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Abstract. We investigate the effectiveness of robot-generated mixed re-
ality gestures. Our findings demonstrate how these gestures increase user
effectiveness by decreasing user response time, and that robots can pair
long referring expressions with mixed reality gestures without cognitively
overloading users.

1 INTRODUCTION

HRI researchers have sought to enable robots to understand [4] and generate [6,
5] deictic gestures as humans do. But even for armed robots, traditional deictic
gestures have limitations. In search and rescue, for example, robots may need
to communicate about hard-to-describe and/or highly ambiguous referents. We
present a mixed reality solution that enables robots to generate effective mixed
reality deictic gestures (MRDGs) without morphological requirements.

Per Hirshfield et al. [2], the tradeoffs between language and visual gesture
may be highly sensitive to teammates’ level and type of cognitive load. It may
not be advantageous to rely on visual communication in contexts with high visual
load, or to rely on linguistic communication in contexts with high auditory or
working memory load. These intuitions are motivated by prior theoretical work
on human information processing, including Wickens’ Multiple Resource Theory
(MRT) [7, 8]. In this paper, we thus also present the first exploration of mixed
reality communication under different levels and types of cognitive load.

2 Experiment

We experimentally assessed whether different robot communication styles im-
prove user task performance under four conditions: high visual perceptual load,
high auditory perceptual load, high working memory load, and low overall load.
On the assumption that there are different perceptual resources, and that MRDGs
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Fig. 1. Participants play a mixed reality game using the Microsoft HoloLens. The
Pepper robot interacts with them from behind a table.

employ visual-spatial resources in accordance to MRT, we specifically tested four
hypotheses, which formalize the intuitions of Hirshfield et al. [2].
H1 Users under high visual perceptual load will perform quickest and most
accurately when robots use complex natural language without MRDGs.
H2 Users under high auditory perceptual load will perform quickest and most
accurately when robots use MRDGs without using complex natural language.
H3 Users under high working memory load will perform quickest and most
accurately when robots use MRDGs without using complex natural language.
H4 Users under low overall load will perform quickest and most accurately
when robots use MRDGs paired with complex natural language.

2.1 Experimental Context

Participants interacted with a language-capable robot while wearing the Mi-
crosoft HoloLens over a series of trials, with robot communication style and user
cognitive load varied between trials. We employed a dual-task paradigm in a
tabletop pick-and-place task. Participants view the primary task through the
Microsoft HoloLens, allowing them to see virtual bins overlaid over mixed real-
ity fiducial markers, and a panel of blocks that changes every few seconds (Fig.
1). The Pepper robot is positioned behind the table, ready to interact.

2.2 Experimental Task

Primary Task: The user’s primary task is to watch the block panel for a target
block: a red cube, red sphere, red cylinder, yellow cube, yellow sphere, yellow
cylinder, green cube, green sphere, or green cylinder . These blocks were formed
by combining three colors with three shapes. When participants see the target
block, their task is to place it into any of a particular set of bins. For example,
the robot might tell a user that whenever they see a red cube they should place
it in bins two or three. Two factors increase the complexity of this primary
task. First, at every point during the task, one random bin is unavailable and
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greyed out. This forces users to remember all target bins. Second, to create a
demanding auditory component to the primary task, the user hears a series of
syllables playing in the task background, is given a target syllable to look out
for, and is told that whenever they hear this syllable, the target and non-target
bins are switched.

Secondary Task: Three times per experiment trial, the participant encoun-
ters a secondary task, in which the robot interrupts with a new request to move
a block to a bin. Depending on trial condition, the robot’s spoken request may
be accompanied by a mixed reality gesture.

2.3 Experimental Design

We used a Latin square counterbalanced design with two within-subjects factors:
Cognitive Load (4 loads) and Communication Style (3 styles).

Cognitive Load
Cognitive load was manipulated through our primary task. Following Beck and
Lavie [3], we manipulated cognitive load by jointly manipulating memory con-
straints and target/distractor discriminability, producing four load profiles: (1)
all load low, (2) high working memory load, (3) high visual perceptual load, and
(4) high auditory perceptual load.

Working memory load: In the high working memory load condition, par-
ticipants had to remember the identities of three out of six visible bins, producing
a memory load of seven items: three target bins, target block color and shape,
and target syllable consonant and vowel. In all other conditions, participants
only had to remember the identities of two out of four visible bins, producing a
total memory load of six items.

Visual perceptual load: In the high visual perceptual load condition, the
target block was always difficult to discriminate, sharing one common property
with all distractors. For example, if the target block was a red cube, all distractors
were red or cubes (but not both). In the low visual perceptual load condition, the
target block was always easy to discriminate, sharing no common properties with
any distractors. For example, if the target block was a red cube, no distractors
were red or cubes.

Auditory perceptual load: Auditory perceptual load conditions followed a
similar structure to visual perceptual load conditions. For example, if the target
syllable was kah, in the high load condition all distractors started with k or end
with ah (but not both), and in the low load condition no distractors started with
k or end with ah.

Communication Style
Communication style was manipulated through our secondary task, following
Williams et al. [9]: (1) In blocks using complex language (CL), the robot
referred to objects using full referring expressions needed to disambiguate those
objects (e.g., “the red sphere”). (2) In blocks using MR + CL, the robot
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referred to objects using full referring expressions paired with a MRDG (e.g., an
arrow drawn over the red sphere). (3) In blocks using MR + simple language
(SL), the robot referred to objects using minimal referring expressions (e.g.,
“that block”), paired with a MRDG. We didn’t examine SL without MR, as that
communication style typically does not enable referent disambiguation, requiring
the user to ask for clarification or guess at random.

2.4 Measures

Accuracy was measured for both tasks by logging which objects participants
clicked on, determining whether these were intended by the task or robot, and
whether they were placed in the correct bins.
Response time (RT) was measured by logging when participants interacted
with blocks and bins. In a primary task, when participants see a target block,
their task is to pick-and-place it into a particular set of bins. Thus, RT was mea-
sured as delay between when the target block is displayed and when placement
is completed. In the secondary task, RT was measured as time between start of
Pepper’s utterance and placement of the secondary target block.
Perceived mental workload was measured using the NASA TLX[1].
Perceived communicative effectiveness was measured using the modified
Gesture Perception Scale [6] employed by Williams et al. [9], which assesses
effectiveness, helpfulness, and appropriateness of communication.

2.5 Participants and Procedure

36 participants were recruited from Mines (31 M, 5 F), aged 18-32. After pro-
viding informed consent and completing demographic and visual capability sur-
veys, participants were introduced to the task through verbal instruction and
an interactive tutorial. Participants then engaged in the twelve (Latin square
counterbalanced) trials formed by combining the four cognitive load conditions
and the three communication style conditions, with surveys after each block.

3 Results

Bayesian repeated measures analyses of variance (RM-ANOVA) with Bayes In-
clusion Factor analyses were performed, using communication style and cognitive
load as random factors. A log transformation was applied to all RT data.
Response Time: We found strong evidence against effects on primary task
RT (BFs <0.028), but strong evidence for an effect of communication style
(BFIncl=17.86) on secondary task RT. Post-hoc analysis revealed extreme ev-
idence (BF=601.46) for a difference in RT between CL (µ = 2.10, σ = 0.33;
untransformed µ = 8.88 seconds, σ = 4.07 seconds) and MR + CL (µ = 1.96,
σ = 0.32; untransformed µ = 7.78, σ = 3.88), weak evidence (BF=1.55) for a
difference in RT between CL and MR + SL (µ = 2.01, σ = 0.44; untransformed

4 ICSR2021, 037, v2 (final): ’Robot-generated Mixed Reality Gestures Improve Human- . . .



Robot-generated Mixed Reality Gestures Improve Human-Robot Interaction 5

µ = 8.76, σ = 6.20), and moderate evidence (BF=0.20) against a difference
between MR + CL and MR + SL.
Accuracy: Strong evidence was found against effects on primary or secondary
task accuracy (All BFsIncl<0.033 for an effect). Mean primary task accuracy was
0.71 (σ = 0.26). Mean secondary task accuracy was 0.98 (σ = 0.07).
Perceived Mental Workload: Strong evidence was found against effects on
perceived mental workload (BFIncl between 0.006 and 0.040 in favor of an effect).
Most participants’ perceived workload indicated “medium load”.
Perceived Communicative Effectiveness: Anecdotal to strong evidence was
found against any effects on perceived communicative effectiveness (BFIncl be-
tween 0.05 and 0.12 in favor of an effect on all questions). Participants’ perceived
communicative effectiveness had a mean of 5.61 out of 7 (σ = 1.21).

4 Discussion and Conclusion

We examined the effectiveness of different combinations of language and MRDG
under different types of mental workload, through a mixed-reality robotics labo-
ratory experiment. Our results suggest the primary benefit of MRDGs in robot
communication is increasing secondary task speed by reducing visual search time
(especially when paired with complex language) regardless of mental workload.
However, our results failed to support our hypotheses. While we expected dif-
ferences between communication styles based on workload, we observed that
visual augmentations may always be helpful for a secondary task, regardless
of workload. Furthermore, we found no effects on perceived workload or per-
ceived effectiveness. The differences in participants’ own secondary RTs might
have been too small for participants to notice, or participants may have only
considered their primary task when reporting their perceptions.
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