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ABSTRACT

Working Memory (WM) is a central component of cognition. It has
direct impact not only on core cognitive processes, such as learning,
comprehension, and reasoning, but also language-related processes,
such as natural language understanding and referring expression
generation. Thus, for robots to achieve human-like natural language
capabilities, we argue that their cognitive models should include
an accurate WM representation that plays a similarly central role.
Our research investigates how different WM models from cognitive
psychology affect robots’ natural language capabilities. Specifically,
we explore the limited capacity nature of WM and how different
information forgetting strategies, namely decay and interference,
impact the human-likeness of utterances formulated by robots.
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1 MOTIVATION AND BACKGROUND

Working memory (WM) is the component of human cognition
responsible for the temporary storage and maintenance of infor-
mation necessary for core cognitive tasks [1]. These tasks include
processes such as learning [2], reasoning [13, 28], and compre-
hension [11]. Moreover, research has shown that language-related
processes are also greatly affected by WM (e.g., natural language un-
derstanding [25], acquisition [7], and generation [10]). For instance,
WM may directly affect the process of Referring Expression Gener-
ation (REG) [3, 8, 9], in which an agent selects a set of properties
to describe an object to other agents [29].
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While there exist many theories of WM within cognitive psychol-
ogy, three characteristics seem to be widely accepted by researchers.
First, that WM has limited capacity, with early research presenting
estimations in the range from four to nine items [6, 17]. Second,
that the information within it is volatile and may be forgotten at
faster rates than information contained in long-term memory [30].
Finally, WM contents are readily accessible to other cognitive pro-
cesses and may immediately influence deliberative processes [19],
including those related to language. Therefore, to arrive at better
language-capable robots, our research is focused on the limited
capacity of WM and how different information forgetting strategies
impact robotic natural language generation.

Two models of forgetting have become popular within this dis-
cussion. On one hand, the theory of decay [5] proposes that infor-
mation in WM fades away with time if not rehearsed. On the other
hand, the theory of interference [30] defends that older items within
WM are replaced by newer items that enter WM buffers. Both decay
and interference have empirical evidence to support their claims
(see [12, 18, 21, 23], for example) and have been implemented into
computational models, such as TBRS [22] and SOB-CS [4, 20].

However, these computational models of WM forgetting are
often implemented as individual systems that are not integrated
with other components and processes of cognition. For robots ca-
pable of natural language, this connection is important because
WM should not only serve as a temporary storage for information,
but also as a mechanism of cognition that directly affects language
processes, such as REG. In addition, complex cognitive architec-
tures like SOAR [14] and ACT-R [24] are often concerned with the
storage of entities rather than the storage of the properties that
apply to that entity [16]. Recent HRI research has started to remedy
these issues through the maintenance of properties that belong to
activated entities within architectural WM buffers [34]. Yet, there
is little exploration on how different forgetting strategies might be
implemented through this perspective and how they might affect
natural language processes.

The central aim of our work is to address this knowledge gap by
exploring how models of decay and interference can be optimally
integrated into robot cognitive architectures. Our overarching hy-
pothesis is that mechanisms of decay and interference can lead to
a better robotic language generation by allowing these processes
to leverage WM buffers containing the salient object properties
most likely to be natural and effective to use in natural language
descriptions. More specifically, our research aims to answer three
key research questions:

RQ1 - What level of decay and interference will result in opti-
mal performance with respect to (1) accuracy, (2) naturalness, (3)
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computational efficiency, (4) ease of cognitive processing, and (5)
human-likeness of referring expression generation?

RQ2 - In order to optimize each key metric from RQ1, should
resources be distributed according to a limit imposed at an entity,
consultant, or architectural level?

RQ3 - In order to optimize each key metric from RQ1, how
should the architecture decide which entities for which to maintain
representations in Working Memory?

2 RESEARCH APPROACH

To answer the research questions described above, we are devel-
oping computational models of WM dynamics that account for
the interference and decay forgetting strategies. These models are
implemented using the Agent Development Environment (ADE)
middleware [26] in which the Distributed, Integrated, Affect, Reflec-
tion, and Cognition (DIARC) architecture [27] was implemented.
DIARC is a cognitive architecture consisting of components that
implement key theories and concepts from linguistics and cognitive
psychology in order to enable language-capable robots. The ADE
middleware allows DIARC components to operate in parallelism
and communicate with other components asynchronously.

DIARC’s long-term memory is organized by a set of components
classified as consultants [31]. Each consultant serves as a Distributed
Heterogeneous Knowledge Base (DHKB) [33] for a certain type of
entity (e.g., people, animals, places). For this work, each DHKB is
equipped with an additional WM representation that maintains a
set of activated properties for each entity within the consultant.
These WM buffers are handled by the WM Manager component [32],
which detects DHKBs that are in operation within the architecture
and creates connections with them in order to (1) add activated
properties to the buffers of appropriate objects and (2) remove
properties from these buffers according to the forgetting strategy
that is in use. If decay is in use, properties are removed from buffers
after a specified amount of seconds, denoted by the parameter §.
Otherwise, when interference is in effect, the buffer for each entity
is limited to a maximum capacity of « items, and the least-recently-
added properties give space to newer entries.

3 PRELIMINARY WORK

To validate the efficacy of our forgetting models within the cognitive
architecture, we conducted a human-subjects study (N = 90) in
which participants interacted with our robotic architecture in the
context of a “Guess Who" reference game involving sixteen known
people, knowledge of each of which was stored in a “face consultant”
in the form of a set of logically specified properties.

To start addressing RQ2, the resources within WM buffers were
organized at an entity level, meaning that each entity within the
consultant had a dedicated WM buffer whose design and dynamics
differed based on the WM model employed. Under the interference
model, each buffer was capable of holding a total of a € {2,3,4}
properties at any given time!. Under the decay model, buffer size
was unlimited, but the § parameter according to which items were
forgotten was set to either 10, 15, or 20 seconds.

IThe chosen values of & were small because, for an entity-based strategy, even the
lowest value of two properties per buffer imposed an upper bound of thirty-two
properties within WM at any given time, which is well above the speculated range for
human WM capacity, a value within the range of four to nine items [6, 17].
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During the game, participants alternated between rounds in
which they had to (1) select properties to describe a face to the ro-
bot or (2) guess which face a given robot description was referring
to. Each property used in face descriptions had its salience updated
in the appropriate WM buffers. The robot descriptions were gener-
ated through DIARC’s WM-enabled REG algorithm, SD-PIA [34],
which attempts to describe an entity with the properties that are
present within that entity’s WM buffer. If those properties are not
sufficient to create a description that can rule out all distractors,
then SD-PIA adds properties from the given entity’s long-term
memory buffer until there are no distractors left. The list of proper-
ties returned by SD-PIA was then processed by a template-based
sentence realization system, which outputted a string with the final
description formatted in standardized American English.

To validate the architectural implementation of these forgetting
models, we collected data for a subset of the measures listed for
RQ1 above, including naturalness (assessed every five rounds), and
accuracy, response time, and human-likeness (assessed through
transcripts). Our results showed that mean human accuracy read-
ings of at least 95% were obtained for all conditions, mean perceived
naturalness readings were uniformly above 3.5 out of 5, and Jensen-
Shannon Divergence [15] values demonstrated high similarity be-
tween robot and human descriptions. However, ease of listener
cognitive processing was uniformly poor, with an average response
time above 14 seconds, suggesting participants were relatively slow
to respond regardless of model. These preliminary results provide
insights into how forgetting models can be implemented into robot
cognitive architectures and allow future research to explore new
model parameterizations and resource management strategies.

4 FUTURE WORK

In future work we will pursue three key directions. First, to address
RQ1, due to the overall success of our model implementations, we
will explore a wider array of model parameterizations to better
determine which are most effective for each of our key measures
of interest. Since these preliminary results were not yet matched
to a control group, this comparison will be done in relation to
an experimental condition that uses no WM forgetting in order
to emphasize the benefits of using the proposed method. Second,
to address RQ2, we will explore the implementation of two other
resource management strategies into our cognitive architecture. On
one hand, a consultant-based resource management strategy will
limit the amount of properties that can be stored by each consultant,
as opposed to limiting the amount of resources available to each
entity. On the other hand, a global resource management strategy
will limit the total amount of properties that can be stored in WM
at any given time, independently of how many consultants are
in operation. Finally, to address RQ3, we will combine the best
parameterizations with the best resource management strategies
to identify the overall best architectural approach. The answers to
these research questions will lead to a better understanding of how
WM representations need to be maintained and will help towards
the development of better language-capable robots.
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