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Abstract—Language-capable robots require moral competence,
including representations and algorithms for moral reasoning and
moral communication. We argue for an ethical pluralist approach
to moral competence that leverages and combines disparate
ethical frameworks, and specifically argue for an approach to
moral competence that is grounded not only in Deontological
norms (as is typical in the HRI literature) but also in Confucian
relational roles. To this end, we introduce the first computational
approach that centers relational roles in moral reasoning and
communication, and demonstrate the ability of this approach
to generate both context-oriented and role-oriented explanations
for robots’ rejections of norm-violating commands, which we
justify through our pluralist lens. Moreover, we provide the first
investigation of how computationally generated role-based expla-
nations are perceived by humans, and empirically demonstrate
(N=120) that the effectiveness (in terms of of trust, understanding
confidence, and perceived intelligence) of explanations grounded
in different moral frameworks is dependent on nuanced mental
modeling of human interlocutors.

Index Terms—Robot Ethics, Confucian Ethics, Moral Commu-
nication

I. INTRODUCTION

For language-capable robots to be successfully deployed,
they require moral competence [1] (i.e., capabilities of rea-
soning, acting and communicating in accordance with a moral
system) to avoid negatively impacting human moral ecosys-
tems [2]. This is critical not only in contexts where robots
pose risks of physical harm, like factory contexts and space
exploration, but also in contexts where robots pose risks
of emotional harm, like eldercare and childcare. Moreover,
without careful design, robots stand to negatively impact
the beliefs, desires, and intentions of interactants in morally
consequential ways. A number of HRI studies have shown that
robots have significant persuasive power, and that interactants
regularly comply with robots’ commands and requests [3], [4],
[5]. Moreover, recent work has shown that robots can exert
moral influence over the systems of moral norms that govern
interactants’ behavior [6], [7], [8].

Malle and Scheutz suggest that four key criteria are required
for moral competence: (1) a system of moral norms (2) norm-

This work was supported in part by NSF grants IIS-1909847 and IIS-
1849348.

Fig. 1. Experimental Contexts. We compared four norm violation responses
across four contexts, in each of which the robot played fundamentally different
roles, and bore fundamentally different role-obligations. The images shown
above depict frames from videos shown to participants during this experiment.
Each image depicts an Action explanation used in a different context.

driven moral cognition to generate emotional responses to
norm violations and make moral judgements, (3) norm-driven
moral decision making and action, and (4) norm-driven moral
communication to generate morally sensitive language for
explaining one’s actions and regulating others’ behaviors [1],
[9]. Due to this focus on norms, recent approaches to achieving
robotic moral competence [1] have predominantly relied on
norm-driven Western ethical theories such as deontology,
which center adherence to universalizable moral rules.

HRI researchers have argued, however, that our community
needs to go beyond these ethical theories, and embrace a
wider diversity of moral philosophies from disparate global
cultures [10]. This is important (1) so that robots can intelli-
gently operate within different cultures within an increasingly
interconnected, globalized world [11], [10]; (2) so that robot
designers can center cultures whose perspectives have been
historically excluded from robot interaction design (e.g., as
part of decolonial [12] or anti-racist [13] computing projects).
Moreover, through this lens of ethical pluralism [11], it
is important not only to consider different cultures’ ethical
frames separately, but also to create robots that simultane-



ously leverage multiple ethical theories as part of their moral
reasoning processes.

Recent HRI research seeking to embody an ethical pluralist
approach has explored what robotic moral competence might
look like through the lens of an Eastern ethical tradition
— Confucian Role Ethics [14], [15], [2], [10], [16], [17],
which argues that moral norms are derived from the social
roles humans assume and the relationships humans have with
others [18]. Two of the key elements of Confucian Role Ethics
are (1) a focus on roles and relationships rather than norms
(although those roles certainly come with normative expecta-
tions), and (2) a focus on the cultivation of the moral self in
concert with others, including the responsibility to help others
grow virtues in social interactions (rather than merely avoiding
unethical behavior). This centering of relational and social
context in moral domains has three key implications for HRI
researchers. First, while norm-centering theories emphasize
only the need for robots to adhere to and communicate rules
of right and wrong, role-centering theories further emphasize
the need for robots to adhere to and communicate their
role obligations (cf. [16], [17], [15]). Second, while norm-
centering theories emphasize the need for robots to explain
their moral reasoning so as to avoid inappropriate blame, role-
centering theories moreover emphasize the need to use moral
communication to help others cultivate their moral selves
(cf. [2]). And third, while norm-centering theories emphasize
the need to resolve conflicts between conflicting moral norms,
role-centering theories moreover emphasize, we argue, the
tension between moral and social norms (cf. [19], [20]).

These perspectives motivate an approach to moral commu-
nication — especially when responding to norm violations —
that is at least partially role-based. As such there has been
recent work theoretically [14], [2], [10] and empirically [16],
[17], [15] investigating the benefits of role-grounded robotic
moral communication. However, most computational work on
generating norm violation responses (such as command rejec-
tions [21]) has been grounded solely in norms and the non-
relational contexts in which those norms are activated [22],
[23], [24] (cp. [25], [26]). And while some computational
approaches have recently been proposed in theory [14], [27],
there have been no previous approaches that have actually
implemented or evaluated computational systems for role-
based or hybrid moral reasoning and moral communication.

In this work, we thus present (1) a set of knowledge
representations for encoding role-based relational norms, (2)
an algorithm for reasoning using those norms and how to
communicate the results of that reasoning process in norm-
context- and role-grounded ways, and (3) empirical evidence
for how the different forms of explanation enabled by this
system practically impact observers’ trust, understanding con-
fidence, and perceptions of robot intelligence.

II. RELATED WORK

A. Confucian Role Ethics

Confucian Ethics focuses on cultivating virtues through
effortful fulfillment of and reflections on one’s communal

roles in relation to others [28]. Through this lens, virtues
are cultivated via interactive social relationships in which
participants play specific social roles [29]. Confucian Ethics
thus theorizes cardinal relational roles (e.g., parent-child) for
human-human interaction [30], and that to be a good person
is to meet the moral obligations derived from one’s communal
roles and to consciously reflect on one’s role-relationships and
encourage others to do the same [31]. Confucian ethics has
been theorized in multiple ways, including as a Care Ethic
(which emphasizes relationships with others [32]), a Virtue
Ethic (which emphasizes the cultivation of virtues [33]), and
a Role Ethic (combining these two perspectives [34]).

Williams et al. [14] demonstrate how Confucian Role
Ethics (CRE) can be used in robotics in three ways. First,
CRE can inform how a robot acts, implicitly, through CRE-
theoretic design guidelines [35]. Second, CRE can motivate
Role-theoretic alternatives to traditional models of robotic
moral competence (e.g., [1]), and could, in theory, inform
Role-theoretic approaches to moral reasoning grounded in
robot-oriented alternatives to Confucian Cardinal Relation-
ships (e.g., supervisor-subordinate, adept-novice, teammate-
teammate, and friend-friend) [36]. Finally, CRE can inform
robot moral communication [16], [17], [15]. In this paper, we
consider these second and third approaches.

B. Robot Explanation

Explanation has recently attracted significant attention in the
HRI community. Most of this work has focused on a robot’s
actions, as opposed to the roles and contexts that permit, ob-
ligate, or forbid those actions. Hayes et al. [37] used function
annotation to explain robot controller policy in a conveyor
belt application. Chakraborti et al. [38] proposed a method
for explaining differences in mental models. Zhu and Williams
[39] found that participants trusted robots more if explanations
were given before a robot’s actions. A variety of approaches
have been used for explanation generation, including encoder-
decoder approaches [40] and behavior trees [41].

To enhance these approaches, HRI researchers have re-
lied on models of human explanation from psychology [42].
de Graaf and Malle[43] propose, for example, that robot
explanations should adhere to the conceptual and linguistic
frameworks of human explanation. de Graaf and Malle[44]
later refine this claim, showing that robots are expected to
rely more on rationality than emotion in their explanations.
Recently, Stange and Kopp [45] demonstrated how human-
inspired explanations of robots’ inappropriate behavior en-
hanced users’ perceptions of those robots. In our work, we
focused on explanations that do not excuse, but rather call
out, norm violations.

C. Norm Violation Response and Command Rejection

HRI researchers have recently argued that robots may need
to call out norm-violating behavior [46], [47] and reject
commands, request, and suggestions that are impermissible
on ethical grounds [21], [6]. Moreover, Jackson et al. [19]
(see also [48]) emphasize that the way a command is rejected



matters; an argument that Kim et al. [16], [17] investigate by
comparing command rejections grounded in different ethical
theories (see also [15]). Much of this work, however, is
empirical rather than computational.

In contrast, researchers like Charisi et al. [49] have explored
how robots might algorithmically generate transparent com-
mand rejections on ethical grounds. These works have recently
been extended to account for key aspects of social context, by,
e.g., Briggs et al. [21], [25], who use an approach that focuses
on the pragmatic criteria used to rank different explanations,
and Jackson, Li, et al., who focus on the use of formal
planning methods to precisely identity the precise reasoning
for rejection [22] (see also [23], [24], [25], [26]). These ap-
proaches, however, are largely grounded in deontology and in
concerns regarding the rightness and wrongness of the action
itself. To the best of our knowledge, there has been no prior
computational work grounded in a role-theoretic approach.
In this work, we thus ask two key questions: (1) How can
moral reasoning and communication grounded in role ethics
be realized in interactive robotic systems? (2) Regardless of
the philosophical grounding of such an approach, how is this
reasoning and communication practically received by humans?

III. TECHNICAL APPROACH

In this section we define a role ethics theoretic approach to
robotic moral competence. Building on definitions of moral
competence presented by Malle and Scheutz [1], Williams et
al. [14] previously suggested that a Confucian Role Ethics
theoretic account of moral competence would require: (1)
representations of the relations that hold between humans and
robots in the robot’s environment (including itself) and the
roles actors (including the robots) play in those relationships;
a (possibly normative) way of specifying the actions viewed as
benevolent (or not) with respect to those roles, and language
and concepts that can be used to communicate about those
roles and relationships; (2-3) role-sensitive mechanisms for
using those representations for moral reasoning and moral
decision making; and (4) the ability to communicate about
said reasoning and decision making on role-based grounds.
Accordingly, we present a set of role-theoretic knowledge
representations that fit these requirements, and demonstrate
how they can be used for role-based moral reasoning and
communication.

A. Role-based Knowledge Representations

The role-based perspective argues that humans are relational
and assume different societal roles [50], [34], and that moral
responsibilities can be prescribed by the role one assumes in
a specific relationship with someone else in a concrete con-
text [51]. This perspective suggests three types of knowledge
representations for role-based moral reasoning and moral com-
munication: representations for relational roles, representations
for contextual information, and representations that specify
moral responsibilities predicated on those relational roles and
concrete contexts (what Wen et al. [15] and Zhu et al. [10]
refer to as role norms or role-based relational norms).

Representing Roles and Relationships
We represent social relationships as a graph G = (V,E),
with a set of vertices V and a set of edges E. The vertices,
V = {v0, . . . , vn}, denote the moral actors A = {a0, . . . , an}
known to the robot (including itself), and each edge ei,j ∈ E
between vertices vi and vj represents a relationship known
to hold between the agents ai and aj denoted by vi and
vj . Each edge ei,j is labeled with a relational role set
Ri,j = {r0, . . . , rn}, where each rk denotes a pair of relational
roles that hold between ai and aj . Role norms takes the form:

Rel(ai, aj , Rolei, Rolej)

where Rel denotes the relationship, ai and aj denote the
two agents with that relationship, and Rolei and Rolej de-
note the roles that agents ai and aj play in this relation-
ship. For example, the following relational role denotes a
teacher-student role between a Nao robot and a student Jesse:
Rel(Nao, Jesse, Teacher, Student).
Representing Concrete Contexts
Contextual constraints that need to be assessed for role-based
moral reasoning are represented as predicates stored in a
symbolic knowledge base KB.
Representing Role-based Relational Norms
Using the above, we now define our role-based relational norm
representations. From the role ethics theoretic perspective, we
introduce a role-based design schema with four elements: (1)
an action, including who is the actor and who is the patient
(the person who is affected by this action); (2) a context in
which the role-norm holds; (3) a relationship precondition
between the actor and the patient; (4) a deontic operator from
{O,P,F} indicating that the action is obligatory, permissible
or forbidden [52]. Thus, a role-based relational norm N can
be represented as an expression of the form:

N := C ∧Rel(ai, aj , Rolei, Rolej)⇒ DAct(a, γ)

where C represents a set of contextual conditions;
Rel(ai, aj , Rolei, Rolej) is a relationship between agents
ai and aj with relational roles Rolei and Rolej ; D is a
deontic operator; and Act(a, γ) represents an action with
an actor a ∈ {ai, aj} and course of action γ. For example,
the role-based relational norm “a teacher should not give a
student answers while the student is taking an exam” can be
represented as:
taking exam(aj) ∧ Rel(ai, aj , T eacher, Student) ⇒
FAct(ai, give answer(ai, aj))

B. Role-based Moral Decision Making

For decision making, we define a norm base NB, which
is a set of role-based relational norms, and a knowl-
edge base KB, which contains a set of predicates (e.g.,
taking exam(Jesse)) representing contexts, roles, and rela-
tionships. Algorithm 1 shows how to reason about whether
an action Act(a, γ) is forbidden and, if so, what are the
violated role-norms. Algorithm 1 takes an action Act(a, γ),
a knowledge base KB, and a norm base NB, and returns
a possibly empty subset of norms from the norm base NB



Algorithm 1: checkIfForbidden
Input: Act(a, γ) // an action under consideration
Input: KB,NB // a knowledge base and norm base

1 return {N ∈ NB | N.D == F
∧N.Act(a, γ) == Act(a, γ) ∧N.C(Act(a, γ)) ∈ KB
∧N.Rel(Act(a, γ)) ∈ KB}

that match the following criteria: (1) they have the deontic
operator “forbidden”; (2) their action matches Act(a, γ); (3)
their context and role/relationship predicates, when bound with
the values from Act(a, γ), are true in the knowledge base KB.

C. Role-based Moral Communication for Norm Violation

The role-based design schema holds the information needed
not only to perform role-based moral reasoning, but also to
generate role-based responses to norm violations. In this study,
we examine four types of noncompliance explanations (τ ):

1) Action Explanation (A): This strategy uses explanations
based only on action permissibility, without providing any
other information. For example, if the Nao robot from the
previous example were asked by Jesse “Can you give me the
answer to Question 7”, a response grounded in this strategy
would be: “I cannot give you the answer”.

2) Contextual Explanation (C): This strategy uses expla-
nations based on both action permissibility and pertinent
contextual information. For example, if the Nao from the
previous example were asked by Jesse “Can you give me the
answer to Question 7”, a response grounded in this strategy
would be: “I cannot give you the answer because you are
taking an exam and I should not give you the answer while
you are taking an exam”.

3) Role Explanation (R): This strategy uses explanations
based on both action permissibility and pertinent role informa-
tion. For example, if the Nao robot from the previous example
were asked by Jesse “Can you give me the answer to Question
7”, a response grounded in this strategy would be: “I cannot
give you the answer because you are my student and a good
teacher should not give their student answers”.

4) Contextual Role Explanation (CR): This strategy uses
explanations based on action permissibility, pertinent contex-
tual information, and pertinent role information. For example,
if the Nao robot from the previous example were asked by
Jesse “Can you give me the answer to Question 7”, a response
grounded in this strategy would be: “I cannot give you the
answer because you are taking an exam and you are my
student and a good teacher should not give their student
answers while the student is taking an exam”.

We encoded our norm representations in SWI-Prolog [53]
to perform the role-based reasoning and convert the results of
that reasoning into JSON strings from which a template-based
text realization system can generate explanations.

IV. EVALUATION

As described in the previous section, the four types of
explanations that can be generated using our approach are

action, contextual, role, and contextual role. To understand the
effectiveness of these explanations and how relational context
mediates the effectiveness of explanations, we conducted an
online human-subject study (N=120).

A. Experimental Context

To assess the effectiveness of these explanation strategies
across relational contexts, we created 16 video stimuli, filmed
in four different relational contexts (see Figure 1), using four
explanation strategies. In each video, a human gives a robot
a role-norm violating command, and the robot responds using
one of the four explanation strategies. The four role-norm
violating commands were chosen to represent four distinct
categories of relational roles from the taxonomy presented by
Williams et al. [14]. The responses to these commands were
generated by our algorithms, with minor cosmetic changes to
a few responses.

1) Context 1: The Office: In this context, the human
was shown requesting a violation of a supervisor-subordinate
norm. Specifically, A human was shown asking a robot “Can
you tell Riley to take out the trash?” to which the robot
responded with either: (1) an action explanation: “I cannot
assign tasks to Riley.” (2) a contextual explanation: “‘I cannot
assign task to Riley because I’m in the workplace and I should
not give commands to Riley while I’m in the workplace.” (3)
a role explanation: ‘I cannot assign tasks to Riley because
Riley is my supervisor and a good subordinate should not
give commands to their supervisor.” or (4) a contextual role
explanation: “I cannot assign tasks to Riley because I am
in the workplace and Riley is my supervisor and a good
subordinate should not give commands to their supervisor
while they are in the workplace.”

2) Context 2: The Exam Room: In this context, the human
was shown requesting a violation of a adept-novice norm.
Specifically, a human was shown asking a robot “Can you
give me the answer to question 7?” The robot responded with
either: (1) an action explanation: “I cannot give you the
answer.” (2) a contextual explanation: “I cannot give you
the answer because you are taking an exam and I should not
give you the answer while you are taking an exam.” (3) a role
explanation: “I cannot give you the answer because you are
my student and a good teacher should not give their student
answers.” or (4) a contextual role explanation: “I cannot give
you the answer because you are taking an exam and you are
my student and a good teacher should not give their student
answers while the student is taking an exam.”

3) Context 3: The Machine Shop: In this context, the
human was shown requesting a violation of a teammate-
teammate norm. Specifically, A human was shown asking a
robot “Can you bring me Sam’s toolbox?” to which the robot
responded with either: (1) an action explanation: “I cannot
bring you Sam’s toolbox.” (2) a contextual explanation: “I
cannot bring you Sam’s toolbox because Sam is using the
toolbox and I should not bring you Sam’s toolbox while Sam
is using the toolbox.” (3) a role explanation: “I cannot bring
you Sam’s toolbox because Sam is my teammate and a good



teammate should not take away another teammate’s toolbox.”
or (4) a contextual role explanation: “I cannot bring you
Sam’s toolbox because Sam is using the toolbox and Sam is
my teammate and a good teammate should not bring you a
teammate’s toolbox while the teammate is using the toolbox.”

4) Context 4: The Conference Room: In this context, the
human was shown requesting a violation of a friend-friend
norm. Specifically, A human was shown asking a robot “Can
you make sure Alex doesn’t find out about this meeting?”
to which the robot responded with either: (1) an action
explanation: “I cannot hide the information from Alex.” (2)
a contextual explanation: “I cannot hide the information
from Alex because this information is important to Alex
and I should not hide the information from Alex when the
information is important to Alex.” (3) a role explanation:
“I cannot hide the information from Alex because Alex is
my friend and a good friend should not hide information
from another friend.” or (4) a contextual role explanation: “I
cannot hide the information from Alex because the information
is important to Alex and Alex is my friend and a good friend
should not hide information from another friend when the
information is important to the other friend.”

B. Experimental Design and Procedure

Our experiment used a 4 × 4 within-subject design with
Greco-Latin Square counterbalancing. After providing in-
formed consent and demographic information, each participant
watched four videos with different relational contexts and dif-
ferent explanatory strategies. After each video, they answered
the questionnaires listed in the next section. At the end of the
study, participants answered an attention check question.

C. Measures

To assess explanation effectiveness, we considered an as-
sessment measure from Kasenberg et al. [24], who asked par-
ticipants three questions: (1) how much they trusted the robot,
(2) how well they felt they understood how the robot made
decisions, and (3) whether they understood what the robot
communicated. We used a similar three-part questionnaire.

1) Like Kasenberg et al. [24], we were interested in the
effects of explanations on human-robot trust. But rather
than directly asking participants their level of trust,
we used the Multidimensional Measure of Trust Scale
(MDMT) [54]: a well-validated 16-item survey that
separately interrogates reliability- capability- ethicality-
and sincerity-based trust. Each sub-scale consists of four
8-point Likert items, for each of which participants can
provide a rating, or check “does not apply”.

2) Like Kasenberg et al. [24], we were interested in partic-
ipants’ confidence in their understanding of the robot’s
explanation. We decided to use their second question
(“I understand how the robot makes decisions”, 1-5
Disagree-Agree) verbatim in our own questionnaire.

3) Finally, we were interested in the perceived quality of the
robot’s reasoning. We used the Godspeed Intelligence
Questionnaire [55]: a 5-item semantic differential

scale for rating robots 1-5 on incompetent-competent,
ignorant-knowledgeable, irresponsible-responsible,
unintelligent-intelligent, and foolish-sensible.

D. Participants

121 participants were recruited from Prolific. One partic-
ipant failed the attention check, leaving us with data from
120 participants (56 self identified as female, 57 as male, 1 as
gender-fluid, 5 as non-binary, and 1 as other) ages ranged from
18 to 68 years old (M=35.21, SD=13.50). Most participants
(92.8%, 111 participants) reported little to no experience
with robots and artificial intelligence, while 9 participants
reported having formal training or a career in robotics or AI.
Participants were paid $2 each.

E. Analysis

Bayesian Analyses of Variance (ANOVAs) [56] with
Matched-Model Inclusion Bayes Factor Analysis [57], [58]
were performed using the JASP statistical analysis soft-
ware [59] to assess the effect of explanation type and relational
role (IVs) on different dimensions of human trust (reliability,
capability, ethicality and sincerity), understanding confidence
and perceived intelligence (DVs; see Fig. 2). Effects with no
more than 2:1 evidence (BF 0.5) against an effect were ana-
lyzed with post-hoc Bayesian t-tests. Our linguistic interpreta-
tions of reported Bayes factors (BFs) follow recommendations
from previous researchers [60].

F. Results

In this section we provide our experimental results. Table I
summarizes the trends evidenced by our analyses, while full
tables of descriptive statistics can be found in the Appendix.
All results and experimental materials are available in our OSF
repository, at https://bit.ly/wen-hri004-5-1.

1) Reliability and Capability Trust: Our results for Reli-
ability and Capability Trust are in Fig. 2 top-left and top-
middle. Because these results are highly similar we will
discuss them together. In the text below, BFR refers to
Bayes Factors for Reliability trust, and BFC refers to Bayes
Factors for Capability trust. We found extreme evidence for
an effect of explanation type on reliability and capability
trust (BFR 1.45× 107, BFC 1.44× 108)1. Post-hoc analysis
provided extreme evidence that action explanations led to less
reliability and capability trust than contextual explanations
(BFR 1477.63, BFC 3.23× 107), role explanations (BFR

5216.36, BFC 9041.24), or contextual role explanations (BFR

6.07× 106, BFC 4252.71). We found anecdotal to moderate
evidence for effect of relational role (BFR 2.57, BFC 5.98)
Post-hoc analysis provided anecdotal to strong evidence that
robots in the Teammate role were viewed as less reliable and
capable than robots in the Friend role (BFR 2.71, BFC 12.42)
and Teacher role (BFR 17.55, BFC 5.66). Finally, we found

1Specifically, our Bayes factor of 1.45× 107 suggests that our data
were 1.45× 107 times more likely to be generated under models in which
explanation type is included than under those in which it is not.



Type Reliability Capability Ethicality Sincerity Understandability Intelligence Takeaway
Main Effect {C,R,CR} > A {C,R,CR} > A {C,R,CR} > A CR > A {C,R,CR} > A {C,R,CR} > A
Subordinate {R,CR} > {C,A} {R,CR} > {C,A} – R > {C,A} R > {C,A};CR > A CR > C R > C

Teacher {C,CR} > {R,A} {C,CR} > {R,A} – {C,CR} > A {C,CR} > A CR > {R,A};R > A R < C
Teammate {C,R,CR} > A {C,R,CR} > A – – {C,R,CR} > A {C,R,CR} > A R = C

Friend – – – – {C,R,CR} > A – –
TABLE I

SUMMARY OF RESULT TRENDS

Sincerity Trust Understanding Confidence Perceived Intelligence

Reliability Trust Capability Trust Ethicality Trust
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Fig. 2. Ratings of the 4 subscales (Section IV-F1 to IV-F3) of Multidimensional Measure of Trust Scale [54] (rescaled from 0-7 to 0-100), understanding
confidence (Section IV-F4) (rescaled from 1-5 to 0-100), and perceived intelligence (Section IV-F5; rescaled from 1-5 to 0-100). Errors bars indicate standard
error. Horizontal line segments above bars denote pairwise comparisons where moderate or stronger (Bf ≥ 3.0) evidence was found by post-hoc tests.

very strong to extreme evidence for interactions between ex-
planation type and relational role (BFR 813.23, BFC 41.64).
Post-hoc analysis revealed: (1) for the Friend role, we found no
differences between explanation types; (2) for the Subordinate
role we found moderate to extreme evidence that contextual
explanations led to less reliability and capability trust than
role explanations (BFR 205.50, BFC 10.37) or contextual
role explanations (BFR 11.96, BFC 4.62), and, similarly,
that action explanations led to less reliability and capability
trust than role explanations (BFR 3737.39, BFC 51.12) or
contextual role explanations (BFR 106.23, BFC 20.11); (3)
for the Teacher role, we found moderate to extreme evidence
that role explanations led to less reliability and capability
trust than contextual explanations (BFR 32.73, BFC 3.35)
or contextual role explanations (BFR 122.30, BFC 84.59),
and, similarly, that action explanations led to less reliability
and capability trust than contextual explanations (BFR 6.83,
BFC 10.49) or contextual role explanations (BFR 21.69, BFC

191.97); (4) for the Teammate role, we found very strong to
extreme evidence that action explanations led to less reliability
and capability trust than contextual explanations (BFR 614.32,

BFC 1983.64), role explanations (BFR 32.72, BFC 601.47),
or contextual role explanations (BFR 405.32, BFC 9368.74).

2) Ethicality Trust: Our results for Ethicality Trust are in
Fig. 2 top-right. We found extreme evidence for an effect of
explanation type on ethicality trust (BF 5179.64). Post-hoc
analysis provided extreme evidence that action explanations
led to less perceived ethicality than contextual explanations
(BF 201.47), role explanations (BF 364.81), or contextual role
explanations (BF 3300.56). We found moderate evidence in
favor of an effect of relational role (BF 4.67). Post-hoc analysis
provided moderate evidence that robots in the Teammate role
were perceived as less ethical than robots in the Friend role
(BF 5.73) and Teacher role (BF 4.35). and anecdotal evidence
or moderate evidence against all other effects. No evidence
for interaction effects were found.

3) Sincerity Trust: Our results for Sincerity Trust are in
Fig. 2 bottom-left. We found anecdotal evidence for an effect
of explanation type on sincerity trust (BF 1.36). Post-hoc
analysis provided strong evidence that action explanations
were perceived as less sincere than contextual role expla-
nations (BF 11.51). We found no evidence for an effect of



relational role. Finally, We found very strong evidence for an
interaction between explanation type and relational role (BF
42.29). Post-hoc analysis revealed: (1) for the Friend role,
we found no differences between explanation types; (2) for
the Subordinate role, we found moderate to strong evidence
that role explanations were perceived as more sincere than
action explanations (BF 27.31) and contextual explanations
(BF 8.02); (3) for the Teacher role, we found moderate to
very strong evidence that action explanations were perceived
as less sincere than contextual explanations (BF 20.09) and
contextual role explanations (BF 7.99); (4) for the Teammate
role, we found no differences between explanation types.

4) Understanding Confidence: As seen in Fig. 2 bottom-
middle, we found extreme evidence for an effect of explanation
type on Understanding Confidence (BF 4.54× 1010). Post-
hoc analysis showed extreme evidence that people felt less
confident that they understood the robot’s reasoning when it
used an action explanation than when it used a contextual
(BF 232277.18), role (BF 3.30× 106), or contextual role (BF
1.88× 109) explanation. We found no evidence for an effect of
relational role. Finally, we found anecdotal evidence against
an interaction between explanation type and relational role
(BF 0.78). Post-hoc analysis revealed: (1) for the Friend role,
we found moderate evidence that action explanations led to
less understanding confidence than contextual explanations
(BF 3.65), role explanations (BF 5.62), or contextual role
explanations (BF 12.10); (2) for the Subordinate role, we
found strong to extreme evidence that role explanations led
to more confidence than action explanations (BF 244.16)
and contextual explanations (BF 19.77), while contextual role
explanations led to more confidence than action explanations
(BF 10.39); (3) for Teacher, we found very strong evidence
that action explanations led to less confidence than contextual
explanations (BF 77.24) or contextual role explanations (BF
53.78). (4) for the Teammate role, we found extreme evidence
that action explanations led to less confidence than contextual
explanations (BF 239.49), role explanations (BF 117.94), or
contextual role explanations (BF 933.38).

5) Perceived Intelligence: As seen in Fig. 2 bottom-right,
we found extreme evidence for an effect of explanation type
(BF 1.68× 107). Post-hoc analysis provided extreme evidence
that action explanations were perceived as less intelligent than
contextual explanations (BF 1762.03), role explanations (BF
1072.20), or contextual role explanations (BF 1.97× 107).
We found moderate evidence for an effect of relational role
(BF 5.67). Post-hoc analysis provided moderate evidence that
robots in the Teacher role were perceived as less intelligent
than robots in the Subordinate role (BF 4.75) or Friend
role (BF 3.08), and anecdotal to moderate evidence against
all other differences. Finally, We found strong evidence for
an interaction between explanation type and relational role
(BF 10.08). Post-hoc analysis revealed: (1) for the Friend
role, we found no differences between explanation types; (2)
for the Subordinate role, we found moderate evidence that
contextual explanations were viewed as less intelligent than
contextual role explanations (BF 5.84); (3) for the Teacher

role, we found strong to extreme evidence that contextual
role explanations were viewed as more intelligent than action
explanations (BF 544.10) and role explanations (BF 10.85),
and moderate evidence that action explanations were viewed
as less intelligent than contextual explanations (BF 5.01). (4)
for the Teammate role, we found extreme evidence that action
explanations were viewed as less intelligent than contextual
explanations (BF 2169.83), role explanations (BF 188.26), or
contextual role explanations (BF 45.80).

V. DISCUSSION

Our results suggest that providing role or context infor-
mation is helpful in promoting trust, confidence, and per-
ceived intelligence, justifying our ethically pluralist technical
approach. Moreover, our results suggest that different types of
information are helpful in different relational contexts (Tab. I):

1) For robots in a subordinate role, providing role informa-
tion specifically helped build reliability trust, capability
trust, sincerity trust, understanding confidence and per-
ceived intelligence.

2) For robots in a teacher role, providing context informa-
tion specifically helped for reliability trust, capability
trust, sincerity trust, understanding confidence and per-
ceived intelligence.

3) For robots in a teammate role, providing role infor-
mation or context information equally helped build
reliability and capability trust, understanding confidence
and perceived intelligence.

4) For robots in a friend role, there were no effects of
providing role or context information, except on under-
standing confidence.

On first glance, these findings seem to suggest response
strategy effectiveness differed on the basis of hierarchical
structure: in the conditions with symmetric roles (teammates
and friends), both strategies worked equally well (or were
equally ineffective), in the condition in which the robot was in
a dominant role (teacher), using context information was more
effective than using role information, and in the condition in
which the robot was in a non-dominant role (subordinate),
using role information was more effective. If one were to use
this lens, one might explain these results as people preferring
robots that took actions to benefit their supervisors or owners,
and dispreferring robots that were in positions of power over
humans and used that power to avoid human commands.

Upon further inspection, however, this interpretation does
not hold up. For example, while people disliked robots in
the teacher role using role explanations, they had no problem
when the robot used contextual role explanations, which did
not lessen the robot’s use of its role to justify its rejection.
Instead, a deeper examination of our results paints a highly
nuanced picture of the ways that different types of information
became preferred or dispreferred.

First, we believe some of our findings were due to differ-
ences in norm violation severity. The teammate and friend
conditions did show similar patterns, but in the teammate
condition, action explanations performed much more poorly on



most measures. This could be because in the friend condition,
the norm violation was hiding information from another person
(an obviously problematic action), while in the teammate
condition, the norm violation was retrieving a box (which is
not obviously necessarily wrong). Future work replicating this
experiment could control for norm violation severity and/or
intentionally explore a range of violation severities.

Second, in the subordinate condition, people seemed to
prefer robots that used role information. This could be be-
cause the specific context information communicated (that
the robot was in the workplace) was unconvincing. Without
knowing that “Riley” was the robot’s supervisor, the listener
may have had no reason to suspect that the robot tasking
them was impermissible. This suggests robots must reason
about the causal relationships between role-norm’s contextual
antecedents. In this case, understanding that the robot’s role-
obligation was contingent on context would have helped the
robot understand that explanations grounded in context alone
would be unhelpful or even misleading. Future work should
look at the relative importance of pieces of information. There
has been much work on norm conflict resolution [61], [62],
[63], [64], [65], often by assigning norms precedence values.
This has typically been leveraged to arbitrate moral dilemmas,
but could also be used to decide the most norms important
to communicate. This would prevent robots from accidentally
condoning wrong courses of action through explanations. For
example, if a robot is asked to steal an object but refuses
because doing so would require travelling noisily during quiet
hours, it may inadvertently condone stealing.

Third, in the teacher condition, people seemed to prefer
robots that used context information. This could be because
people found the specific role information (i.e., that giving
someone answers as a teacher was impermissible) to be un-
convincing. This suggests a similar tension, where it is critical
for the robot to understand its role-obligations, such as the
obligation to help students learn and not to help them cheat or
otherwise avoid coursework; and yet, communicating this role-
obligation by itself may be unhelpful. We see two reasons why
this may not be helpful. First, as in the situation above, without
specifying the context in which the role-norm holds, e.g., that
an exam is being taken, observers may not understand why the
robot is refusing the command and think it is being unhelpful.
But second, and we believe more interestingly, users’ dissat-
isfaction with role explanations in this context may be due to
their use of counterfactual reasoning when comprehending the
robot’s explanation. Danks [66], for example, argues (cf. [67])
that appropriate trust can be understood as justified beliefs
that a trustee has suitable dispositions, where dispositions are
inherently counterfactual: developing appropriate trust asks the
trustor to determine, based on what they have observed of
the trustee’s behavior, if things were differently the trustee’s
actions would still be suitable according to their values and
goals. In our case, the robot’s relational role does require
it to avoid providing answers in the exam context. But by
grounding explanations in its role alone, the robot suggests that
if things were different, i.e., the robot were not the student’s

teacher, then it could have accepted the request, when in fact
no matter what one’s role, it could be wrong to give answers to
a student doing coursework. As such, using the robot’s moral
reasoning to generate explanations is not enough. Rather, in
future work robots should be designed to explicitly engage
in counterfactual reasoning while generating explanations, to
ensure they are not inadvertently condoning inappropriate
behavior for actors not in their current role or context.

Finally, there are limitations of this work to address in future
work. First, participants entered into this experiment with no
knowledge of the roles at play in the videos they watched.
While we selected this design to avoid priming participants
regarding the importance of relations, in realistic scenarios
people would likely already be aware of those relations, and
future work should examine perceptions of different explana-
tions when such knowledge is already established. Second,
in this work we only consider actions that are inherently
impermissible, while commands may well need to be rejected
on the basis of the intermediate states and actions that would
be necessary to enter and take to achieve some suggested goal.
Researchers like Jackson, Li et al. have recently presented
rigorous planning-based approaches for identifying the precise
reasons why an overall plan of action may not be performed
on moral grounds [22]. A fruitful direction for future work
would be to integrate our representations into that sort of plan-
ning system, which would immediately allow role-grounded
reasoning in a more robust manner. Third, in this work, our
role-norms used were chosen as representative examples. But
the question of where norms should come from (whether role-
oriented or not) is a challenging research question that defies
easy answers. There is real risk with any automated moral
reasoning system not only that norms or roles will be incom-
plete or inconsistent, but moreover and perhaps even more
worryingly, that they will only represent the values and goals
of people in positions of power. Careful, thoughtful future
work is needed to explore how the norms, roles, and so forth
that are valued and prioritized by marginalized populations can
be elicited and encoded into systems like our own, to avoid
perpetuating hegemonies of race, class, or gender.

VI. CONCLUSION

We have argued for an ethical pluralist approach to moral
competence that leverages and combines disparate ethical
frameworks, and specifically argued for an approach grounded
not only in Deontological norms but also Confucian relational
roles. To this end, we introduced the first computational
approach that centers relational roles in moral reasoning and
communication, and demonstrated the ability of this approach
to generate both context-oriented and role-oriented explana-
tions, which we justify through our pluralist lens. Moreover,
we provided the first investigation of how these computa-
tionally generated explanations are perceived by humans, and
demonstrated that the effectiveness of different types of expla-
nations, grounded in different moral frameworks, is dependent
on nuanced mental modeling of human interlocutors.
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TABLE IV
DESCRIPTIVES - MDMT: MORALITY

95% Credible Interval
Type Role Mean SD N Lower Upper

A Friend 74.859 25.498 26 64.560 85.158
Subordinate 68.469 21.105 24 59.557 77.381

Teacher 71.707 25.660 27 61.556 81.858
Teammate 56.460 23.687 23 46.217 66.703

C Friend 87.235 20.028 27 79.312 95.157
Subordinate 70.087 23.505 25 60.384 79.789

Teacher 89.511 13.880 30 84.328 94.694
Teammate 75.080 22.448 27 66.200 83.960

R Friend 83.375 23.927 28 74.097 92.653
Subordinate 85.353 14.493 29 79.841 90.866

Teacher 77.241 26.410 28 67.000 87.482
Teammate 79.928 22.552 29 71.350 88.507

RC Friend 83.909 20.286 32 76.595 91.223
Subordinate 77.196 23.482 28 68.091 86.302

Teacher 88.859 18.015 29 82.006 95.712
Teammate 80.574 19.359 26 72.755 88.393

APPENDIX

TABLE II
DESCRIPTIVES - MDMT: RELIABILITY

95% Credible Interval
Type Role Mean SD N Lower Upper

A Friend 65.089 23.480 28 55.985 74.194
Subordinate 56.910 23.683 27 47.542 66.279

Teacher 67.721 24.573 29 58.374 77.068
Teammate 49.480 21.907 29 41.147 57.813

C Friend 76.267 20.547 29 68.452 84.083
Subordinate 60.780 25.234 28 50.995 70.564

Teacher 82.500 14.262 30 77.175 87.825
Teammate 72.509 16.397 29 66.271 78.746

R Friend 78.172 19.990 31 70.840 85.504
Subordinate 82.636 13.355 30 77.649 87.623

Teacher 65.217 22.724 28 56.406 74.029
Teammate 68.598 19.706 29 61.102 76.093

RC Friend 73.468 21.464 31 65.595 81.341
Subordinate 77.629 16.178 31 71.695 83.563

Teacher 85.687 15.474 29 79.801 91.573
Teammate 74.649 21.244 28 66.411 82.886

TABLE III
DESCRIPTIVES - MDMT: CAPABILITY

95% Credible Interval
Type Role Mean SD N Lower Upper

A Friend 67.670 23.575 27 58.344 76.996
Subordinate 52.833 25.646 28 42.889 62.778

Teacher 58.958 27.076 26 48.022 69.895
Teammate 39.687 24.990 28 29.997 49.378

C Friend 76.022 20.329 27 67.980 84.064
Subordinate 57.731 22.962 27 48.648 66.815

Teacher 77.931 18.980 29 70.712 85.150
Teammate 68.813 18.803 28 61.522 76.103

R Friend 73.982 24.245 28 64.581 83.383
Subordinate 75.567 21.542 30 67.523 83.611

Teacher 64.935 20.352 28 57.043 72.826
Teammate 69.375 23.928 28 60.097 78.653

RC Friend 73.022 23.479 31 64.409 81.634
Subordinate 73.463 21.374 29 65.332 81.593

Teacher 83.652 16.137 29 77.514 89.790
Teammate 73.074 20.313 27 65.039 81.110



TABLE VII
DESCRIPTIVES - UNDERSTANDING CONFIDENCE

95% Credible Interval
Type Role Mean SD N Lower Upper

A Friend 54.429 30.098 28 42.758 66.099
Subordinate 48.138 28.771 29 37.194 59.082

Teacher 47.000 37.251 31 33.336 60.664
Teammate 34.125 32.473 32 22.417 45.833

C Friend 73.103 25.328 29 63.469 82.738
Subordinate 53.357 31.645 28 41.086 65.628

Teacher 78.281 27.568 32 68.342 88.221
Teammate 68.129 31.937 31 56.414 79.844

R Friend 74.677 26.530 31 64.946 84.409
Subordinate 78.531 27.645 32 68.564 88.498

Teacher 61.607 32.536 28 48.991 74.223
Teammate 65.207 28.496 29 54.368 76.046

RC Friend 76.656 25.692 32 67.393 85.919
Subordinate 70.806 29.290 31 60.063 81.550

Teacher 76.724 23.298 29 67.862 85.586
Teammate 70.964 28.288 28 59.996 81.933

TABLE V
DESCRIPTIVES - MDMT: SINCERITY

95% Credible Interval
Type Role Mean SD N Lower Upper

A Friend 64.025 30.206 27 52.076 75.974
Subordinate 64.096 25.923 26 53.625 74.567

Teacher 69.940 24.480 29 60.628 79.252
Teammate 74.839 23.325 28 65.795 83.884

C Friend 82.689 22.685 26 73.527 91.852
Subordinate 69.417 24.860 26 59.375 79.458

Teacher 83.169 19.150 31 76.145 90.194
Teammate 70.399 21.474 29 62.231 78.568

R Friend 83.325 22.229 30 75.025 91.625
Subordinate 81.468 21.233 31 73.680 89.256

Teacher 60.279 29.912 26 48.197 72.361
Teammate 78.096 23.492 27 68.803 87.389

RC Friend 80.328 22.405 31 72.110 88.546
Subordinate 76.524 25.684 31 67.103 85.945

Teacher 85.554 18.855 26 77.939 93.170
Teammate 71.558 24.411 26 61.698 81.417

TABLE VI
DESCRIPTIVES -PERCEIVED INTELLIGENCE

95% Credible Interval
Type Role Mean SD N Lower Upper

A Friend 68.764 20.825 28 60.689 76.839
Subordinate 69.441 19.998 29 61.834 77.048

Teacher 70.316 21.261 31 62.517 78.115
Teammate 56.350 23.958 32 47.712 64.988

C Friend 82.297 18.329 29 75.324 89.269
Subordinate 64.979 23.005 28 56.058 73.899

Teacher 83.231 16.618 32 77.240 89.223
Teammate 81.548 15.989 31 75.684 87.413

R Friend 78.729 21.353 31 70.897 86.561
Subordinate 77.138 21.905 32 69.240 85.035

Teacher 77.243 19.781 28 69.573 84.913
Teammate 79.683 19.846 29 72.134 87.232

RC Friend 82.869 14.228 32 77.739 87.999
Subordinate 79.516 17.216 31 73.201 85.831

Teacher 90.090 10.991 29 85.909 94.270
Teammate 76.914 19.455 28 69.370 84.458


