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ABSTRACT

Working Memory (WM) is a necessary component both for models
of human cognition and human-inspired robot cognitive architec-
tures. Yet it is unclear how different parameterizations for Working
Memory models might impact robot cognition, especially robots’
ability to engage in natural, situated, language-based interactions.
In this work, we evaluate an entity-level, feature-based Working
Memory framework through an analysis of temporal decay and
demonstrate with a set of case studies how different parameteri-
zations for this WM dynamic have fundamentally different error
modes in different interaction contexts. Specifically, we formulate
rules that inform the selection of appropriate decay rate values
to be used in contexts with different environment dynamics and
dialogue dynamics. By formalizing and analyzing these parameteri-
zations within a robot cognitive architecture, we are able to make
key design recommendations for robot cognitive architectures.

CCS CONCEPTS

» Computing methodologies — Natural language generation;
« Computer systems organization — Distributed architec-
tures.
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1 INTRODUCTION AND MOTIVATION

Many robots deployed into Human-Robot Interaction (HRI) con-
texts need to communicate effectively with humans through nat-
ural language. A few examples include robot social companions,
healthcare robots, and even robots deployed into space contexts [cf.
8, 10, 15]. Cognitive architectures implement human-like cognitive
capabilities into robotic systems [11], and can be used to create bet-
ter language-capable robots. A key enabler of human cognition is
Working Memory (WM), which informs key natural language pro-
cesses like generation [9], understanding [14], and acquisition [2, 5].
Given WM'’s centrality in cognition and natural language processes,
it must play a key role in human cognitive models, and thus should
play a similar role in human-inspired robot cognitive architectures.
Many cognitive psychological theories of WM assume that it has
limited capacity [12]. As such, these theories make precise commit-
ments to the question of how that capacity limitation is enforced,
i.e., how to ensure that the most important information remains
cached while other information is selectively forgotten from WM.
A key theory of forgetting from cognitive psychology is decay,
which asserts that WM items are forgotten after a short amount of
time, if not rehearsed [3, 6]. Given the popularity of decay, there
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have been attempts to implement it in cognitive architectures. For
example, in ACT-R and SOAR [1, 4], memory items have an asso-
ciated activation value that decays if those items are not reused
by the architecture. Activation values for memory items increase
when those items enter WM, and if they reach a certain threshold,
the architecture will use the contents of WM to retrieve specific
knowledge from long-term memory. Furthermore, work performed
in DIARC (see Section 2) presented preliminary evidence that when
WM models are used as a cache for relevant features that can be ref-
erenced during Referring Expression Generation (REG), the use of
decay may lead to the generation of accurate, natural, and human-
like referring expressions [18]. Yet, it is unclear whether different
levels of decay lead to differences in real-world HRI scenarios.

In this work we evaluate an entity-level, feature-based WM
system (see Section 2.1) for robot cognitive architectures and in-
vestigate the tradeoffs between different decay parameterizations.
We argue that the benefits and limitations of decay may emerge in
fundamentally different types of interaction contexts, shaped by
critical dimensions of those interaction contexts. We demonstrate
how the choice of a decay factor can be important for real-world
HRI scenarios. We show that decay-based models of WM have
fundamentally distinct error modes arising in different interaction
contexts and formulate rules that inform the selection of appropri-
ate decay rate values to be used in contexts with fast environmental
dynamics and contexts with different dialogue dynamics.

2 ARCHITECTURAL FRAMEWORK

DIARC is a component-based robotic cognitive architecture that im-
plements key theories of cognitive psychology and linguistics [17].
It is implemented in the Agent Development Environment (ADE)
middleware [16], which treats architectural components as au-
tonomous “agents” implemented in a client-server subsystem. De-
pending on the application, different architectural instances can
be assembled, comprised of a particular set of architectural compo-
nents. For the purposes of this work, an architectural configuration
with a minimum of three components must be used. First, DIARC’s
WM Manager manages a set of WM buffers distributed across the
architecture. Second, a knowledge base manages information about
objects that the robot knows about. Finally, DIARC’s Referential
Executive component performs REG.

2.1 Working Memory Manager
The WM Manager can be described as the tuple W = (F, C) where:
e F = [4, a] represents the list of parameter values for De-
cay (9) and Interference («) that guide how WM functions.

Interference is another popular theory of forgetting from
cognitive psychology that will be addressed in future work.



e C = {cy,...,cn} represents the set of active consultants
within the architecture. Each consultant ¢ € C is described
as ¢ = (Cgomains Cconstraints)s Where Cgomain represents
the domain of entities within c (e.g., "objects", "locations",
"people”) and cconstraints represents the set of constraints
that ¢ can handle [20, 21].

This WM Manager’s behavior then implements an entity-level,
feature-based resource management strategy, where each entity has
its own WM buffer of relevant features. Features are added to an
entity’s buffer whenever that entity is mentioned in conversation,
either by a human or by the robot itself. The removal of constraints
from WM buffers happens according to the forgetting parameters
specified by the list F = [, «]. For this paper, interference is not in
use (i.e., @ = o). Through decay, the least recent (lowest activation)
constraint is removed from a WM buffer every § seconds.

2.2 Knowledge Bases

In DIARC, a set of Distributed Heterogeneous Knowledge Bases
(DHKBs) [22] decentralizes world knowledge. That is, DHKBs man-
age different types of knowledge across different architectural com-
ponents, while providing a standardized interface where first-order
logical properties are used as the query language for accessing that
knowledge. These queries are handled by consultants, a special type
of component that provides domain-independent access to the infor-
mation contained in DHKBs. Each DHKB is augmented with a set
of WM buffers that implement an entity-level (i.e., each entity has
its own dedicated WM buffer), feature-based (i.e., buffers store fea-
tures that apply to their corresponding entity) model of WM. That
is, for each consultant ¢, one WM buffer B. ¢ = {fy, ..., fu} is allo-
cated for each entity e known of within the DHKB that is queryable
through ¢’s Consultant interface, and that buffer is comprised of a
set of features {fj, ..., fn} (i-e., properties and relations represented
in first-order logic) recently known to hold for that entity. DHKBs
and their associated Consultant interfaces are leveraged to achieve
various tasks, such as REG.

2.3 Referring Expression Generation

REG is a classic natural language generation task in which a speaker
decides what properties they will use to refer to a target refer-
ent [19]. In DIARC, REG is typically performed using the Dis-
tributed Probabilistic Incremental Algorithm (Dist-PIA) [23], a vari-
ant of the classic Incremental Algorithm designed by Reiter and
Dale [13] for use in distributed robot architectures. When a WM
manager is available, DIARC instead uses the Short-term memory-
augmented, Distributed, Probabilistic, Incremental Algorithm (SD-
PIA) [24], which operates similarly to Dist-PIA, with the exception
that it’s "first stop" to identify properties it might consider using
during REG is the set of properties activated within the set of WM
buffers for all entities accessible through all active consultants.
When describing entity e managed by consultant ¢, SD-PIA first
considers whether the features in B, are sufficient to uniquely
discriminate it. If not, SD-PIA performs long-term memory queries
through ¢’s consultant interface to determine what other features
might be used to construct a uniquely discriminating feature set.
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3 CASE STUDIES

For consistency, our two case studies utilize the simple domain
composed of four objects already known to the robot that are man-
aged by a single “Block Consultant" (i.e., C = {blocks}). As shown
in Table 1, these objects varied in size, shape, color, and material.
Information about these objects and their properties was encoded
into a DIARC DHKB. The preference order over these properties
used by the SD-PIA algorithm was that proposed by Forsyth [7]
(i.e., size, shape, color, and material).

Table 1: Objects in the robot’s knowledge base

‘ Size Shape Color  Material
Block 1 | small cubic green wooden
Block 2 | medium spherical ~ blue  metallic
Block 3 | medium cubic blue  rubber

Block 4 | large cylindrical red rubber

3.1 Case Study 1: Environmental Dynamics

First, we considered how decay might lead to changes in REG in
cases reliant on environmental dynamics. When a robot is engaged
in an interaction, the environment in which that interaction is
taking place may change at different rates. As such, a property
that used to hold for an object (or a relationship that used to hold
between two objects) might not hold anymore.

3.1.1 Scenario. Consider a human H who is painting blocks blue
while assisted by robot R. H makes a request to R: “Please hand me
the green block!" R then grabs Block 1, gives it to H, says “Here is the
green block that you requested,’ and waits for further instructions.
Since Block 1 is small, it only takes H 15 seconds to fully paint it.
H then asks: “Put this outside to dry and bring me the red block."
R takes 15 extra seconds to take Block 1 outside, return, and grab
Block 4. Finally, R alerts H that it is ready to hand over the next
block. This scenario is depicted in Figure 1.

Here is the,

Ut this
outside to dry
and bring me
the red block.

0

Figure 1: Interaction scenario for case study 1.

3.1.2  Architectural Validation. To assess this scenario, we con-
ducted two decay runs with different parameterizations and started
each run with no properties inside the robot’s WM buffers. The
first run used a decay factor greater than 30 seconds (specifically,
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& = 40 seconds). The second run used a decay factor less than 30
seconds (specifically, § = 20 seconds). For both runs, the same pro-
cedure was followed. First, we simulate H’s utterance to describe
Block 1 with the property green. Second, we wait for 30 seconds
to simulate the time the robot takes to move Block 1 outside, grab
Block 4, and alert H about the completion of their request. Finally,
we ask the Referential Executive component to generate a referring
expression for Block 1 to simulate the utterance used by R at the
end of the interaction. The lists of Block 1 descriptors returned by
the Referential Executive component are listed in Table 2.

Table 2: Parameterizations and results from Case Study 1

‘ é List of Predicates Returned
Decay Run 1 | 40 seconds [green(X)]
Decay Run 2 | 20 seconds [small(X)]

When the human describes Block 1 as “the green block," the
property green(X) is added to its WM buffer. In the first run, the
contents of Block I's WM buffer do not change, since between the
utterances used by H and R to describe it, not enough time has
passed for the WM property to decay. This causes the Referential
Executive component to consider the salient property green(X)
from Block 1's WM buffer first, and since that property is enough
to rule out all distractors, the Referential Executive returns the list
L = {green(X)}, suggesting that “the green block" is an appropriate
description for Block 1. In the second run, however, there is enough
time between the utterances used by H and R for the WM property
to decay before the architecture makes a request to the Referential
Executive component. When the request goes through, the SD-PIA
algorithm defaults to choosing properties from long-term memory
following the pre-established order of preference (i.e., size, shape,
color, material) because there are no salient properties in WM.
The Referential Executive then returns the list L = {small(X)} of
properties that should be used to refer to Block 1, since the property
small(X) by itself is enough to rule out all other distractors.

3.1.3 Discussion. In situations reliant on environmental dynamics,
robots may be prone to generating referring expressions containing
outdated and invalid information if the rate of decay is slower than
the rate of environmental change. Based on this observation, we
can articulate our first rule of robot memory dynamics:

Rule 1. Given rate of entity-level environmental change re, a rate of
decay 6 < re will avoid use of stale properties.

If the rate of entity-level environmental change is not known
ahead of time, it may be better to rely on a relatively low & setting
(e.g., 8 = 10 seconds if an interaction context is characterized by fast
interaction dynamics). In contrast, if there is little environmental
change, it might be reasonable to set § to a much higher value.

3.2 Case Study 2: Dialogue Dynamics

Next, we considered how decay might lead to changes in REG
in cases reliant on dialogue dynamics. Remembering and reusing
the properties that humans use to refer to specific entities can be
helpful for language-capable robots, as their utterances may sound

more natural and familiar to their interlocutors. In this case study,
we show that while aggressive rates of decay may be needed in
contexts with significant environmental change, overly aggressive
decay may also erase the benefits of using WM models at all. After
all, § = 0 seconds would certainly avoid the use of stale properties,
but would do so by not keeping anything in WM. If enough time
has passed between the moment when an object is mentioned in
conversation and when a robot has to refer to it, the robot’s referring
expression might differ from the previous significantly.

3.2.1 Scenario. Consider a human H who is working on a simple
assembly task at home while assisted by a robot R. Consider that
both H and R are located in the living room and the four blocks
from Table 1 are stored away inside a closet at the opposite end
of the house. H is building a small structure made only of metallic
components with some blocks that they already have available, but
realizes they will need Block 2 to finish it. Promptly, they make a
request to R: “Please bring me the metallic block from the closet.
and R immediately heads to the closet to grab the requested object.
R returns one minute later with Block 2 in hands and alerts H about
it. This scenario is depicted in Figure 2.

Please bring me
the metallic
block from the
closet.

Figure 2: Interaction scenario for case study 2.

3.2.2 Architectural Validation. To assess this scenario, we con-
ducted two decay runs and started each simulation with no proper-
ties inside the robot’s WM buffers. The first run used a decay factor
less than 60 seconds (specifically, § = 40 seconds). The second run
used a decay factor greater than 60 seconds (specifically, § = 70
seconds). For both runs, the same procedure was followed. First,
we simulate the use of the property metallic(X) to describe Block
2. Second, the architecture waits for 60 seconds to pass in order
to simulate the time it takes for the robot to fetch the block and
return to the human. Lastly, we make a request to the Referential
Executive component for a description of Block 2 to simulate the
utterance used by R to describe the object at the end of the inter-
action. The lists of Block 2 descriptors returned by the Referential
Executive component can be visualized in Table 3.

Table 3: Parameterizations and results from Case Study 2

List of Predicates Returned

[medium(X), spherical(X)]
[metallic(X)]

\ )
Decay Run 1 | 40 seconds
Decay Run 2 | 70 seconds

In the first run, we observe a deviation from the utterance previ-
ously used by H because enough time passes for the salient metal-
lic(X) property to leave Block 2’s WM before a request is made to
the Referential Executive component. The Referential Executive



goes through the properties within long-term memory following
the order of preference of size, shape, color, and material. Since the
properties medium(X) and spherical(X) are enough to rule out all
distractors, they are returned by the Referential Executive as the
properties that should be used in a referring expression. In the sec-
ond run, we observe a consistent referring expression that matches
that initially used by H. The contents of Block 2’s WM buffer do
not change, since between the utterances used by H and R to de-
scribe it, not enough time has passed for the WM property to decay.
The Referential Executive component is then able to prioritize the
property metallic(X) from WM, which is sufficient to rule out all
distractors on its own and is returned as the only element in the
list of properties that should be used to refer to Block 2.

3.2.3 Discussion. In HRI contexts, if a robot uses different refer-
ring expressions to describe an object than those used by a human,
the human may be confused as to why the robot chose a different
wording. Conversely, if a robot preserves the referring expressions
previously used in conversation, its speech may be perceived as
more natural and easy to understand. Therefore, given our results,
it seems that large decay rates are well suited for use in interaction
scenarios reliant on dialogue dynamics, as they will preserve the
most recent description for each object in WM and cause the ar-
chitectural framework to generate consistent referring expressions.
If decay is in use with a decay rate § that is not large enough to
accommodate the interval of time between two object references,
referring expressions will likely be inconsistent.

From these observations, we are able to articulate our second
rule of robot memory dynamics:

Rule 2. Given the rate of entity-level dialogue dynamicsry, a rate
of decay 8 > rg will preserve salient properties within WM bufers.

In cases where the rate of entity-level dialogue dynamics is
unknown, it may be better to rely on a relatively high § setting
(e.g., § = 90 seconds if an interaction context is characterized by
its dialogue dynamics). In contrast, in contexts where dialogue
dynamics do not play a major role, it might be reasonable to set § to
a significantly lower value to account for situations and interaction
contexts such as the one described in case study 1.

4 GENERAL DISCUSSION

The results of our case studies provided us with rules for scenarios
that are reliant either on environmental dynamics or on dialogue
dynamics alone. Putting our rules together, we can also arrive at
policies aimed at leveraging decay in interaction contexts that
are dependant on both environmental and dialogue dynamics. We
have two possibilities: First, in scenarios with slow environmental
dynamics and fast dialogue dynamics, such as the experimental
context proposed by Sousa Silva et al. [18], the rate of entity-level
environmental change will be at least as fast as the rate of entity-
level dialogue dynamics (i.e., re > rg). In such cases, it is easy to
satisfy both of our entity-level decay rules, as we are able to choose
a decay rate ¢ such that r, > § > r;. However, in our second type
of scenarios — with fast environmental dynamics and slow dialogue
dynamics — the rate of entity-level environmental change will be
slower the rate of entity-level dialogue dynamics (i.e., re < rg). In
such cases, following both decay rules will not be possible as they

Sousa Silva et al.

suggest choosing two different decay rates. We must then consider
whether preventing the use of outdated, invalid properties in robot
referring expressions (i.e., choosing § < r, and satisfying Rule 1)
outweighs preventing the use of inconsistent, yet valid, referring
expressions in conversation (i.e., choosing § > r; and satisfying
Rule 2). This shows why robots must satisfy Rule 1, as it will lead
to lower chances of generating invalid referring expressions.

We note that depending on the context of each interaction, the ex-
pected rate of environmental change and/or the expected dialogue
rate might vary across different types of objects. In an assembly
task, for instance, it might be beneficial for a robot to keep salient
features of the objects used in the task in WM for longer than the
features of the location where the task is taking place. A dynamic
decay policy that can be adjusted to handle different types of objects
with different decay rates can lead to more natural and human-like
robot dialogue. This type of policy can even be extended to a deeper
architectural level and determine different rates of environmental
change across different types of object features. Future work can
thus investigate how different decay rates might be determined
according to these different scopes of interaction scenarios.

Finally, the architectural validation of the outcomes for our case
study scenarios provides the foundation to design follow-up ex-
periments with the parameters that were used in this work. These
experiments can provide valuable feedback regarding how humans
will feel about the different referring expressions created by a robot
in each scenario (e.g., whether they judge the robot’s utterances to
be natural and human-like or confusing and out of place).

5 CONCLUSION

In this paper, we evaluated the impact of an Entity-Level, Feature-
Based WM framework for robotic cognitive architectures on natural,
situated, language-based interaction scenarios with humans. Our
model features a cognitively-inspired implementation of Decay, a
forgetting dynamic that dictates how information can leave WM
buffers. We proposed two case studies that investigated how decay
can affect a robot’s Referring Expression Generation process and
validated them within the DIARC cognitive architecture. We iden-
tified situations in which using specific decay parameterizations
might be problematic for HRI contexts reliant on different environ-
mental dynamics and dialogue dynamics. We showed that the decay
model of forgetting needs to be appropriately parameterized to pro-
mote the generation of robot referring expressions that will sound
intuitive, natural, and easy to understand for human interactants.
Our results can inform future human-subjects experiments aimed
at assessing how humans will perceive the referring expressions
that are generated through this framework.
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