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ABSTRACT

Research has shown that the use of physical deictic gestures such as pointing and pre-

senting by robots enables more effective and natural human-robot interaction. However, not

all robots come equipped with gestural capabilities. Recent advances in augmented reality

(AR) and mixed reality (MR) provide powerful new forms of deictic gestures in human-robot

communication. My thesis focuses on allocentric mixed reality gestures, in which target ref-

erents are picked out in fields of view of human teammates using AR visualizations such as

circles and arrows, especially when these gestures are paired with verbal referring expres-

sions and deployed under various types of mental workload of human teammates. We also

present a software architecture that enables mixed reality gestural capabilities, and present

the results of a human subject experiment that measures user objective performance and

their subjective responses. These results demonstrate the trade-offs between different types

of mixed reality robotic communication under different levels of user workload. The findings

of this study suggest that although humans may not notice differences, the manner of load a

user is under and the type of communication style used by a robot they interact with do in

fact interact to determine their task time. The data collected from my experiment is a first

step towards answering this overarching question: How can a robot select the most effective

communication modality given information regarding its human teammate’s level and type of

mental workload?

iii



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 AR for HRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Mixed Reality Deictic Gestures . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Cognitive Load Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Cognitive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 Selective Attention and Perceptual Load . . . . . . . . . . . . . . . . . . 8

2.3.3 Multiple Resource Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.4 Dual-Tasking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.5 Subjective Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.6 Physiological Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 AR and Cognitive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Robotics and Neurophysiology . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

CHAPTER 3 EXPERIMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Task Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

iv



3.3 Primary Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Secondary Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5.1 Cognitive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5.2 Communication Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.6 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.7 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.8 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

CHAPTER 4 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Reaction Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Secondary Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Primary Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5 Perceived Mental Workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.6 Perceived Communicative Effectiveness . . . . . . . . . . . . . . . . . . . . . . 31

CHAPTER 5 DISCUSSION AND CONCLUSION . . . . . . . . . . . . . . . . . . . . 34

CHAPTER 6 SOFTWARE ARCHITECTURE . . . . . . . . . . . . . . . . . . . . . . 49

6.1 Microsoft HoloLens 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 Unity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2.1 Primary Task Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2.2 Secondary Task Manager . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2.3 Experiment Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2.4 Bin Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

v



6.2.5 Network Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2.6 Data Collection Manager . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2.7 HololensARToolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2.8 WebServer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2.9 Robot Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2.10 Potential Integration with FNIRS . . . . . . . . . . . . . . . . . . . . . 62

REFERENCES CITED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vi



LIST OF FIGURES

Figure 1.1 Categories of mixed reality deictic gestures proposed by Williams et al. . . 4

Figure 3.1 Our experimental setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 3.2 Experiment in progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 3.3 Twelve within-subject conditions (4 workload profiles x 3
communication styles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 3.4 Participants were asked to go through the Tutorial before starting the
experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 3.5 Experiment Protocol and Phases . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 4.1 Effect of communication strategy (complex language + AR vs. complex
language vs. simple language + AR) on secondary task reaction time. . . 27

Figure 4.2 Effect of workload (Low All) vs. (High Visual) vs. (High Auditory) vs.
(High Working Memory) on participant’s secondary task reaction time. . 27

Figure 4.3 Effect of both workload and communication strategy on participant’s
secondary task reaction time. . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 4.4 Effect of workload on participant’s primary task’s accuracy and
reaction time. Results are not statistically significant . . . . . . . . . . . 30

Figure 4.5 Effect of both workload and communication strategy on participant’s
perceived mental workload . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 4.6 Effect of both workload and communication strategy on participant’s
perceived robot’s communication effectiveness . . . . . . . . . . . . . . . 33

Figure 5.1 Visualization of participant performance in the AR + Simple Language
/ Low All . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 5.2 Visualization of participant performance in the Complex Language Only
/ Low All . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 5.3 Visualization of participant performance in the AR + Complex
Language / Low All . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vii



Figure 5.4 Visualization of participant performance in the AR + Simple Language
/ High Working Memory Condition . . . . . . . . . . . . . . . . . . . . . 39

Figure 5.5 Visualization of participant performance in the Complex Language Only
/ High Working Memory Condition . . . . . . . . . . . . . . . . . . . . . 40

Figure 5.6 Visualization of participant performance in the AR + Complex
Language / High Working Memory Condition . . . . . . . . . . . . . . . 41

Figure 5.7 Visualization of participant performance in the AR + Simple Language
/ High Visual Load Condition . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 5.8 Visualization of participant performance in the Complex Language Only
/ High Visual Load Condition . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 5.9 Visualization of participant performance in the AR + Complex
Language / High Visual Load Condition . . . . . . . . . . . . . . . . . . . 44

Figure 5.10 Visualization of participant performance in the AR + Simple Language
/ High Auditory Load Condition . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 5.11 Visualization of participant performance in the Complex Language Only
/ High Auditory Load Condition . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 5.12 Visualization of participant performance in the AR + Complex
Language / High Auditory Load Condition . . . . . . . . . . . . . . . . . 47

Figure 6.1 The Microsoft HoloLens version 1 . . . . . . . . . . . . . . . . . . . . . . 49

Figure 6.2 A Unity Scene of our application . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 6.3 Overview of our robot mixed reality system architecture . . . . . . . . . . 52

Figure 6.4 Primary and Secondary Tasks in One Game Round . . . . . . . . . . . . 54

Figure 6.5 Websocket Communication . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 6.6 A setting scene to set up the WebSocket connection . . . . . . . . . . . . 57

Figure 6.7 Data collected after an experiment . . . . . . . . . . . . . . . . . . . . . . 58

Figure 6.8 HoloARToolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 6.9 WebServer and Naoqi Robot Integration . . . . . . . . . . . . . . . . . . 61

viii



Figure 6.10 Potential integration between fNIRS and our system . . . . . . . . . . . . 63

ix



LIST OF ABBREVIATIONS

Human-Robot Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HRI

Brain-Computer Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BCI

Functional near-infrared spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . fNIRS

Electroencephalography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EEG

Head-mounted display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HMD

Brain-machine interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BMI

NASA Task Load Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NASA TLX

Bayes factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bf

x



ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. ThomasWilliams, for sparking my research interests

in human-robot interaction and mixed reality. I would like to thank my undergraduate

research teammates (Kai Mizuno, Morgan Cox, Jared Hamilton, and Nicholas Woodward)

at the Mines Interactive Robotics Research Lab for assisting me in this project and running

some of the human subject experiments. I would also like to thank Dr. Leanne Hirshfield and

collaborators within the System Human-Interaction with NIRS and EEG (SHINE) Lab at

the University of Colorado at Boulder’s Institute of Cognitive Science for providing valuable

perspectives from their experience in cognitive science and neurophysiology. Lastly, I wish

to express my sincere appreciation to the Computer Science department at Colorado School

of Mines led by Dr. Tracy Camp and the growing Robotics program. Without their support

and funding, this project could not have reached its goal.

xi



CHAPTER 1

INTRODUCTION

In recent decades, the demand for human-robot teaming continues to grow in domains

such as industrial factories, healthcare, and search-and-rescue operations. Successful human-

robot teaming requires robots to facilitate effective and natural communication, while min-

imizing the need for special training for the human partners who might not be robotics

experts. Researchers in the field of Human-Robot Interaction (HRI) have sought to enable

robots to engage in natural and human-like dialogue [2–4]. Unlike chat bots and conversa-

tional agents, interactive robots need to facilitate natural language communication that is

situated [5], sensitive to the situated context [5–7], and designed as a task-based dialogue [8].

For example, if a human asks the robot “Could you bring me that mug of coffee please?”,

the robot needs to map the word “mug” to its own perception of the world (i.e., recognizing

the objects in its camera sensor corresponding to the word) and extract the intent in the

utterance (e.g., the human wants me to grab the cup and bring it to them). After producing

a plan or policy to grasp the cup, the robot should be sensitive to the uncertain nature of

the task, though not explicitly stated, that the human wants it to lift the mug in a way

that does not spill the coffee. In addition, natural language and nonverbal gesture are usu-

ally combined together in human natural language communication, as gesture complements

fluent speech to convey abstract ideas and to draw attention to the area that contains the

target referent. Speakers often employ deictic gestures such as pointing to direct the atten-

tion of the listeners to the object of interest in their environment. The use of deictic gestures

helps to minimize the ambiguity of the speaker’s utterance to refer to their target and to

minimize the addressee’s cognitive strain when processing the speaker’s description of the

target referent.
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Since nonverbal gestures can accompany language to bear the burden of communica-

tion and even substitute for speech on its own [9], HRI researchers have sought to make

interactive robots capable of understanding and generating human-like, appropriate gestures

in situated interactions with humans. While research has been conducted to allow robots

to understand gestures using camera and depth sensors [10], generation of deictic gesture

remains a challenge due to the complexity of robot perception, action, and the need for

expressive end effectors. HRI researchers have used Wizard-of-Oz, a technique in which

a puppeteer manually controls the robot behind the scene to study how humans perceive

robot-generated deictic gestures beyond pointing such as presenting, exhibiting, touching,

grouping and sweeping [11]. Most of the robots currently in use, such as assistive wheelchairs,

robot vacuum cleaner, and unmanned aerial vehicles, have neither expressive end effectors

nor gesture-generating capabilities. And even for robots that have arms like industrial robot

arms and humanoid robots, the generation of deictic gestures is still limited, particularly

when the robots need to communicate in an unknown environment about hard-to-describe

referents. Tran et al. [12] pose a scenario involving a human teammate and an unmanned

aerial vehicle (UAV), collaborating together in a search-and-rescue operation. If the robot

has no arms and needs to communicate with a human teammate to search out a victim in

a highly ambiguous environment, it can not simply say “I found a victim behind that tree”

without having a physical gesture accompanying the language. Moreover, if this robot has

arms, a simple pointing gesture would probably not help to guide the human teammate in

a labyrinthine environment without using complex language such as “The victim is in the

clump of trees to the right of the large boulder near the fourth tree on the left.” [12]

Mixed reality (sometimes referred to as augmented reality) technologies that overlay vir-

tual objects in the physical world allow new approaches to tackle the above limitations and

allow robots to generate gestural cues in the human’s field of view. Consider the earlier ex-

ample, if the human partner wears a mixed reality head-mounted display (HMD), the UAV

could draw visual annotations around the region of interest, such as arrows and circles, and
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tell the human “there is a victim behind [circle] that tree.” Furthermore, while mounting

physical arms on these robots can be mechanically infeasible or cost-intensive, mixed real-

ity visualizations of robot arms can simply and cheaply enable these robots to gesture as

they have a physical arm. The use of mixed reality deictic gestures has become a growing

topic of interest in the HRI community[13] because such gestures allow better knowledge

sharing between people and robots to improve shared mental models, calibrated trust and

situational awareness [14]. Williams et al. [1] established a taxonomy of mixed reality deictic

gesture (see Figure 1.1), including physical gestures, augmented reality (AR) annotations,

and combinations thereof [1, 15]:

• Egocentric gestures: Physical gestures performed by the speaker.

• Allocentric gestures: AR gestures annotating the speaker’s target referent from the

addressee’s perspective (e.g., an AR circle or arrow drawn around or pointing to an

object).

• Perspective-free gestures: Gestures that change how all observers perceive the world,

that are not tied to the perspective of any one agent (e.g., projecting a light on an

object).

• Ego-sensitive allocentric gestures: AR gestures indicating the speaker’s referent within

the addressee’s perspective but performed as if generated from the speaker’s perspective

(e.g., a robot pointing with a simulated AR arm).

• Ego-sensitive perspective free gestures: Gestures that change how all observers perceive

the world, but that are performed as if generated from the speaker’s perspective (e.g.,

projecting an arrow from the robot to its referent).

3



Figure 1.1 Categories of mixed reality deictic gestures proposed by Williams et al. [1]

Our previous work demonstrated the potential of allocentric gestures to improve the

accuracy and efficiency of non-humanoid robot communication in a simulated video-base

experiment [16]. When coupled with complex referring expressions, the gestures are consid-

ered more effective and likable than communication with the language alone [17]. However,

a drawback of this simulated video-base experiment is the low ecological validity, as partici-

pants watching the videos had complete views of the entire experimental environment while

users wearing an HMD might have a restricted field of view due to hardware limitations.

My thesis presents the first demonstration of mixed reality deictic gesture generated on an

actual HMD, the Microsoft HoloLens, in the context of task-based human-robot interaction.

Moreover, Hirshfield et al. [18] suggest several contextual factors that may influence the

scenarios in which mixed reality deictic gestures can become helpful to human teammates:

teammates’ cognitive load may dictate whether they are capable of accepting new informa-

tion; and their auditory and visual perceptual load may dictate the most effective modality

to accompany or replace natural language. In contexts with high visual load, it might not
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be advantageous to heavily rely on visual communication, and in context of high auditory

or working memory load, relying on spoken language alone might not be effective [18]. Mo-

tivated by prior theoretical research in Multiple Resource Theory [19], the Perceptual Load

Model [20], and the Dual-Target Search Model [21], these intuitions take into account the

complex interplay between human cognitive load and perceptual processing load, which in-

fluence how human processes information and optimizes task performance. [19, 22, 23]. My

thesis aims to address this question: How do different types of mental workload impact the

effectiveness of different robot communication modalities?

The remainder of this thesis continues as follows. In chapter 2, we review the related

work related to mixed reality/augmented reality for HRI and cognitive load estimation. In

chapter 3, we formally define our experimental hypotheses and describe a human-subject

experiment carried out with 36 participants to analyze those hypotheses. In chapter 4, we

discuss our results, and discuss insights into the trade-offs between different forms of mixed

reality communication in contexts with different types of workload in chapter 5. Lastly, in

chapter 6, we describe the technical approach to implementing the mixed reality generation

system.
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CHAPTER 2

RELATED WORK

In this chapter, I review related work that seeks to integrate augmented reality in human-

robot interaction and examine techniques to measure mental workload.

2.1 AR for HRI

For at least twenty-five years, there has been progress in integrating augmented reality

in human-robot communication. Milgram et al. [24] (1993) first implemented the ARGOS

(Augmented Reality through Graphics Overlays on Stereovideo) interface which overlaid a

stereoscopic display with virtual information to allow a human operator to teleoperate a

robot arm. The operator gathered stereoscopic information from the remote environment

and used virtual landmarks to determine what command to send to the remote robot arm

[24]. In 1999, Johnson et al. [25] developed an “EgoSphere”, a 3D sphere around the robot

which displayed various sensory data and events, to enhance the usability of their graphical

user interface (GUI). Their enhanced GUI screen consists of landmark map, camera view,

and the sensory “EgoSphere” to help users better visualize the robot’s present state. AR

has been used to enhance the human operator’s control over the robot and improve the

expressivity of human’s view into the robot’s internal states.

In the past decade, there has been a surge of research interest in using AR for training

users how to operate robots [26], as well as communicating the perspectives, trajectories

and intentions of robots. Amor et al. [27] used a projector to project instructions and to

highlight task-relevant objects within an environment shared by humans and robots. This

project does not use natural language generation, and visualizations are cast as part of the

task environment instead of as part of the robot’s communication [27]. Rosen et al. [28]

developed a mixed reality interface to allow a robot to communicate its motion intent to a

user. Likewise, this system only considers visual communication of the robot motion states.
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Sibirtseva et al. [29] designed a system that allowed a robot to circle reference candidates in

the user’s AR head-mounted display as the user described a target referent [29]. Since the vi-

sualizations were generated from the robot’s perspective to select referential candidates, this

project shares some similarities to our research topic. However, we’re interested in using AR

as an active communication instead of passively responding to the human’s communication.

Reardon et al. [30] developed a robot that generated the trajectory for a human teammate

to follow along and also highlighted the intended targets on the virtual path. These previous

works do not focus on language-based robot communication when using the novel mixed

reality platform to visually communicate shared goals and enable cooperative behaviors. In

contrast, our laboratory has researched how to use AR as a active communication strategy,

generated as gestures to accompany the natural language communication. [16, 17].

2.2 Mixed Reality Deictic Gestures

Williams et al. [1] suggested that a robot operating within a mixed reality environment

can generate visual visualizations that can function as traditional deictic gestures. These

visual gestures fall under the category of view-augmenting mixed reality interaction design

elements in the Reality-Virtuality Interaction Cube framework of Williams et al. [31]. As

mentioned in Chapter 1, these are also called allocentric visualizations or gestures, and

they can be shown in the HMD or be projected onto the ground using a perspective-free

projector. Recent research has explored the use of circles and arrows as allocentric gestures

drawn over the target object. Sibirtseva et al. [29] compared three different modalities a

robot could choose to communicate about the object of interest in addition to verbal request:

projector, HMD (Microsoft HoloLens), and a side monitor as the control condition. Each

modality overlaid the circles around the objects that the robot wanted the participant to

pick up. They found that participants perceived the HMD condition to be more engaging,

but most preferred the perspective free visualization due to its less intrusiveness. Williams

et al. [16] explored the perceived effectiveness of allocentric mixed reality deictic gestures in

multi-modal robot communication. Their experiment also used annotated circles to allow
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robot to communicate its intent to the human. Their results showed that human perceived

effectiveness and the perceived likability increased when mixed reality deictic gesture was

used. However, this was a simulated video-based experiment. Our experiment follows up on

this study by enabling mixed reality deictic gesture to be generated on an actual HMD.

Although prior research shows human preference for the projector-based AR over HMD

[29], our study considers HMD because the human partner has to 1) carry out complicated

physical tasks in a search-and-rescue operation such as running and climbing, and 2) keep

moving instead of interacting with a video projector in one sit. In future work, we intend

to combine the HMD with a lightweight physiology sensor so that the robot teammate can

passively monitor the human mental workload and adapt its mixed reality deictic commu-

nication style while the human is wearing both devices.

2.3 Cognitive Load Measurement

2.3.1 Cognitive Load

Ideal task performance depends on the limited information processing capabilities of a

human brain [22, 23]. Task performance degradation can occur if the task demand exceeds

the brain’s available processing capacity. [23, 32, 33]. In a classroom, for example, if an

instructor presents too much information at once, the students may experience cognitive

overload and much of that information may be lost.

2.3.2 Selective Attention and Perceptual Load

Selective attention refers to focusing on a specific aspect of a scene while ignoring other

aspects [34]. Simons and Chabris [35] created the famous “the invisible gorilla” experiment

to test selective attention. In their study, participants were asked to watch a video of a group

of people–some dressed in white, some in black—passing basketballs around. While watching

the video, the participants were asked to count the passes between the players dressed in

white while ignoring the passes of those in black. Halfway through the video, a gorilla walked

through the game, pounded his chest, then fled the scene. When the participants were asked
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if they saw the gorilla, more than half of them missed it. This study demonstrated that

when people selectively focus on something, they can become blind to the details they don’t

seek out. This failure of awareness is also known as “inattentional blindness.” [35]

Perceptual load refers to the the amount of information involved in processing task-

relevant stimuli determines the efficiency of selective attention [36]. If a human is asked to

search for a specific water bottle on a table with hundreds of of similar looking bottles, he/she

may experience high visual perceptual load. If a human is asked to listen for a particular

instruction but there are multiple similar sounds playing in the background, he/she may

experience high auditory perceptual load. In this research, we focus on how humans’ visual

and auditory perceptual loads are affected by or in turn affect the effectiveness of robots’

mixed reality deictic gestures. The level of perceptual load in a task can influence selective

attention, and a high load can affect the individual’s ability to see obvious objects [37].

2.3.3 Multiple Resource Theory

Some context-aware, multi-tasks, and multi-modal systems today gain inspiration from

Wickens [22]’s Multiple Resource Theory to design ways of presenting information to the

user for effective use of human information processing resources [38]. The Multiple Re-

source Theory states that people have separate fixed-capacity resource pools for information

processing. These resources can be categorized along three dimensions: 1) early vs. late in-

formation processing stage, 2) spatial vs. verbal information processing code, and 3) visual

vs. auditory modality [19, 22]. Different pools of resources can be tapped simultaneously.

Based on the complexity of the task, these resources will process information sequentially if

the various tasks need the same pool of resources, or if the task needs different resources,

they can be processed in parallel. A decrease in task performance indicates a shortage of

these different resources and that the information processing limited capability has been

reached. When the individual performs two or more tasks that require a single resource, a

supply and demand problem occurs. Task error and slow performance will occur when a task

that requires the same resource causes excess workload. Nachreiner [39] studied the com-
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plex relationship between workload and job performance. This complex relationship shows

that an increase in workload does not always cause a decrease in performance. Performance

can be affected by both high and low workload [39]. If the users are under low workload,

also known as underload, they might become bored, lose situation awareness, and reduce

alertness. The Multiple Resource Theory helps designers to assess: 1) when tasks can be

carried out simultaneously, 2) how tasks interfere with each other, and 3) how increasing

in one task’s difficulty may impact another task’s performance. In our research, Wicken’s

Multiple Resource Theory helped us understand various forms of resources for processing

information.

2.3.4 Dual-Tasking

Dual-tasks consist of a primary and a secondary task, with primary tasks often requiring

long-term attention or involve a more important goal. Wicken’s Multiple Resource Theory

demonstrates how performance decreases under dual-task conditions [19, 22]. In a scenario

when a human is driving and talking, s/he can easily drive and converse at the same time

on a good day. However, in poor conditions, the driver will usually be under high cognitive

and perceptive load, thus s/he will need to solely focus on the primary task: driving. Sawyer

et al. [40] studied the effect of Google Glass, an AR HMD, on driving performance. They

found that displaying virtual information on the HMD can reduce load in multitasking but

it did not eliminate all distracting cognitive demands. Woodham et al. [41] demonstrated a

climbing dual-task in which participants focused on climbing as the primary task and tried

to recall the virtual words shown on HMD as the secondary task. Their results showed that

the secondary task deteriorates the primary task’s performance and vice versa. Participants

climb slower when they have to recall information and their ability to recall information

declines as they climb compared to sitting. An interesting observation from this study is

that even though participants were not told to prioritize one task over another, climbing

took precedence. The drop in performance for the secondary task (word recall) is greater

than for the primary task (climbing).
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2.3.5 Subjective Measures

The two commonly used subjective scales of cognitive load are the Paas Cognitive Load

Scale and the NASA Task Load Index (TLX) [42]. The Paas scale asks the participants

to rate their perceived intensity of their mental effort along a nine-point scale (1 = very

low mental effort, 9 = very high mental effort) [33]. The NASA TLX requires participants

to rate six subscales (range: 0 - 20): mental demand, physical demand, temporal demand,

performance, effort, and frustration [43]. The total cognitive load is interpreted as the sum

of six subscales (maximum: 120 points). The sum of cognitive load in both Paas Cognitive

Load Scale and NASA TLX is intended to measure the three distinct types of cognitive

load: intrinsic load (how complex the task is), extraneous load (how the task is presented),

and germane load (how the learner processes the task for learning) [44–46]. Naismith et al.

[42] compared these two scales and found that the intrinsic cognitive load is synonymous

with mental effort in the Paas Scale and mental demand in the NASA TLX. The extraneous

and germane cognitive loads, however, were not reflected in these two subjective methods.

Our study does not consider the design of the learning materials (extraneous load) and

the generation of knowledge structure in the learner’s long-term memory (germane load).

Because Naismith et al. [42] suggest that Paas Scale and TLX can be used interchangeably

as measures of cognitive load, we choose to use TLX in our own research.

2.3.6 Physiological Measures

Advances in physiology allow for novel ways of measuring brain activity in real time

through electrodes on the human scalp surface. Electroencephalography (EEG) and Func-

tional near-infrared spectroscopy (fNIRS) are two portable and non-invasive methods to

measure brain activity in natural environments. EEG measures electrical activity generated

by synchronized activity of thousands of neurons in the cerebral cortex and strength of var-

ious oscillation frequencies such as delta, theta, and gamma [47]. It provides low spatial

resolution which makes it difficult to determine the origin of the signal in the brain, but
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offers excellent temporal resolution that can detect activity in sub-seconds [48].

Unlike EEG, fNIRS relies on the neurovascular coupling principle that measures changes

in haemoglobin concentration and tissue oxygenation in the brain caused by neuronal activa-

tion [49]. Using the light sources placed on the scalp, fNIRS sends near-infrared light which

is mainly absorbed by deoxygenated and oxygenated haemoglobin in the blood. These two

provide relevant markers of the changes associated with neural activity in the brain [50]. As

a lightweight and non-invasive device, fNIRS is gaining popularity in the Human-Computer

Interaction community [51], as it offers several advantages such as greater spatial resolution,

higher signal-to-noise ratio, and better practicality for use in normal working conditions [52].

The high spatial resolution of fNIRS enables the localization of different brain regions. Hir-

shfield et al. [18] designed a multiclass/multilablel fNIRS classifier for classifying the levels

(high, medium, absent) of different types of cognitive load (Response Inhibitions, Working

Memory, Spatial Attention, Visual Lexical Processing, and Visual Search), perceptual load

(visual and auditory), and negative affect (frustration, stress). This has direct implications

to HRI and our research project. The research done by our collaborator in capturing these

different neurophysiological measures will help our future studies.

fNIRS has been used in various HRI research such as robot-assisted therapy, prosthetic

control, engagement in education [53]. It is often used for two main purposes: 1) as an

active or passive BMI interface for robot control, and 2) as an evaluation tool for measuring

brain activity during an interaction [53]. However, fNIRS does pose some limitations such as

interface design, signal processing, analysis and inference, and context-dependent hardware

concerns [53].

2.4 AR and Cognitive Load

Several studies suggest the effect of augmented reality on human’s cognitive load lev-

els. Hou et al. [54] designed two human subject experiments to assess the participants’

performance during a building block assembly task and their cognitive load when following

traditional paper-based manual vs. animated AR guidance. The first experiment applied
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the memory-base dual-task to study the participant’s cognitive performance between AR

and a traditional manual. Participants in the AR condition had shorter completion times,

lower number of errors, and lower workload determined by the NASA TLX [55] compared

to the physical manual condition. Their second experiment compared the learning curves

of AR training with assembly manual training. The results showed participants had better

task performance when they were trained using AR vs. manual training. Another study

conducted by Gavish et al. [56] supported this finding. In their experiments, forty expert

technicians were randomly assigned to four training groups in an electronic actuator assem-

bly task: Control-VR (watching a filmed demo twice), VR (training with the VR platform

once), Control-AR (training with the real actuator and assisted by the filmed demonstra-

tion once), and AR (training with the AR platform once). The study found the use of AR

training improved the technicians’ performance.

Funk et al. [57] employed an abstract Lego Duplo assembly task to compare the effects

of using AR HMD instructions (Epson Moverio BT-200), handheld tablet instructions (non

AR), paper instructions, and in-situ projected instructions (AR). They measured the partic-

ipants’ perceived cognitive load using the NASA-TLX questionnaire [55], number of errors,

and various task competition times (e.g., time to locate the correct picking position, time

to perform the pic, time it takes to understand instruction and place the picked part cor-

rectly, and time it takes to perform the assembly). They counterbalanced the order of the

conditions according to the Balanced Latin Square to prevent the carryover effects of a pre-

vious experimental condition impacting the current experimental condition. Their results

suggested that participants experience lower self-reported cognitive load and made few errors

using the in-situ projected instructions compared to instructions provided by the AR HMD.

Additionally, participants took less time to assemble parts using the projection, and took

more time to locate the positions using the HMD. The finding is not surprising as the Epson

Moverio BT-200 has a very narrow field of view, and participants’ field of views were also

blocked by the instructions.
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Woodham et al. [41] explored the dual-task costs of users doing a visual communication

task using an HMD while climbing an indoor climbing wall. While the participant were

climbing and wearing an HMD, they were shown the virtual words on the HMD with and

without auditory warnings. In the other two conditions, the participants sat and saw the

words presented on the HMD with and without auditory warnings. Motion data was captured

throughout the experiment. Their findings demonstrated a performance decrease in both

climbing and word recalling tasks as participants slowed down around word presentations

on the HMD. Participants in the climbing task had lower word recall performance than

those in the seated task, suggesting that complex physical activity, like climbing, hinders

memory rehearsal, and cognitive tasks also hinder physical performance. They also found

that visual stimuli is more disruptive to the climbing performance than auditory stimuli.

The implication of this study is that cognitive HMD tasks that require later recall should be

avoided when users are climbing or performing other complex physical tasks [41].

Küçük et al. [58] compared the effects on medical students’ academic performance and

cognitive load using a mobile AR application against a printed textbook. The students’

cognitive load was measured using the nine-point Likert Scale developed by Paas et al. [33].

The academic performance test was measured using a thirty multiple choice quiz. They

found that students who used the AR mobile application to study anatomy experienced

lower cognitive load and achieved higher academic performance.

2.5 Robotics and Neurophysiology

Over the past two decades, brain-machine interface (BMI) researchers have been using

neurophysiological measurements of brain activity to find ways to manipulate robots. Chapin

et al. [59] (1999) trained rats to press the lever for a water reward and then implanted

multi-electrode recording arrays in them. They then derived mathematical transformations,

including neural networks, to convert rats’ multineuron signals into real-time signals for

robot arm control [59]. Wessberg et al. [60] (2000) implanted microwire arrays in monkeys

and successfully converted cortically derived signals of the primates, which involved various
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aspects of motor control, to real-time control of robotic device, both locally and online. Most

of these invasive BMIs were tested primarily on laboratory animals, and few were tested on

human subjects for safety reasons. Patil et al. [61] obtained acute ensemble recordings

from subthalamic nucleus and thalamic motor areas from human patients during deep brain

stimulator surgery and demonstrated that these signals could be used to predict force-task

performance.

Non-invasive BMIs such as EEG certainly have the advantage of not exposing humans to

the dangers of invasive surgical procedures but compared to those the implanted electrodes,

non-invasive BMIs have lower resolution, slower rate of transfer, and increased noise due

to measurements on the scalp [62–64]. Non-invasive BMIs have thus been tested more

frequently with human subjects and show their promise in providing simple communication

but shortcomings in more complex operations [63]. Millan et al. [64] (2004) demonstrated an

EEG-based BMI and machine learning methods capable of controlling a robot’s rotation in

indoor environments. Galán et al. [65] (2008) presented non-invsive BMIs for brain-actuated

wheelchair driving.

The BMI systems which require the users to consciously and directly control their brain

activity to control an application are categorized as active systems [66]. These active sys-

tems, however rarely generalize to multiple users, because they often require extensive system

and user tuning and training [67, 68]. Zander and Kothe [66] (2011) categorized previous

works which do not involve active control but which implicitly monitor human brain activity

to augment human-machine interaction as passive systems. Szafir and Mutlu [69] (2012) ex-

plored how to use neurophysiological information to make robot behaviors adaptive. In their

experiment, participants interacted with an adaptive robot which monitored their engage-

ment using EEG signals in real time and adapted its verbal and nonverbal immediacy cues.

The study found that the robot’s adaptation based on the participant’s neurophysiological in-

formation improved their recall ability and the overall learning experience. Around the same

time, Girouard et al. [70] (2013) designed a passive system called the online fNIRS analysis
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and classification (OFAC) capable of analyzing brain signal in real time and using machine

learning to classify different affective and workload states. The researchers conducted two

experiments. The first experiment compared the offline analysis to the real-time analysis,

and the result showed a 12 percent decrease in classification accuracy and a minimum of 12

examples of each class in order to achieve stable accuracy. The second experiment evaluated

the ability of OFAC to process cognitive states and to adapt the game interfaces accordingly

in real time. Although there was not a statistically significant difference in accuracy between

the adaptive environments, their findings indicated that user satisfaction was mostly neutral

and positive.

Although EEG has finer temporal resolution in the sub-second scale, our use case does

not require a constant data stream. Each of our communication strategies, including mixed

reality deictic gestures and language, takes more than a few seconds for the robot to execute.

We thus prefer fNIRS’s greater spatial resolution to adapt the robot’s communication styles

based on more load types and Wicken’s Multiple Resource Theory. To summarize, the ability

of fNIRS to measure various types of mental workload and emotion, as well as being non-

invasive and impervious to user movement, made it an ideal tool for our use case of robotic

adaptation.
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CHAPTER 3

EXPERIMENT

In this chapter, we present the design of a human-subject experiment to study how

human teammates perceive augmented (allocentric) mixed reality deictic gestures, and how

such gestures interact with the teammates’ perceptual or cognitive load (as measured with

fNIRS). In particular, we are interested in these effects when allocentric mixed reality deictic

gesture is compared to or paired with complex natural language expressions.

3.1 Hypotheses

Specifically, this experiment was designed to test the following hypotheses, which formal-

ize the intuitions of Hirshfield et al. [18].

H1 Users under high visual perceptual load will perform quickest when robots rely on com-

plex natural language without the use of mixed reality deictic gestures.

H2 Users under high auditory perceptual load will perform quickest when robots rely on

mixed reality deictic gestures without the use of complex natural language.

H3 Users under high working memory load will perform quickest when robots rely on mixed

reality deictic gestures without the use of complex natural language.

H4 Users under low overall load will perform quickest when robots rely on mixed reality

deictic gestures paired with complex natural language.

3.2 Task Design

To assess these hypotheses, we designed a human-subject experiment in which partici-

pants interacted with a language-capable robot while wearing the Microsoft HoloLens, over

a series of trials, with the robot’s communication style and the user’s cognitive load system-

atically varying between trials.
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Figure 3.1 Our experimental setup.

The task used for this experiment employed a dual-task paradigm oriented around a

tabletop pick-and-place task. Participants view this task through the Microsoft HoloLens,

allowing them to see virtual bins overlaid over a set of fiducial markers on the table, as well

as a panel of blocks above the table that changes every few seconds (Figure 3.2). As shown

in Figure 3.1, the Pepper robot is positioned behind the table, ready to interact with the

participant.

3.3 Primary Task

The user’s primary task is to look out for a particular block in the block panel (selected

from among red cube, red sphere, red cylinder, yellow cube, yellow sphere, yellow cylinder,

green cube, green sphere, green cylinder 1). These nine blocks were formed by combining

1These block colors were chosen for consistent visual processing, as blue is well known to be processed
differently within the eye due to spatial and frequency differences of cones between red/green and blue.
This did mean that our task was not accessible to red/green colorblind participants, requiring us to remove
from our dataset the data of several colorblind participants.
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three colors red, yellow, green with three shapes cube, sphere, cylinder. Whenever they see

this target block, their task is to pick-and-place it into any one of a particular set of bins.

For example, a user might be told that whenever they see a red cube they should place it in

bins two or three.

Two additional factors increase the complexity of this primary task. First, in order to

force participants to remember the full set of candidate bins, rather than just one particular

bin from that set, at every point during the task one random bin is marked as unavailable

(with the disabled bin changing each time a block is placed in a bin). Second, to allow us

to examine auditory load, the user hears a series of syllables playing in the task background

(selected from among bah, beh, boh, tah, teh, toh, kah, keh, koh). These nine syllables were

formed by combining three consonant sounds b,t,k with three vowel sounds ah,eh,oh. The

user is given a target syllable to look out for, and told that whenever they hear this syllable,

the bins that they should consider to place blocks in should be exchanged with those they

were previously told to avoid. For example, if the user’s target bins from among four bins

are bins two and three, and they hear the target syllable, then future blocks will need to be

placed instead into bins one and four.

3.4 Secondary Task

Three times per experiment block, the participant encounters a secondary task, in which

the Pepper robot interjects and asks the participant to move a particular, currently visible

block, to a particular, currently accessible bin.

3.5 Experimental Design

To prevent the carryover effect that carries over from one experimental condition to an-

other, we used a Latin square counterbalanced within-subjects experimental design with two

independent variables serving as within-subjects factors: Cognitive Load and Communica-

tion Style.
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Figure 3.2 Experiment in progress

3.5.1 Cognitive Load

Our first independent variable, cognitive load was manipulated through our primary task.

Following Beck and Lavie [71], we manipulated communication style by jointly manipulating

memory constraints and target/distractor discriminability (cp. [37]), producing four different

load profiles: one in which all load was considered low; one in which only working memory

load was considered to be high, one in which only visual perceptual load was considered to

be high, and one in which only auditory perceptual load was considered to be high.

Working memory load was manipulated as follows: In the high working memory load

condition, participants were required to remember the identities of three target bins out of

a total of six visible bins, producing a total memory load of seven items when including the

two properties of the target block (shape and color) and the two properties of the target

syllable (consonant and vowel). In all other conditions, participants were only required to

remember the identities of two target bins out of a total of four visible bins, producing a

total memory load of six items.

Visual perceptual load was manipulated as follows: In the high visual perceptual load

condition, the target block was always difficult to discriminate from distractors due to sharing

of one common property with all distractors. For example, if the target block was a red cube,

all distractors would be either red or cubes (but not both). In the low visual perceptual load
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condition, the target block was always easy to discriminate from distractors due to sharing

no common properties with any distractors. For example, if the target block was a red cube,

no distractors would be red or cubes.

Auditory perceptual load was manipulated as follows: In the high auditory perceptual

load condition, the target syllable was always difficult to discriminate from distractors due

to sharing of one common property with all distractors. For example, if the target syllable

was kah, all distractors would either start with k or end with ah (but not both). In the low

auditory perceptual load condition, the target syllable was always easy to discriminate from

distractors due to sharing no common properties with any distractors. For example, if the

target syllable was kah, no distractors would either start with k or end with ah.

3.5.2 Communication Style

Our second independent variable, communication style, was manipulated through our

secondary task. Following Williams et al. [16] and Williams et al. [72], we manipulated

communication style by having the robot exhibit one of three behaviors:

During experiment blocks associated with the complex language communication style

condition, the robot with which participants interacted referred to objects using full referring

expressions needed to disambiguate those objects.

During experiment blocks associated with the complex language + AR communication

style condition, the robot with which participants interacted referred to objects using full

referring expressions needed to disambiguate those objects (e.g., “the red sphere”), paired

with a mixed reality deictic gesture (an arrow drawn over the object to which the robot was

referring).

During experiment blocks associated with the simple language + AR communication style

condition, the robot with which participants interacted referred to objects using minimal

referring expressions (e.g., “that block”), paired with a mixed reality deictic gesture (an

arrow drawn over the object to which the robot was referring).
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Following Williams et al. [16] and Williams et al. [72], we did not examine the use of

simple language without AR, as that communication style does not always allow complete

referent disambiguation, resulting in the user needing to ask for clarification or guess at

random between ambiguous options.

3.6 Measures

We expected performance improvements to manifest in our experiment in four different

ways: task accuracy, task reaction time, perceived mental workload, and perceived commu-

nicative effectiveness.

These aspects of performance were measured as follows:

Accuracy was measured for both primary and secondary tasks by logging which virtual

object participants clicked on, and determining whether or not this was the object intended

by the task or by robot.

Reaction time was measured for both primary and secondary tasks by logging time stamps

at the moment participants interacted with virtual objects (both blocks and bins). In the

primary task, reaction time was measured as the time between placement of the previous

primary target block and picking of the next primary target block. In the secondary task,

reaction time was measured as the time between the start of Pepper’s utterance and the

placement of the secondary target block.

Perceived mental workload was measured using a NASA Task Load Index (NASA TLX)

survey[43] administered at the end of each experiment block.

Perceived communicative effectiveness was measured using the modified version of the

Gesture Perception Scale [11] previously employed by Williams et al. [16, 72], which was

delivered along with the NASA TLX Survey at the end of each experiment block.
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Figure 3.3 Twelve within-subject conditions (4 workload profiles x 3 communication styles)
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3.7 Procedure

Upon arriving at the lab, providing informed consent, and completing a demographic

and visual capability survey, participants were introduced to the task through both verbal

instruction and an interactive tutorial.

Figure 3.4 Participants were asked to go through the Tutorial before starting the experiment

The tutorial scene provides text and visuals that walk the participant through how a

round in the experiment will function. When the participant starts the tutorial, they see a

panel with text-instructions, a row of blocks, and four bins (Fig. Figure 3.4). Participants

are walked through how to use the HoloLens air tap gesture to pick up blocks and put them

in bins through descriptive text and an animation showing an example air tap gesture, and

informed of task mechanics with respect to both target/non-target bins and temporarily

disabled grey bins. Participants then start to hear syllables being played by the HoloLens.
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When the target syllable teh plays, the target and non-target bins switch. Each bin on screen

is labeled as a ‘target’ or ‘non-target’, in order to help the participant understand what is

happening when the target syllable plays. These labels are only shown in the tutorial and

participants are reminded that they will have to memorize which bins are targets for the

actual game. At the end of the tutorial the participant has to successfully put a target block

in a target bin three times before they can start the experiment.

After completing training, participants engaged in each of the twelve (Latin square coun-

terbalanced) experiment blocks formed by combining the four cognitive load conditions and

the three communication style conditions, with surveys administered after each experiment

block (see Figure 3.3).

3.8 Participants

36 participants were recruited from Colorado School of Mines (31 M, 5 F), ranging in

age from 18 to 32. None had participated in any previous studies from our laboratory.

Each participant went through 12 within-subject rounds/conditions (see Figure 3.3) and

each round took 90 seconds. After every round, participants were asked to take at least 30

seconds to take a break and fill out our subjective survey. Figure 3.5 shows the timeline of

our experiment.

Figure 3.5 Experiment Protocol and Phases
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CHAPTER 4

RESULTS

Data analysis was performed within a Bayesian analysis framework using the JASP

0.11.1 [73] software package, using the default settings as justified by Wagenmakers et al. [74].

For each measure, a repeated measures analysis of variance (RM-ANOVA) [75–77] was per-

formed, using communication style and cognitive load as random factors. Baws factors [78]

were then computed for each candidate main effect and interaction, indicating (in the form of

a Bayes Factor) for that effect the evidence weight of all candidate models including that ef-

fect compared to the evidence weight of all candidate models not including that effect. When

sufficient evidence was found in favor of a main effect, the results were further analyzed us-

ing a post-hoc Bayesian t-test [79, 80] with a default Cauchy prior (center=0, r=
√

2

2
=0.707).

When sufficient evidence was found in favor of an interaction effect, the results were further

evaluated using a series of post-hoc paired-samples t-tests each category of cognitive load.

4.1 Reaction Time

4.2 Secondary Task

Our results provided extreme evidence2 in favor of effects of both communication style

(Bf 3.109e29) and cognitive load (Bf 9.881e9) on secondary task reaction time, as shown

in Figure 4.1 and Figure 4.2, as well as an interaction between communication style and

cognitive load (Bf. 1.160e12) on reaction time, as shown in Figure 4.3.

Post-hoc analysis of the main effect of communication style on secondary task reaction

time revealed significant differences specifically between the use of complex language alone

(µ = 8.116sec, σ = 0.543sec) and both complex language + AR (µ = 7.399sec, σ =

0.610sec, Bf 2.955e21) and simple language + AR (µ = 7.501sec, σ = 0.545sec, Bf 9.396e15),

2Bayes Factors (Bf) above 100 indicate extreme evidence in favor of a hypothesis [81, 82]. Here, for example,
our Baws Factor Bf of 7.024e25 suggests that our data were 7.024e25 times more likely to be generated
under models in which communication style is included than under those in which it is not.
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Figure 4.1 Effect of communication strategy (complex language + AR vs. complex language
vs. simple language + AR) on secondary task reaction time.

Figure 4.2 Effect of workload (Low All) vs. (High Visual) vs. (High Auditory) vs. (High
Working Memory) on participant’s secondary task reaction time.

with anecdotal evidence against a difference between complex language + AR and complex

language alone (Bf = .46 in favor of an effect; 1/.46 = Bf 2.14 against an effect)
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Figure 4.3 Effect of both workload and communication strategy on participant’s secondary
task reaction time.

This yields a preference ordering where complex language < (simple language + AR =

complex language + AR) when cognitive load is not considered.

Post-hoc analysis of the main effect of cognitive load on secondary task reaction time

revealed significant differences specifically between conditions with high auditory perceptual

load (µ = 7.374sec, σ = 0.454sec) and all other conditions, i.e., low overall load (µ =

7.662sec, σ = 0.684sec, Bf 2931.437), high visual perceptual load (µ = 7.765sec, σ =

0.574sec, Bf 283407.874), and high working memory load (µ = 7.887sec, σ = 0.551sec, Bf

1.343e9), as well as between conditions with high working memory load and those with low

overall load (Bf 13.381).

This yields a preference ordering where high auditory perceptual load < ((low overall load

< high working memory load) = high visual perceptual load) when communication style is

not considered.
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Post-hoc analysis of the interaction effect between communication style and cognitive

load on secondary task reaction revealed the following additional findings:

Low Overall Load:

Extreme evidence was found under low overall load between each pair of communication

strategies: simple language + AR (µ = 7.568sec, σ = 0.732sec) vs complex language alone

(µ = 8.195sec, σ = 0.685sec, Bf 8.995e6); simple language + AR vs complex language + AR

(µ = 7.253sec, σ = 0.654sec, Bf 703110.101); complex language alone vs complex language

+ AR Bf 1.281e13.

This yields a preference ordering where complex language alone < simple language + AR

< complex language + AR in the low overall load condition.

High Working Memory Load:

Extreme evidence was found under high working memory load between simple language

+ AR (µ = 7.439sec, σ = 0.565sec) and both complex language alone (µ = 8.240sec,

σ = 0.327sec,Bf 1.080e7) and complex language + AR (µ = 7.988sec, σ = 0.746sec, Bf

2076.594).

This yields a preference ordering where (complex language alone = complex language +

AR) < simple language + AR in the high working memory load condition.

High Visual Perceptual Load

Moderate to extreme evidence was found under high visual perceptual load between

complex language + AR (µ = 7.506sec, σ = 0.456sec) and both complex language alone

(µ = 7.997, σ = 0.747sec, Bf 1449.784) and simple language + AR (µ = 7.781sec, σ =

0.508sec, Bf 5.336).

This yields a preference ordering where (simple language + AR = complex language alone)

< complex language + AR in the high visual perceptual load condition.
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High Auditory Perceptual Load

Extreme evidence was found under high auditory perceptual load between each pair of

communication strategies (simple language + AR (µ = 7.219sec, σ = 0.367sec) vs complex

language alone (µ = 8.050sec, σ = 0.421, Bf 7.374e6); simple language + AR vs complex

language + AR (µ = 6.859sec, σ = 0.560sec, Bf 35.760); complex language alone vs complex

language + AR (Bf 1.126e13).

This yields a preference ordering where complex language alone < simple language + AR

< complex language + AR in the high auditory perceptual load condition.

4.3 Primary Task

Strong evidence was found against any effects of communication style or cognitive load

on primary task reaction time (All Bfs > 20 against an effect). When we plotted the

description plot to observe the accuracy mean of the primary task (Figure 4.4), we noticed

that participants performed the primary task well when they were under low workload. Their

accuracy decreased when other types of mental workload were manipulated. However, the

Bayes Factors determined that these primary task’s results were not statistically significant.

Figure 4.4 Effect of workload on participant’s primary task’s accuracy and reaction time.
Results are not statistically significant
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4.4 Accuracy

Strong evidence was found against any effects of communication style or cognitive load

on primary or secondary task accuracy (All Bfs > 27 against an effect).

4.5 Perceived Mental Workload

Anecdotal to strong evidence was found against any effects of communication style or

cognitive load on perceived mental workload (Bfs between 22.43 and 40.91 against an effect).

Analysis (Figure 4.5) also showed no significant difference between means.

4.6 Perceived Communicative Effectiveness

Anecdotal to strong evidence was found against any effects of communication style or

cognitive load on perceived communicative effectiveness (Bfs between 2.23 and 83.33 against

an effect on all questions). Analysis (Figure 4.6) also showed no significant difference between

means.
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Figure 4.5 Effect of both workload and communication strategy on participant’s perceived
mental workload
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Figure 4.6 Effect of both workload and communication strategy on participant’s perceived
robot’s communication effectiveness
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CHAPTER 5

DISCUSSION AND CONCLUSION

Our results suggest that, although humans may not be aware of differences in their

task time or mental workload when different mixed reality robotic communication styles are

used, or when they are under different types of cognitive load, both of these factors do in

fact influence the speed at which they are able to accomplish tasks.

First, our results suggest that different types of mental workload do, unsurprisingly,

impact task time, with participants under low overall load reacting more quickly than par-

ticipants under high working memory load. What is surprising is that participants under

high auditory load clearly demonstrated the fastest reaction times overall. It is not yet clear

how to interpret this result, but it is possible that this effect is due to individuals generally

responding faster to auditory stimuli that visual [83].

Second, our results suggest, unsurprisingly, that different communication strategies im-

pact task time. In fact, our results exactly match what we observed in previous experi-

ments [72]: participants demonstrate slower reaction times when complex language alone is

used, with no clear differences between simple and complex language when it is augmented

with a mixed reality deictic gesture.

Finally, our results suggest a complex interplay between communication style and cogni-

tive load. Specifically, our results suggest that while using complex language + AR resulted

in the best task time in most workload conditions (an encouraging result given that our

previous work has shown that participants find robots most likeable when they use this com-

munication style [16]), this does not hold true when users are under high working memory

load. Rather, when users are under high working memory load, it is best to use simple

language + AR, to avoid overloading participants.
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Overall, these results support hypotheses H3 and H4, but fail to support hypotheses H1

and H2. Our original expectation was that the differences between communication styles un-

der different cognitive load profiles would primarily be grounded in whether communication

style was overall visual or overall auditory. On the contrary, what we observed is that visual

augmentations are always helpful, and differences in effectiveness between communication

styles depend entirely on whether or not the user is under high cognitive load.

While we observed clear impacts of workload profiles on task time, participants did not

demonstrate any differences in perceived workload or perceived effectiveness. It could be

the case that the differences in reaction time simply were not large enough for participants

to notice: the observed differences were on the order of one second of reaction time when

overall reaction time was around 7.5 seconds. Participants may simply not have noticed a

15% speed increase in certain conditions, or may not have attributed it to the robot.

This could also be the case due to overall task difficulty. Although participants’ TLX

scores had a mean value of approximately 21 out of 42 points in all conditions (i.e., the data

was nearly perfectly centered around “medium” load), analysis of individual performance

trajectories demonstrates that the task was sufficiently difficult that many participants ex-

perienced catastrophic primary task shedding, often immediately after a primary task (likely

due to missing an auditory cue while dealing with a secondary task). As illustrated in Fig-

ure 5.1 - Figure 5.12, task time and task accuracy varied significantly between participants.

All twelve condition plots show similar results to what we observed here. In these figures, the

dark black X markers represent the time the robot started uttering secondary task requests.

The blue X markers represent the time the human successfully placed a secondary target

cube in a secondary target bin. The pink X markers represent the unsuccessful secondary

tasks. As can be seen, most participants performed well on the primary task (resulting in

many green dots) up until immediately after the first or second secondary task request. As

can also be seen, when participants made a mistake, except in cases where the error fell

between secondary task initiation and completion, they often failed to recover from the fail-
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ure. In each of the following figures, we calculated the average and median time participants

took until the first incorrect placement. Most people made mistakes right after the first 22.5

seconds. In every round, we additionally highlighted the top 3-5 highest performers.

Figure 5.1 Visualization of participant performance in the AR + Simple Language / Low All

In condition 1 where participants were under low overall workload and the robot used

AR + Simple language, the following facts were observed:

• 5 participants completed the primary tasks without any errors: [8, 17, 27, 32, 19].

• The average time to the first failed primary task: 26.067 seconds.

• The median time to the first failed primary task: 21.000 seconds.

• The standard deviation to first failed primary task: 18.701 seconds.
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Figure 5.2 Visualization of participant performance in the Complex Language Only / Low
All

In condition 2 where participants were under low overall workload and the robot used

only complex language, the following facts were observed:

• 3 participants completed the primary tasks without any errors: [12, 10, 35].

• The average time to the first failed primary task: 25.606 seconds.

• The median time to the first failed primary task: 22.000 seconds.

• The standard deviation to first failed primary task: 16.413 seconds.
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Figure 5.3 Visualization of participant performance in the AR + Complex Language / Low
All

In condition 3 where participants were under low overall workload and the robot used

AR + Complex language, the following facts were observed:

• 2 participants completed the primary tasks without any errors: [12, 5].

• The average time to the first failed primary task: 23.765 seconds.

• The median time to the first failed primary task: 20.500 seconds.

• The standard deviation to first failed primary task: 15.256 seconds.
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Figure 5.4 Visualization of participant performance in the AR + Simple Language / High
Working Memory Condition

In condition 4 where participants were under high working memory load and the robot

used AR + Simple language, the following facts were observed:

• 4 participants completed the primary tasks without any errors: [17, 12, 33, 32].

• The average time to the first failed primary task: 26.594 seconds.

• The median time to the first failed primary task: 21.000 seconds.

• The standard deviation to first failed primary task: 16.068 seconds.
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Figure 5.5 Visualization of participant performance in the Complex Language Only / High
Working Memory Condition

In condition 5 where participants were under high working memory load and the robot

used complex language only, the following facts were observed:

• 4 participants completed the primary tasks without any errors: [12, 29, 6, 39].

• The average time to the first failed primary task: 28.000 seconds.

• The median time to the first failed primary task: 30.500 seconds.

• The standard deviation to first failed primary task: 13.491 seconds.
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Figure 5.6 Visualization of participant performance in the AR + Complex Language / High
Working Memory Condition

In condition 6 where participants were under high working memory load and the robot

used complex language only, the following facts were observed:

• 5 participants completed the primary tasks without any errors: [12, 33, 32, 35, 2].

• The average time to the first failed primary task: 23.129 seconds.

• The median time to the first failed primary task: 20.000 seconds.

• The standard deviation to first failed primary task: 13.241 seconds.
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Figure 5.7 Visualization of participant performance in the AR + Simple Language / High
Visual Load Condition

In condition 7 where participants were under high visual load and the robot used AR +

simple language, the following facts were observed:

• 3 participants completed the primary tasks without any errors: [12, 10, 30].

• The average time to the first failed primary task: 21.212 seconds.

• The median time to the first failed primary task: 18.000 seconds.

• The standard deviation to first failed primary task: 18.457 seconds.
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Figure 5.8 Visualization of participant performance in the Complex Language Only / High
Visual Load Condition

In condition 8 where participants were under high visual load and the robot used complex

language only, the following facts were observed:

• 4 participants completed the primary tasks without any errors: [28, 12, 34, 5].

• The average time to the first failed primary task: 26.156 seconds.

• The median time to the first failed primary task: 21.000 seconds.

• The standard deviation to first failed primary task: 16.043 seconds.
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Figure 5.9 Visualization of participant performance in the AR + Complex Language / High
Visual Load Condition

In condition 9 where participants were under high visual load and the robot used AR +

complex language, the following facts were observed:

• 5 participants completed the primary tasks without any errors: [8, 12, 14, 2, 26].

• The average time to the first failed primary task: 27.000 seconds.

• The median time to the first failed primary task: 21.000 seconds.

• The standard deviation to first failed primary task: 21.309 seconds.

44



Figure 5.10 Visualization of participant performance in the AR + Simple Language / High
Auditory Load Condition

In condition 10 where participants were under high auditory load and the robot used AR

+ simple language, the following facts were observed:

• 2 participants completed the primary tasks without any errors: [8, 14].

• The average time to the first failed primary task: 25.853 seconds.

• The median time to the first failed primary task: 20.000 seconds.

• The standard deviation to first failed primary task: 16.104 seconds.
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Figure 5.11 Visualization of participant performance in the Complex Language Only / High
Auditory Load Condition

In condition 11 where participants were under high auditory load and the robot used

complex language only, the following facts were observed:

• 4 participants completed the primary tasks without any errors: [12, 9, 39, 20].

• The average time to the first failed primary task: 28.438 seconds.

• The median time to the first failed primary task: 23.000 seconds.

• The standard deviation to first failed primary task: 18.561 seconds.
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Figure 5.12 Visualization of participant performance in the AR + Complex Language / High
Auditory Load Condition

In condition 12 where participants were under high auditory load and the robot used AR

+ complex language, the following facts were observed:

• 4 participants completed the primary tasks without any errors: [23, 32, 35, 14].

• The average time to the first failed primary task: 24.094 seconds.

• The median time to the first failed primary task: 19.000 seconds.

• The standard deviation to first failed primary task: 15.609 seconds.
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The ultimate goal of our research is to enable adaptive mixed reality communication for

human-robot interaction. We presented the first experimental steps towards achieving this

goal. Our results provide critical insights for the future design of our proposed adaptive

system. A limitation with this current study was that participants had to wait until the

round ended in order to use the NASA TLX survey to self-report their workload. This led

to insignificant statistical results. In future work, we plan to complete our integration of the

fNIRS neurophysiological sensor with the current mixed reality robotic architecture, in order

to accurately measure changes in mental workload within experimental conditions, as well

as in task contexts that do not have tightly controlled levels of workload. We further plan

to integrate all three components together with the Distributed Integrated Affect Reflection

and Cognition (DIARC) architecture to leverage its rich natural language understanding and

generation capabilities [84, 85].

Moreover, the relationship between workload and task performance is complex: it is not

always the case that as workload increases performance will decrease [39]. We hope to con-

duct deeper analyses of these trajectories, specifically examining factors such as differences

in task completion speeds and rates of catastrophic primary task shedding across conditions.

As we analyze these metrics and explore other types of visualizations and their properties,

we hope to better understand what kind of tasks and visualizations can be combined to yield

the least drop in task efficiency.

Finally, in future work, we also plan to consider how robots can tailor gestural cues to

be easily discriminable from both background visual stimuli and other task targets without

placing the human teammate at risk of inattentional blindness. Instead of building a passive

system, we plan to build an active robotic system that can be sensitive to both the current

context and the predicted effect of potential choices of communication modality. By designing

such an adaptive system for communication modalities selection using probabilistic modeling

techniques, we strive to give robots the ability to not only capture the human selective

attention but also to tap into the human’s unengaged cognitive resources.
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CHAPTER 6

SOFTWARE ARCHITECTURE

In this chapter, we present a detailed architecture description of our mixed reality robotic

communication system. We built a mixed reality application using the Unity game engine.

Within the Unity application, there are several sub-components that talk to each other

using Unity events and delegates. We developed a robust communication pipeline, as shown

in Figure 6.3, that enabled duplex data transmission between the mixed reality headset

Microsoft HoloLens and the Pepper robot from SoftBank Robotics. Setup involved starting

the WebSocket server on a centralized computer and connecting with the WebSocket client

on the HoloLens and robot sides. After all clients connect to the same WebSocket server, they

are capable of publishing and subscribing to real-time messages to each other via bidirectional

connection.

6.1 Microsoft HoloLens 1

Figure 6.1 The Microsoft HoloLens version 1 [86]

Released in 2016, the Microsoft HoloLens (see Figure 6.1) was the first commercial AR

HMD to enter the market. Unlike other HMDs, the HoloLens does not require an external

tethered device. It features an Intel Atom x5-Z8100 1.04 GHz with four logical processors, a

Holographic Processing Unit (HPU), 2 GB RAM, 64 GB flash, four environment-processing
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camera, one RGB camera, one depth camera, and 2-3 hours of battery life. It projects light

through the holographic lenses using two high definition light engines to generate spatial 3D

content. The HoloLens 1 comes in the box with gaze tracking, gesture input, spatial sound,

and the Cortana virtual assistant [87].

6.2 Unity

Figure 6.2 A Unity Scene of our application

A cross-platform game engine, Unity can be used to quickly prototype and create 2D

and 3D games and simulations. A HoloLens app must be built using the Universal Windows

Platform (UWP). After designing the application in Unity, the rendering platform must be

switched to UWP so that the app can be deployed on the actual headset. To speed up the

development process, Microsoft provides the HoloToolkit, a repository of samples, scripts,

and components for Unity [88]. The first important component that HoloToolkit supports

is Input which manages how users can interact with mixed reality objects using simple hand

gestures, eye gaze, and voice. In our experimental application [88], we leveraged the Input

system so that users can select virtual menu options using an air tap gesture and move
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the virtual blocks into virtual bins using the pinch gesture. Second, the Spatial Mapping

is supported so that the Hololens can keep track of the 3D mesh of the surrounding space

[88]. We anchored the virtual bins into the real world using Spatial Mapping. The third

component is Spatial Sound, which gives the illusion that the sound coming from a virtual

object is positioned in 3D space [88]. To improve the user experience, we added auditory

effects to all virtual objects. With the support of virtual sounds, the participants can easily

localize the source, know when they place something into a bin, experience the auditory load

modulation designed in the primary task, and feel like they interact with real objects.

Because the early purpose of Unity was game development, a lot of crucial elements in

Unity are game oriented [86]. For example, the user of the application is called the player.

The environment of the game is called scene. A simple game or application needs only one

scene. However, a more complex system such as our experimental app requires multiple

scenes which logically divide up several parts of the game/application. Our app consists of

four main scenes: the start menu, the main experiment, the break scene, and the tutorial

scene.

Everything that lives in a scene is called a GameObject [86]. A GameObject can be a 2D

UI canvas, a 3D block, or an empty object without any physical appearance. To make these

GameObjects alive and interactive, we controlled their behaviors using the scripts written in

the programming language C# (pronounced C Sharp) [86]. For example, in order to allow

users to pick up a virtual block, hear an auditory cue, or drop a block into a virtual bin, we

wrote corresponding C# scripts to handle these behaviors. When developing our app, we

wrote most custom scripts based on the samples provided by the HoloToolkit, which tapped

into low-level Unity components such as raycasting to detect which object is being gazed at

and events system to allow different GameObjects to talk to each other.
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Figure 6.3 Overview of our robot mixed reality system architecture

As shown in Figure 6.3, our main experiment scene consists of eight big components, also

known as managers, to manage eight different important tasks happening concurrently.
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6.2.1 Primary Task Manager

The Primary Task Manager allows the experimenter to configure several settings within

Unity’s Inspector panel, including:

• highVisualLoad (boolean): determines whether the visibly virtual blocks should share

a color or a shape.

• blockUpdateDuration (float): determines how often the panel of blocks should be up-

dated.

The backend dynamically maintains two List data structures: blockInventory and block-

sOnScreen. Initially, blockInventory holds all the possible combinations of block’s shapes

and block’s colors. If the experimenter specifies three colors (red, green, yellow) and their

shapes (cube, sphere, cylinder), blockInventory will contain a Cartesian product of nine

blocks. Then, one of these blocks is randomly selected to be the first primary target block.

Eight other non-target blocks are also randomly selected from the inventory. Duplicates are

allowed as long as there is only one instance of the target block displayed to the user. All

nine blocks are then stored in the blockOnScreen list. After every n second (blockUpdate-

Duration), a non-target block is randomly removed from blockOnScreen and replaced by a

different block randomly selected from blockInventory. The primary target block remains

persistent throughout the entire 90 seconds round.

6.2.2 Secondary Task Manager

The Secondary Task Manager works closely with the Primary Task Manager to coordi-

nate the selection of the secondary target block. The experimenter manually sets up the

durationToTriggerTask (float) setting in Unity’s Inspector panel in order to indicate how

often the secondary task should be generated. As shown in Figure 6.4, the robot in our ex-

periment asks the participants every 22.5 seconds within a 90 seconds round. The backend

randomly selects among the blockOnScreen a secondary target block that is different from
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the primary target block. In addition, it randomly selects a secondary target bin among

the visibly accessible bins. Depending the round condition the participant is in, it then

determines whether to show the AR annotation in the participant’s field of view and sends

either a simple or complex sentence to the robot via a WebSocket network pipeline. When

the robot receives the message over Websocket, it then asks the users to place the secondary

target block into a new bin. When the robot requests the participant to pick up a new

secondary target block and place it into a new target bin, the Secondary Task Manager

informs the Primary Task Manager to skip replacing the secondary task target block with a

new random block. While the robot is speaking, the Secondary Task Manager also asks the

Sound Manager to pause reading the syllables aloud so that the participant hears only one

stream of audio.

Figure 6.4 Primary and Secondary Tasks in One Game Round

6.2.3 Experiment Manager

The Experiment Manager oversees all other submanagers and acts as a liaison. Figure 6.2

shows the Unity’s Inspector view of the Experiment Manager. With direct references to

the Primary Task Manager, the Secondary Task Manager, the Bin Manager, the Network

Manager, and the Sound Manager, the Experiment Manager ensures the game can only start

when all resources are loaded. The experimenter can set up global settings such as Debug

Mode, Timer Visibility, Data Logging, Game Quitting/Pausing, and Condition Setup. Since
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the participant’s primary task is made up of a set of 12 within-subject rounds/conditions,

with their order counterbalanced using a Latin square design, the Experiment Manager

passes on the conditional settings from the main menu to all other managers.

6.2.4 Bin Manager

The Bin Manager manages all logic related to virtual bins. Experimenters can toggle the

High Working Memory boolean to change the number of bins displayed to the participants.

It holds a List data structure of custom BinObjects. Each binObject holds metadata such as

binValid (boolean) to denote target bins, isGreyedOut (boolean) to denote bin accessibility,

and secondaryTaskBin (boolean) to denote a secondary target bin. The Bin Manager serves

three main functions:

1. Randomly flipping the validity of the bins

As mentioned in Chapter 3.5, the HoloLens plays the sound of syllables at every l sec-

ond(s) to manipulate the auditory load. Whenever the target syllable {consonant ∈

{b, t, k}, vowels ∈ {ah, eh, oh}} is played, all of the acceptable bins flip to the unac-

ceptable status and vice versa. When the Sound Manager plays a target syllable, it

will call the Bin Manager to turn all target bins into valid and invalid bins into the

new targets.

2. Randomly selecting bins for the secondary task

When the Secondary Task Manager needs to generate a new request, it will call the

Bin Manager to randomly determine a secondary target bin which is 1) accessible (not

greyed out), and 2) not the same as the previous secondary target bin.

3. Randomly greying out bins

For every n second(s) as set up by the experimenter, a bin is randomly greyed out to

make the dual-tasks more challenging. This function is leveraged by both the Primary

Task Manager and the Secondary Manager. Whenever it is called, it will select a bin
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that is 1) not the currently greyed out bin (isGreyedOut =̄ False), and 2) not reserved

as the secondary target bin (secondaryTaskBin == False).

6.2.5 Network Manager

WebSocket connection acts like a byte-stream-bidirectional TCP link between client and

server established in an HTTP Send-Receive cycle [89]. Windows UWP provides low-level

socket abstraction called Windows.Networking.Sockets.

Figure 6.5 Websocket Communication

Building a custom class on top of it, we implemented custom WebSocket interfaces, in-

cluding OnStart (what the app should first do when a connection is established), OnMessage

(how the app should process message sent by the other node), OnApplicationQuit (how the

app should properly save all data before closing the socket on the device), SendMsgToSub-

scriber (how the receivers should receive the message). This custom class is the backbone of

the Network Manager, and is also modularized to allow other submanagers to easily reference
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it. The Network Manager allows our app to connect to any computer that uses the same

WebSocket protocol and has the ws:/xxx.xxx.xxx:8000/ format. Users can set up the new

address they want the HoloLens to connect to within the start menu of the device as shown

in Figure 6.6. Figure 6.5 shows our app’s ability to send and communicate with a Webserver

(this can be written in any programming languages). The WebServer then processes the

messages and forwards the appropriate commands to the robot.

Figure 6.6 A setting scene to set up the WebSocket connection
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6.2.6 Data Collection Manager

Figure 6.7 Data collected after an experiment

The Data Collection Manager manages the event logging during an experiment. When

the app initializes a new round, the Data Collection Manager produces a text file on the

HoloLens with the format datetime LatinSquareCondition.txt (see Figure 6.7).
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As the participant plays our game, the Data Collection Manager logs:

1. Primary Task Event

2. Primary Task’s Bins switch-up

3. Secondary Task Event

4. Latin Square Condition

Since a participant has to go through all twelve within-subject rounds, twelve log files

are recorded per participant.

6.2.7 HololensARToolkit

Azimi et al. [90] interfaced the open-sourced, 10 year-old, native ARToolkit library to

the Universal Windows Platform, enabling fast marker tracking in HoloLens. They called

it HoloLensARToolKit v0.2. The library supports rendering at 45-60 frames per second,

video capture at 30 frames per second, and tracking at 25-30 frames per second performance

[90]. After a short pilot of the experiment, we found that enabling continuous tracking

significantly reduced the application performance and frame rate to 20 fps. Since our study

tried to measure the human’s task time as well as their perception of the task, we looked

into various ways to improve the user experience. We then modified the HoloLensARToolKit

source code to stop the tracking after successfully recognizing the correct number of markers.

After finding the real-world coordinates of four markers (for low working memory load) and

six markers (for high working memory load), the app leverages the HoloToolkit’s component

WorldAnchorStore to save the markers. Spatial Anchors on the first run. The players can

only continue playing the game if they have looked around the environment and saved all

anchors. Then in the following rounds, the app simply reloads the markers’ positions and re-

renders the virtual bins on top of those markers without relying on the HoloLensARToolKit.

As shown in Figure 6.8, six bins were recognized. The Bin Manager was also informed to
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randomly select the primary task’ target bins and randomly grey out a bin. This approach

allowed us to consistently hit 60 fps during the twelve rounds of the experiment.

Figure 6.8 HoloARToolkit

6.2.8 WebServer

Our WebSocket server is a TCP application which listens to any server port. For fast

prototyping we first implemented the server in Python. We later implemented a WebSocket

server in Java using the Java Web Sockets open source JSR-356 API and Glassfish to improve

compatibility with our lab’s Distributed Integrated Affect Reflection and Cognition (DIARC)

architecture. As the project progresses, we will leverage DIARC’s affect processing and deep

natural language processing features [84].
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6.2.9 Robot Integration

The WebServer was built as a multithreaded application. As shown in Figure 6.9, there

are three key components to make robot integration successful:

Figure 6.9 WebServer and Naoqi Robot Integration

1. The Main Thread

The main thread runs in an infinite loop and looks for new messages that come from

the Websocket port. All incoming messages are then parsed and categorized into

appropriate tasks (for instance, making the robot talk, making the robot move its

arm, etc.). Then, these processed tasks are enqueued into a thread-safe queue.
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2. The Worker Thread

The Worker Thread also runs in an infinite loop and has shared access to the thread-

safe queue of the successfully processed tasks. For every iteration, the Worker Thread

calls queue.get() to fetch a new task from the thread-safe queue. It blocks until there is

something in that queue. After dequeueing a task, the Worker Thread determines the

appropriate robot API that can handle it and then dispatches the task to that robot

component. After a finished task, the Worker Thread signals to the queue that the

task is done.

3. The Naoqi Components

The tasks from the shared queue are dispatched asynchronously to the appropriate

Naoqi API (e.g., ALTextToSpeech, ALBehaviorManager, ALRobotPosture) such that

multiple tasks can be performed in parallel, such as text-to-speech and the robot’s

limb control. If such activities are carried out synchronously, the robot must execute

them sequentially (e.g., stand up and then say “Hello World”) which is an unnatural

behavior. In addition, we implemented a simple algorithm to prevent waiting tasks

from stacking up in the system memory. For example, if the amount of requests

happens too quickly (e.g. more than ten requests per second) but each request takes

2-3 seconds for the robot to complete, the system will crash due to a large number

of threads consuming the resources. This safety mechanism ensures long-term, non-

disruptive interaction and adaptation.

6.2.10 Potential Integration with FNIRS

As these mental load profiles may dynamically change within or between tasks, we argue

that an adaptive system is needed, which can be sensitive to both the current context and

the predicted effect of potential choices of communication modality. Therefore, we are in the

process of designing another human-subject experiment in which we can measure the partic-

ipants’ physiology in real time instead of relying on the subjective TLX survey. The fNIRS
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component, developed by our collaborator, Dr. Leanne Hirshfield and team, at the Univer-

sity of Colorado at Boulder, handles raw data from sensor and outputs a multilabel vector

consisting of four labels (workload, negative affect, auditory perceptual load, and visual

perceptual load) from a multilabel long short-term memory (LSTM) classifier every second.

Figure 6.10 demonstrate a potential integration. After our collaborator finishes the tedious

experiment and model training, we will then connect our server with their sensor to finish

the pipeline. This is still a work in progress. Then we plan on developing such an adaptive

model for communication modality selection using probabilistic modeling techniques.

Figure 6.10 Potential integration between fNIRS and our system
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