in each of the categories delineated above.
Direction: Examples of utterances coded as providing infor-
mation include “It’s a choice” and “I need one more red to
cure it”. Examples of utterances coded as requesting infor-
mation include “I could go to LA and get one of those, right?”
and “How do you go there?”
Target: Examples of utterances coded as speaker-targeted
include “I didn’t think about that” and “And now I have to
do this other infection thing, right?”. Examples of utterances
coded as other-targeted include “Now you draw two cards”
and “You have to get rid of a card”.
Force: Examples of utterances coded as action-centered in-
clude “Where is the thing about research stations?” and
“The yellows are more in danger of outbreaks”. Examples of
utterances coded as explanation-centered include “But you
have to discard a card if you want to move like far” and
Because then you go from there to there and you are adja-
cent. Examples of utterances coded as clarification-centered
include “And since we are in the same city right now maybe
1 should give you like a yellow and a red or just a yellow?”
and “Either way, yeah”. Examples of utterances coded as
acknowledgement-centered include “Okay” and “Alright”.

Technical Approach

Now that we have described our dataset selection and aug-
mentation, we can now describe our technical approach to
modeling linguistic norm adherence, in which we trained a
decision tree (Breiman, Friedman, Stone, & Olshen, 1984)
on the annotated dataset described in the Data Context Sec-
tion. We trained this model to predict whether direct or indi-
rect language would be used in a given context based on the
contextual and intentional factors described above.

We used decision trees due to their ease of interpretation.
This was especially important since we were not only inter-
ested in developing a highly effective predictive model, but
also in developing an understanding of the underlying ra-
tionale that humans may follow when deciding whether or
not to speak directly. Decision trees have been highly suc-
cessful in past research similarly interested in transparency
and explainability due to the readily interpretable nature of
the flowcharts used to represent their models (Delen, Kuzey,
& Uyar, 2013; Namazkhan, Albers, & Steg, 2020). Deci-
sion trees have even been used as surrogate models to explain
more complex black-box models (Shi, Zhang, & Fan, 2019;
Kuttichira, Gupta, Li, Rana, & Venkatesh, 2019).

A decision tree can be represented as a flowchart, where



each node represents an intermediate binary decision on the
way towards classification, centered on a single variable of
interest. The test at each node checks whether the value of
a feature meets some condition; either less than or greater
than a particular threshold, in the case of numerical values or,
more relevant to our use case, whether the feature’s value is a
particular choice from the set of possible values, in the case
of nominal or categorical variables. Following a path through
a decision tree based on a particular sample’s feature values
leads to a leaf node designating a final outcome (in our case,
a classification of the utterance as direct or indirect). Such a
diagram for our best performing model is shown in Fig. 1.

When training decision trees, the training algorithm identi-
fies binary decisions’ splitting criteria that minimizes the im-
purity of the sets that result from splitting samples. The im-
purity of a set of points at a given node, N can be measured
using Gini impurity (G(N) = Y, pkn (1 — pxn)), Where pi y
is the proportion of samples labeled as class k found in node
N. As an example, a pure set in which all samples belong to
a single class would have a Gini impurity of O since only a
single class would have a proportion of 1 and the remaining
classes would have a proportion of 0, resulting in a sum of 0.
To determine the resulting tree that minimizes the impurity
of its nodes, we used the optimized variation of the CART
algorithm (Breiman et al., 1984) provided by the scikit-learn
Python library (Pedregosa et al., 2011).

Training a decision tree can depend on several hyperparam-
eters; impurity metric, maximum tree depth, minimum leaf
samples, minimum sample split, minimum impurity decrease,
and class weighting. While we described the Gini impurity
metric as the impurity metric to optimize, node impurity can
also be measured using metrics like set entropy. Maximum
tree depth is a stopping criterion for the tree; a maximum
number of consecutive decision points before reaching a fi-
nal decision. Minimum leaf samples is the minimum number
of samples within a leaf node to warrant a decision be made.
Minimum sample split is the minimum number of samples
needed to warrant a decision point or ’split”. Minimum im-
purity decrease is the the amount the impurity of a node must
decrease for a new split to occur in which a decision must
be made. Maximum tree depth, minimum leaf samples, mini-
mum sample split, and minimum impurity decrease are all hy-
perparameters that are used to limit overfitting. Class weight-
ing is the relative error weighting of particular classes and is
useful for imbalanced datasets.

To train the model, we used an 80/20 stratified train-test
split of our 2208 utterances, in which a randomly selected
80% of the data was used for training, with the remaining
20% of the data used for testing. Because there was also
(coincidentally) an approximately 80/20 split in our dataset
between direct and indirect utterances, this approach led to
training and testing sets that each contained approximately
81% direct utterances, and 19% indirect utterances. We per-
formed 5-fold cross validation to tune the model’s various hy-
perparameters and determine the best performing model, by
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Figure 1: Flow chart visualization of the best DT model.

splitting our training set into 5 equal subsets of samples, then
training a new model using each combination of 4 subsets for
training and the remaining hold-out set for validation.

To determine the best performing model, we tuned all hy-
perparameters described above. We performed a hyperpa-
rameter search over a range of possible hyperparameter val-
ues, and identified the values that maximized mean macro-
averaged F1-score across our 5-fold cross validation sets.

Analysis and Results

To evaluate our approach and compare to Lockshin and
Williams, we trained and compared three models: one trained
using both the contextual features used by Lockshin and
Williams and the intentional features introduced in this work,
one trained using only contextual features, and one trained
using only intentional features. In this section, we will step
through these models and their comparison, the results of
which are summarized in Tab. 1 and visualized in Fig. 2.
Our best performing decision tree model achieved an accu-
racy of 67% and a macro F1 score of 0.60. Our best perform-
ing model used Gini impurity as the impurity metric, had a
maximum tree depth of 5, a minimum impurity decrease of
0.002, minimum leaf samples of 1, minimum sample split
of 2, and a class weighting of 3:1 (indirect:direct). The best
performing model’s class weighting matches our expectations
due to our dataset’s class imbalance. Our best performing
model, shown in Fig. 1, has seven leaf nodes, of which five
are classified as direct and two of which would be classified
as indirect. This model can be simplified by combining the
two deepest subtrees, which are only rendered distinctly due
to the optimal choice of maximum tree depth. This would
produce a tree with five leaf nodes (four direct, one indirect).
To assess the benefits of including intentional factors, we
also evaluated a decision tree trained with only contextual fac-
tors, to assess what results Lockshin and Williams would have
seen if they had used a similar Decision Tree theoretic model-
ing paradigm?, if they had performed parameter tuning, con-
sidered class weighting to handle minority class imbalance, or

2We also informally evaluated a Naive Bayes approach (includ-
ing parameter tuning), which produced notably worse results than
the Decision Tree approach.
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Figure 2: Evaluation Results: The top row of figures show (Top) Precision-Recall curves and (Bottom) ROC curves for (Left)
All factors, (Center) Intentional factors alone, and (Right) Contextual factors alone.

Features Evaluation Metrics
Intentional | Contextual | Macro F1 | Accuracy | Prec. (Ind.) | Prec. (Dir.) | Rec. (Ind.) | Rec. (Dir.) | F1
v’ v’ 0.60 0.67 0.32 0.88 0.62 0.69 0.77
v’ 0.50 0.65 0.19 0.80 0.24 0.75 0.78
v’ 0.57 0.63 0.30 0.89 0.67 0.62 0.73

Table 1: Evaluation and model comparison of decision trees with various features.

used the directness/indirectness labels produced in this work.

The best performing decision tree model with only con-
textual factors achieved an accuracy of 65% and a macro F1
score of 0.50. This model used Gini as the impurity metric,
had a maximum tree depth of 3, a minimum impurity decrease
of 0, minimum leaf samples of 1, minimum sample split of 2,
and a class weighting of 4:1 for indirect to direct. This deci-
sion tree model had six leaf nodes (four direct, two indirect).

To compare model performance, we used a McNemar’s
test. This test did not reveal statistically significant differ-
ences in predictions (p=0.61) between the best-performing
full model and the model with only contextual features used.

We also evaluated a decision tree trained with only inten-
tional factors to determine the importance of using the con-
textual factors from Lockshin and Williams (2020). The best
performing decision tree model with only intentional factors
achieved an accuracy of 63% and a macro F1 score of 0.57.
This model used Gini as the impurity metric, had a maximum
tree depth of 4, a minimum impurity decrease of 0.0015, min-
imum leaf samples of 1, minimum sample split of 2, and a
class weighting of 3:1 for indirect to direct. This model had

six leaf nodes (four direct, two indirect).

Discussion

To begin, we can first consider the general success of our
modeling approach relative to that used by Lockshin and
Williams (2020). Lockshin and Williams fit their collected
data using simple logistic regression models, and used fre-
quentist hypothesis testing to assess the influence of each con-
textual factor on linguistic norm adherence. As such, they
were operating according to a very different methodological
philosophy than we do in this work, with no cross-validation,
hyperparameter tuning, class reweighting, accuracy calcula-
tion, and so forth. Nevertheless, there are some ways in
which our approaches can be directly compared. The most
straightforward demonstration of the utility of our approach is
through examination of the qualitative differences in predic-
tions made by our approaches. While Lockshin and Williams
did show statistically significant differences evidencing the
importance of potential for harm and time pressure for mod-
eling ISA use, their models uniformly recommended ISA use
regardless of context. That is, their models demonstrated that
IS A use differs between contexts, but nevertheless maintained



ISAs as the most likely prediction across all contexts, and
would thus never actually recommend not using an ISA. In
contrast, as described above, the decision tree produced by
our model includes leaves recommending ISA use and leaves
not recommending ISA use, and in fact the majority of leaves
within this tree do not recommend ISA use. As such, our ap-
proach novelly produces a model that could actually be used
to intelligently decide whether to use ISAs in a given context.

Another benefit of our approach is the explainability and
transparency of Decision Trees, which encode models in a
form that can be readily interpreted by humans to make psy-
chological claims, and that can be easily encoded into au-
tonomous agents to control their behavior, without needing
model code or needing to know how the model was trained.
Specifically, the decision tree produced by our approach sug-
gests that speakers tend to phrase their utterances directly if
any of the following are true (and phrase their utterances in-
directly in all other cases), in decreasing order of importance.

1. the utterance is an acknowledgment;
2. there is potential for harm;
3. the utterance is directed at oneself (vs another person);

4. the utterance requests (rather than provides) information.

These findings validate our approach from a purely qualita-
tive perspective. Our original motivation was the realization
that utterances like acknowledgements (or requests for ac-
knowledgement) would almost certainly be phrased directly,
and should be a clear case where a model would not recom-
mend indirectness. This intuition is borne out as the single
most salient feature in the trained decision tree. We also
posited that we would need a nuanced representation of in-
tentionality, that included things beyond utterance force; a
hypothesis borne out in the third and fourth criteria of the de-
cision tree. Moreover, our approach demonstrates the impor-
tance of considering both contextual factors and intentional
factors. As shown in Tab. 1, using both intentional and con-
textual factors facilitates the best Accuracy and Macro F1
score, whereas using only contextual or intentional factors
produced similar but ultimately poorer results due to substan-
tially poorer precision and/or recall. However, as we have
mentioned, there were no statistically significant differences
found between these approaches.

Our approach also demonstrates the limits of our claims in
other ways. The only category of utterance force represented
in the tree is the most obvious one (other than the consider-
ation of whether or not the utterance is phrased as an expla-
nation, which does appear in the tree, but not in a way that
makes any classification difference given the optimal maxi-
mum tree depth selected during hyperparameter tuning). This
approach also shows that once intentionality is accounted for,
some of the contextual factors previously argued to be impor-
tant no longer need be considered, with potential for harm the
only contextual factor actually used in the decision tree.

Moreover, many of the discussed benefits of our approach
are largely arguments in favor of our general machine learn-

ing approach rather intentionality. When comparing the
features used in this work to those used by Lockshin and
Williams — within the context of this machine learning ap-
proach — the performance differences between feature sets
is relatively minor. As we have described, the best decision
tree model did indeed make significant use of intentional fac-
tors. Yet the benefit of including intentional factors was quite
small, and there was no significant difference between mod-
els that did or did not use these features. While we are setting
a high standard for ourselves here (as little machine learning
research does this type of hypothesis comparison), it never-
theless suggests that we should not make overly strong claims
about the importance of intentionality.

Finally, while this work is focused on understanding how
people adhere to different politeness norms in intention- and
context-sensitive ways, if our goal is to use these insights
to design robots, we must also acknowledge that we may
not always wish robots to adhere to politeness norms in the
ways that humans do. It may be necessary for robots to in-
tentionally violate social norms (Yasuda, Doheny, Salomons,
Sebo, & Scassellati, 2020), including sociocultural politeness
norms (Briggs, Williams, Jackson, & Scheutz, 2022), either
to issue blame-laden moral rebukes (Zhu, Williams, Jack-
son, & Wen, 2020) and/or to avoid reinforcing sexist atti-
tudes (Jackson, Williams, & Smith, 2020; Winkle, Melsion,
McMillan, & Leite, 2021; Winkle et al., 2022). Understand-
ing when and how norms should be intentionally violated in
non-humanlike ways is a key open research area.

Conclusion

We investigated whether contextual and intentional factors
enable more effective prediction of Indirect Speech Act use
than does the use of contextual factors alone, with the goal of
enhancing the social intelligence of interactive agents like so-
cial robots. To do so, we developed a framework for analyz-
ing speaker intent, augmented an existing public dataset, and
deployed a highly interpretable machine learning approach.
Our results demonstrate the benefits of our machine learning
approach and the utility of using both intentional and contex-
tual factors when predicting linguistic norm adherence, yet
also suggest the performance gain obtained by using both
types of features may be negligible.

This work motivates a number of possible future research
directions. First, the produced models could be deployed into
robot cognitive architectures to determine the extent to which
their use encourages positive human perceptions or facilitates
more effective human-robot interactions. Second, researchers
should explore the incorporation of additional types of con-
textual factors, which might both increase performance and
further demonstrate the utility of the features already used in
this work. Finally, researchers should explore the role that in-
dividual differences and variation play, which might account
for a large proportion of the observed variance in ISA use.
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