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implement cognitively inspired mod-
els of long-term memory and working 
memory to keep track of what the robot 
knows and what knowledge the robot 
is currently attending to. In addition, 
just like humans, robots may need to 
mentally model their interlocutors’ 
cognitive states. In this article, we 
will discuss the ways that our labora-
tory has drawn inspiration from across 
cognitive science research in order to 
achieve these capabilities in robot cog-
nitive architectures. We will then use 
this analysis to understand the open 
questions and future directions that 

A s robots become more widely available to the public and play more prominent 
roles in people’s day-to-day routines, those robots will increasingly need to 
communicate through natural language. As specified by Tellex, language-capable 
robots will not only need to effectively understand human language but will also 

need to generate natural and human-like utterances to communicate with humans [1]. 
While large language models have recently gained popularity, on their own these models 
are insufficient for human-robot communication, due to the need for robots to  
ground their language in knowledge of the specific environment in which it is situated. 

Figure 1, for example, displays the 
interaction between a human and a 
robot playing a “guess who” game. 
In this context, the robot needs to be 
aware of all characters in the game 
and their properties in order to be able 
to understand and create sentences 
about those characters.

Robots collect world information 
through different perception systems. 
For instance, object detection systems 
collect information about objects, 
mapping systems collect information 
about different locations, and face 
detection systems collect informa-

tion about encounters with people. To 
maintain and use all of the collected 
information appropriately, robots 
need carefully constructed memory 
systems. Thus, in language-capable 
human-robot interaction (HRI), mem-
ory becomes the key component in a 
robot’s cognitive system to incorporate 
situational knowledge about the world 
into its communication.

To create robotic systems that are 
capable of communicating in a natu-
ral and human-like way, we can draw 
inspiration from what is known about 
human cognition. Specifically, we can 
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are available for new researchers to en-
ter and contribute to this field.

LONG-TERM MEMORY: HOW IS 
KNOWLEDGE ORGANIZED?
If the central problems of language-
capable robots revolve around how 
robots can communicate with people 
about their shared environment, the 
key questions we first need to an-
swer are: (1) What are the domains 
of knowledge that robots will need 
to talk about? (2) What parts of a ro-
bot architecture are responsible for 
representing information in those 

domains of knowledge; that is, for 
encoding the long-term memories as-
sociated with that domain? (3) How 
do those architectural components 
represent information from those 
domains as long-term memories? 
and (4) How can the general-purpose 
mechanisms for language under-
standing and generation make use of 
disparate sources of knowledge (i.e., 
distributed long-term memory stores) 
despite their distribution throughout 
a robot architecture and their hetero-
geneous modes of representation of 
the knowledge?

To answer these questions, we 
looked to the child development com-
munity, where Spelke’s theory of core 
knowledge postulates that humans 
are born with separable systems of 
core knowledge for representing 
space, objects, actions, numbers, and 
possibly social partners [2]. As ro-
boticists, we can leverage this theory 
to answer our second question and 
understand the distinct knowledge-
bearing components that our robots’ 
language systems may need to con-
nect with. Even though we may not 
want our robots to reason about num-
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oped are inherently open world: They 
allow robots to understand descrip-
tions of entities they’ve never heard 
of before and use such descriptions as 
opportunities for learning about the 
world, rather than as failure modes.

Finally, in this approach, each core 
knowledge component provides iden-
tifiers for known entities and a consis-
tent property-based interface for ques-
tioning and asserting knowledge of 
those entities. This approach provides 
a natural framework for building sys-
tems that exhibit human-like dynam-
ics inspired by how human knowledge 
is organized and stored to form long-
term memory.

WORKING MEMORY: WHAT DOES  
THE ROBOT KEEP IN CACHE?
Now that we have established how 
theories from cognitive science can 
be used to model robots’ overarching 
long-term memory systems, how can 
we take similar inspiration to model 
robots’ working memory systems? 
Determining which objects are being 
referred to can be computationally 
taxing when a robot knows of thou-
sands of distinct objects. In our work, 
we have argued that theories of work-
ing memory from cognitive psychology 
may be used to enable real-time HRI 
while minimizing the computational 
costs of long-term memory processes 
such as information retrieval. Work-
ing memory can provide a “cache” of 
task-relevant objects in order to avoid 
the need to assess all known objects. 
To understand the nature of a work-
ing memory inspired cache, we can 
consider the psychological origins of 
working memory. Working memory 
is an important component of human 
cognition that has evolved from the 
concept of short-term memory. While 
short-term memory refers to a unitary 
system that is responsible for the man-
agement of information that is readily 
available, working memory is divided 
into subcomponents that handle dif-
ferent types of knowledge (e.g., visual, 
verbal, or episodic information).

Many of the different models of hu-
man working memory from cognitive 
psychology share the following three 
assumptions. First, the capacity of 
working memory is limited. Second, 
the information within working mem-

bers as humans do (since, for exam-
ple, they have built-in “super-human” 
capacities for numerical manipula-
tion), by this theory, we will likely 
need distinct architectural compo-
nents for reasoning about space, ob-
jects, actions, and people. For our 
third question, the precise knowledge 
representations used likely depend 
on other advances in robotics and AI 
such as the representations used by 
the common systems for metric-topo-
logical mapping, object recognition, 
planning and goal reasoning, and 
agent modeling.

Our laboratory has spent substan-
tial time answering the fourth ques-
tion. The consultant framework we 
use in our robot architecture requires 
that each domain of core knowledge 
provide the following capabilities to 
language understanding and genera-
tion: (1) list known entities (e.g., the 
object consultant should be able to 
provide IDs for particular objects it 
knows of); (2) list known properties 
and relations (e.g., the object consul-
tant should say that it knows about 
blueness, largeness, etc.); (3) provide 
answers about the properties of spe-
cific entities and (4) create new, ab-
stract representations for entities 
mentioned in dialogue that have not 
previously been observed, and may be 
merely hypothetical.

Inspired by the core knowledge 

theory, in our framework a general 
knowledge clearinghouse interfaces 
with distinct systems of core knowl-
edge while allowing those systems 
to represent information in whatever 
way is preferable or feasible. Using 
this framework, we have been able 
to develop generalized, principled al-
gorithms for reference resolution [3] 
(i.e., grounding a referring expression 
to knowledge representations stored 
in memory to determine what is being 
referenced) and referring expression 
generation [4] (i.e., selecting the prop-
erties that will be used in a generated 
expression such as choosing to high-
light the redness, or the boxiness, of a 
red box, among other possible proper-
ties). Moreover, the algorithms for ref-
erence resolution that we have devel-

Memory becomes 
the key component 
in a robot’s 
cognitive system 
to incorporate 
situational 
knowledge about 
the world into its 
communication.

Figure 1. A human and a robot play a “guess who” game together.
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focus of attention, “activated” rough-
ly corresponds with working memory, 
and so forth. Based on this align-
ment, we have leveraged GH for a va-
riety of purposes.

Part 1: Generating human-like lan-
guage through first order theory of 
mind modeling. The first way we have 
used GH is to enable robots to better 
generate concise, yet natural, refer-
ring forms. To do so, we began by de-
veloping a cognitive status engine, 
which tracks the cognitive status of 
each entity within a robot’s task envi-
ronment [6]. The engine is comprised 
of a set of cognitive status Bayes filters. 
Based on how entities are mentioned 
in dialogue, each Bayes filter recur-
sively estimates the probability dis-
tribution over cognitive statuses for a 
given entity.

Leveraging this cognitive status en-
gine, we then proposed an explainable 
decision tree-based machine learning 
model for referring form selection [7]. 
When the robot needs to describe an 
object, this model leverages both the 
most likely cognitive status for that 
object, as well as a number of other 
situated features—like the number 
of distractor objects in the scene and 
the object’s physical distance—in or-
der to predict the referring form the 
robot should use. We have evaluated 
this model both in previous bench-
mark environments used in the HRI 
community [8], as well as in novel task 
environments developed in our own 
laboratory that force users to engage in 
open-world tasks, where not all objects 

ory is volatile and may be forgotten at 
faster rates than information within 
long-term memory. And finally, work-
ing memory contents are readily acces-
sible to other cognitive processes and 
may immediately influence delibera-
tive processes, such as those related to 
natural language.

These assumptions reflect the fun-
damentally resource-limited nature 
of working memory and the ways that 
the process of forgetting is used to ac-
count for those resource limits. The dy-
namics of our own robot architecture’s 
working memory system are inspired 
by two of the most widely accepted 
theories of forgetting from cognitive 
psychology: the theory of decay and 
the theory of interference. The theory 
of decay claims information leaves 
working memory with time, if not re-
hearsed or reinforced. The theory of 
interference claims older, unrehearsed 
information is replaced by newer infor-
mation. In addition to these models of 
forgetting, we explore different ways in 
which information is organized within 
working memory. While older research 
on working memory emphasized the 
number of entities that could be main-
tained at any given time, recent work 
has instead focused on the number of 
properties of those entities that can be 
maintained, a perspective that empha-
sizes the quality of working memory 
representations.

WHAT ARE OTHERS  
THINKING ABOUT?
Thus far, we have focused on the way 
that human memory systems can in-
form the design of robot memory sys-
tems. Careful attention to the cogni-
tive science literature can also bolster 
robots’ communicative capabilities by 
providing an understanding of how 
people change the way they commu-
nicate based on their assumptions 
about other people’s memory systems 
(first-order theory of mind modeling), 
as well as their assumptions about 
what others assume to be in their own 
memory systems (second-order theory 
of mind modeling).

One theory that can assist us in this 
way is Gundel, Hedberg, and Zacha-
rski’s givenness hierarchy theory [5]. 
The givenness hierarchy (GH) seeks to 
explain why people use different sorts 

of referring forms, like “it,” “this,” 
“that,” “this <description>,” “that <de-
scription>,” “the <description>,” and “a 
<description>.” According to GH, these 
decisions are based on cognitive sta-
tus: Speakers can permissibly use “it” if 
they think their referent is already “in 
focus” for their interlocutor; they can 
use “this,” “that,” and “this <descrip-
tion>” if they think their referent is “ac-
tivated” for their interlocutor; they can 
use “that <description>” (a form that 
can be used to describe things that are 
not physically present, and that in fact 
may not have been seen in some time) if 
they think their referent is “familiar” to 
their interlocutor, and so on. Figure 2 
shows the six cognitive statuses of GH.

Critically, these different levels of 
cognitive status seem to make implic-
it assumptions about where things 
are presumed to be in memory; “in 
focus” roughly corresponds with the 

In most cases a robot 
can quickly find 
the representation 
corresponding to 
the language it is 
hearing by merely 
searching through 
the concise GH- 
informed data. 

in focus {it}

activated {that, this, this N´ }

familiar {that N´ }

uniquely identifyable {the N´ }

referential {indefinite this N´ }

type identifyable {a N´ }

The Givenness Hierarchy
Figure 2.The six cognitive statuses of the givenness hierarchy framework. Each 
status entails all lower statuses.
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term memory. When this is the case, 
the reference resolution component 
performs a search across the architec-
ture’s distributed set of core knowl-
edge components. Finally, if the robot 
determines that a described referent 
is something it did not previously 
know about, it requests the relevant 
core knowledge component to create 
a new representation for that entity 
based on the way it was described.

Our use of these data structures 
allows for enhanced efficiency as 
it essentially represents a caching 
strategy. Rather than always search-
ing long-term memory, in most 
cases a robot can quickly find the 
representation corresponding to 
the language it is hearing by merely 
searching through the concise GH- 
informed data structures. Experimen-
tal analysis also showed this approach 
was able to appropriately handle about 
55% of correctly parsed references. Of 
the remaining 45%, 10% represented 
genuine room for improvement, while 
35% represented cases we did not in-
tend to handle such as plural noun 
phrases, references to vague spatial 
regions, cases requiring gesture to dis-
ambiguate, and idioms.

Finally, we have used GH for high-
level dialogue planning. In many do-
mains, robots will need to plan se-
quences of utterances they want to say 
such as when teaching interactants how 
to perform novel tasks. For example, a 
robot may need to instruct a human 
to perform a complex task over several 
steps (see Figure 3). Using GH can as-

that need to be referred to can be seen 
or are even known about [9, 10].

Part 2: Understanding human-like 
language through second order theory 
of mind modeling. Next, we have lever-
aged GH for natural language under-
standing through second-order theory 
of mind modeling. While generating 
language requires a robot to estimate 
the likely cognitive status of an en-
tity for its interlocutor, understanding 
language requires a robot to estimate 
which objects its interlocutor would 
likely consider, to have a specific cog-
nitive status in its own mind. That is, 
when a robot’s interlocutor uses “it,” 
GH suggests they expect their referent 
to be in focus for the robot. The robot’s 
first step, then, is to determine which 
objects would conversational partners 
expect me to be focusing on?

Our approach to enabling this type 
of reasoning relies on several GH- 
informed data structures [11]. When 
entities are mentioned in dialogue (by 
the robot or its conversational part-
ner), they are stored in a set of focused 
or activated entities according to cer-
tain linguistic rules. If these entities 
are no longer mentioned as dialogue 
carries on, they “decay” into a set of 
merely familiar entities. When a dia-
logue ends, the focused, activated, and 
familiar data structures are flushed.

These data structures are then 
used as follows: First, when an utter-
ance is heard, it is parsed into a tree 
structure, with each leaf correspond-
ing to a different entity mentioned by 
the speaker. Second, based on how 
each entity was referred to, a pre-
sumed cognitive status is associated 
with each entity. Third, a search plan 
is constructed for each referenced en-
tity to locate it in memory based on 
its presumed cognitive status. For ex-
ample, if the entity is presumed to be 
activated, the plan would be to check 
the set of activated entities for an en-
tity that matches its ascribed proper-
ties, and if that fails, to check the set 
of focused entities. If multiple entities 
are mentioned in the utterance, these 
search plans are combined by taking 
their cross-product to create a plan for 
searching. Fourth, in the worst case, 
such as when “the <description>” is 
used, this search plan may require 
searching for a representation in long-
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sist robots in generating more natural 
task instructions. Typically, classical 
planning approaches have been used 
to generate the most efficient series of 
utterances to teach novel tasks. In con-
trast, we use GH to encourage planners 
to find solutions that involve references 
to objects that are already in focus or ac-
tivated [12]. We have shown that this ap-
proach yields a number of key benefits:

1.	Object reuse. The instructions 
from the GH-informed planner avoid-
ed switching physical tools (e.g., a 
screwdriver) during a task while the 
classical planner hops back and forth 
between separate tools.

2.	Separating subtasks. The GH-
informed planner completes work on 
one subtask before starting another 
one to keep objects in focus, whereas 
the classical planner generated in-
structions that switch back and forth 
between different subtasks.

3.	More concise referring forms.  
Finally, the GH-informed planner, as 
designed, enables the robot to gener-
ate shorter utterances, as it can use “it,” 
“this,” and “that” more frequently, rath-
er than constantly introducing or re-in-
troducing objects into the dialogue.

This work showed that modeling 
cognitive status is useful for referring 
form selection and for the higher-level 
task of dialog planning.

FUTURE DIRECTIONS  
AND CONCLUSIONS
There are a number of key directions 
for future work that build on the foun-
dations described in this article. Fu-
ture work should consider:

	˲ How can nonverbal cues like gaze 
and gesture be used both in the under-
standing and generation of referring 
forms? The use of gaze and gestures is 
very important to help robots convey 
messages through embodied language 
and can also impact the way in which 
a robot formulates referring expres-
sions. For example, a robot that refers 
to an object while pointing to it will be 
able to use “this” to refer to it instead 
of the object’s name.

	˲ How can a robot’s memory sys-
tem design impact other aspects of 
language understanding and genera-
tion beyond reference? For example, 
how does a robot’s memory system 
impact the way the robot uses specific 
gaze patterns and gestures?

	˲ How can episodic memory sys-
tems be integrated into robot memory 
architectures to enable understand-
ing and generation of references to 
specific past situations? Information 
in episodic memory can help the ro-
bot with making decisions about how 
to refer to entities. For example, if a 
robot is having a conversation with an 
interlocutor about an object that both 
of them have previously encountered 
together, the robot’s referring expres-
sions about the object might be more 
specific (i.e., that N’), because that 
object is familiar to both parties (and 
both parties know it to be familiar to 
each other).

	˲ How can actions and goals be 
represented as core knowledge com-
ponents to enable understanding and 
generation of references to them? A 
robot’s procedural memory is impor-
tant for performing tasks consistently 
and improving upon previous experi-
ences. Thus, the representation of ac-
tions and goals within memory must 
be carefully designed.

In conclusion, memory plays a criti-
cal role in enabling language-capable 
robots to communicate effectively 
with humans. By drawing inspiration 
from human cognition and leverag-
ing theories from cognitive psychol-
ogy, researchers can develop models 
of long-term and working memory that 
facilitate grounding of language in 
the robot’s knowledge of its situated 
environment. Finally, a number of key 
open questions and challenges present 
opportunities for future work.

Understanding 
language requires 
a robot to estimate 
which objects its 
interlocutor would 
likely consider, 
to have a specific 
cognitive status in  
its own mind.
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