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Abstract

A major challenge for robots interacting with humans
in realistic environments is handling robots’ uncer-
tainty with respect to the identities and properties of
the people, places, and things found in their environ-
ments: a problem compounded when humans refer to
these entities using underspecified language. In this pa-
per, we present a framework for generating clarification
requests in the face of both pragmatic and referential
ambiguity, and show how we are able to handle several
stages of this framework by integrating a Dempster-
Shafer (DS)-theoretic pragmatic reasoning component
with a probabilistic reference resolution component.

Introduction

Imagine a robot named Cindy operating in a disaster
relief scenario. Cindy and her human teammate Bob
have just left a second-floor room containing a small
refrigerator, a sink, and two medical kits: one on a
table and one on a counter. After driving ten meters
down the hallway, Bob says “Go back to the kitchen and
grab the medical kit.” In order to understand this com-
mand, Cindy must (1) resolve referential uncertainty by
deciding how probable it is that the previous room was
a kitchen or not, and (2) resolve referential ambiguity
by deciding whether that room or another kitchen was
being referred to (as well as which of the two medical
kits was being referred to). In order to resolve refer-
ential uncertainty and/or ambiguity, Cindy may need
to ask for clarification as a human would (Tenbrink et
al. 2010). In this scenario, for example, Cindy might
say “Do you want me to retrieve the medical kit on the
counter or the medical kit on the table?”, or “Do you
mean the room we were just in, or the kitchen on the
first floor?”

In previous work, we showed how a Dempster-Shafer
(DS)-theoretic pragmatic reasoning component could
be used to generate clarification questions under in-
tentional uncertainty and ignorance. For example, if
a robot was told “The commander needs a medical kit”,
and was unsure of the social relationship between itself
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and the speaker, it might identify two alternate inter-
pretations and ask “Do you want me to bring him one,
or do you want to know where to find one?” In this
work, we show how this pragmatic reasoning compo-
nent can also be used to identify referential uncertainty
and ambiguity, and generate clarification requests ap-
propriately. Specifically, we present a clarification re-
quest generation framework, and demonstrate how, by
integrating our pragmatic reasoning component with
a probabilistic reference resolution component, we are
able to handle several stages of this framework.

In the next section, we discuss previous work on sit-
uated clarification request generation. Next, we lay
out a theoretical clarification request generation frame-
work. We then describe the stages of this framework
handled by components of the Distributed, Integrated,
Affect, Reflection and Cognition (DIARC) architecture
(Scheutz et al. 2007), and demonstrate those compo-
nents in operation. Finally, we describe how remaining
stages of the framework might be handled in the future.

Related Work

Clarification request generation has been a topic of
considerable research in non-situated contexts (Purver,
Ginzburg, and Healey 2003; Traum 1994), but has only
recently become a topic of interest in the Human-Robot
Interaction community (c.f. general question asking ca-
pabilities, e.g., Fong, Thorpe, and Baur (2001), Rosen-
thal, Veloso, and Dey (2012)). Several recent ap-
proaches have used information-theoretic techniques to
determine the best random variable of interest to ask
questions about, with questions either framed as yes/no
questions (Deits et al. 2013; Hemachandra, Walter, and
Teller 2014; Purver 2004) or specification requests (e.g.,
“What do the words X refer to?”) (Tellex et al. 2013;
Purver 2004) However, recent experimental evidence
(Marge and Rudnicky 2015) suggests that people prefer
robots to list multiple options rather than confirm a sin-
gle referent with a yes/no question (c.f. Clark (1996)),
even when asking a yes/no question would be more ef-
ficient (c.f. Hemachandra, Walter, and Teller (2014)).
Perhaps closest to the proposed approach is that pre-
sented by Kruijff, Brenner, and Hawes (2008). Those
authors resolve ambiguity using a continual planning



approach that makes use of actions generating utter-
ances that list multiple options, such as “Do you mean
the blue or the red mug, Anne?”

As we will describe, we take a similar approach.
However, instead of directly planning to receive disam-
biguating information through communicative actions,
we simply identify points of ambiguity; DIARC’s dia-
logue system then decides as part of its normal func-
tioning to pose questions to resolve this ambiguity, and
does so in a way which accounts for social context, un-
certainty, and ignorance, none of which appear to be
handled by Kruijff et al.. Moreover, because DIARC’s
dialogue system uses a single set of pragmatic rules for
understanding and generation, the same rules that al-
low the robot to generate clarification requests also al-
low the robot to understand such requests.

There has also been much previous work in the area
of natural language generation (NLG). Most broadly
relevant perhaps are general NLG frameworks like that
of Reiter, Dale, and Feng (2000)). Dale and Reiter
identify six stages of NLG: content determination, doc-
ument structuring, aggregation, lexical choice, referring
expression generation, and realisation. We would argue,
however, that NLG for use in Human-Robot Interaction
warrants a framework that deviates from that used for
more traditional NLG purposes. In HRI, NLG typically
needs to happen at the utterance level rather than at
the document level, which deemphasizes steps such as
document structuring and aggregation. More funda-
mentally, NL is generated for different reasons in HRI
than it is in other contexts: it is more likely in HRI than
in other contexts that utterances must be generated to
solicit, rather than provide, information, e.g., through
clarification requests. In the next section we present an
NLG framework specifically designed to facilitate clar-
ification request generation in HRI contexts.

A Framework for Clarification
Request Generation

We identify five stages necessary for successful clarifica-
tion request generation, as shown in Fig. 1: (1) uncer-
tainty identification, (2) decision to communicate, (3)
utterance choice, (4) surface realization, and (5) speech
synthesis. In this section we describe the actions nec-
essary at each stage.
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Figure 1: Clarification Framework.

Uncertainty Identification

Suppose that in our original example, Bob had asked
Cindy “Can you grab the medkit?” During the stage
of uncertainty identification, Cindy must determine if
she is unsure how to interpret any part of this utter-
ance. This may be uncertainty as to what entities are
being referenced, e.g., which medkit Bob is referring
to, or uncertainty as to the speaker’s intentions, e.g.,
whether Bob wishes Cindy to bring him the medkit or
whether he meant something else by the utterance. Fur-
thermore, this uncertainty may take different forms (c.f.
Stirling (2010)): the utterance may be ambiguous (e.g.,
if Cindy knows of multiple medkits) or the utterance
may reveal ignorance (e.g., if Cindy knows of no med-
kits, or is unsure whether a particular object qualifies
as a “medkit”).

Decision to Communicate

If a robot has identified a point in need of clarification,
it must decide whether it would be appropriate to actu-
ally ask for clarification. This decision will depend on a
variety of factors: Is it permissible for the robot to ask
for clarification? Is the robot’s interlocutor likely to be
able to provide clarification? Would obtaining clarifi-
cation really be the highest utility action at the current
time (compared to, e.g., exploration)? For example, if
Cindy determines there are actually two medkits that
Bob could be referring to, but while coming to this deci-
sion Bob has already engaged another teammate in con-
versation, it may be necessary for Cindy to wait until
this conversation finishes before asking for clarification.

Utterance Choice

Once a robot has decided to request clarification on a
particular point, it must determine what utterance form
to use to communicate its request: depending on the re-
lationship between the robot and its interlocutor, and
the obligations of each party, certain utterance forms
may be more or less appropriate (Brown 1987). For ex-
ample, if Cindy if Bob’s subordinate, it may be more
appropriate to use an indirect request such as “Which
medkit would you like?”, whereas if Cindy is Bob’s supe-
rior, it may be more appropriate to use a direct request
such as “Tell me which medkit you would like.”

Surface Realization

Once a robot chooses an utterance form to use, it must
determine what words to use (Garoufi and Koller 2014).
For example, if Cindy decides to use an utterance of the
form “Would you like [medkit]”, she must choose how
to actually describe medkity, e.g., by referring to it as
“the medkit in the kitchen” or perhaps as “the white
medkit”. If one medkit is in front of Cindy, it may
be more appropriate to point to it and use a deictic
expression such as “this medkit.”

Speech Synthesis

Finally, once a robot determines what word to use, it
must synthesize an appropriate sound pattern.



A DS-Pragmatic Approach

We have implemented the first three stages of the pro-
posed framework as components of the DIARC architec-
ture (Scheutz et al. 2007). In this section, we describe
this implementation, and discuss how the fourth and
fifth stages could be handled in future work.

Notation!

M A robot’s world model of entities {mg ... my}.

A A set of logical formulae )\g...\,, denoting
(literal, direct) semantic connotation of an in-
coming utterance.

V' A set of free variables found in A.

I' A set of bindings from variables in V' to entities
in M, denoting the semantic denotation of an
incoming utterance.

& A satisfaction variable which is True iff all for-
mulae in A hold when bound using I'.

Uncertainty Identification

Uncertainty may be identified at many stages along the
natural language (NL) pipeline. For example, if a robot
determines it is unsure what words were uttered by an
interlocutor, it may immediately ask for clarification
(Stoyanchev, Liu, and Hirschberg 2013). In this paper,
however, we are specifically interested in referential un-
certainty and ambiguity. In our implementation, the
Resolver Component uses the GH-POWER algorithm
in order to resolve referring expressions (Williams et al.
2016). As described in previous work, this algorithm
uses a Givenness-Hierarchy (GH) theoretic approach
(Gundel, Hedberg, and Zacharski 1993) to search mod-
els of cognitive structures (e.g., the Focus of Attention,
Short-Term Memory, and Long-Term Memory) for the
referents of referring expressions, including deictic and
anaphoric expressions. Furthermore, the GH-POWER
algorithm hypothesizes new representations for previ-
ously unknown referents when appropriate. Long-Term
Memory queries are effected using the DIST-POWER
algorithm, which allows us to distribute long term mem-
ories across heterogeneous knowledge bases stored on
different machines (Williams and Scheutz 2016).

In addition to potentially hypothesizing new enti-
ties, POWER’s ultimate result is the distribution P(® |
I, A). That is, the probability of successful satisfaction
conditioned on binding hypotheses

{To = {100 .70, } -
and semantic parse hypotheses
{Ao={Dog---Aop}e s A = {img - A H}-

Note that the parser we use only currently returns a
single best parse; we use this notation to allow for the
future possibility of multiple semantic interpretations.

7Fm - {FYmU cee ”Ymn}}

tc.f. Tellex et al. (2011)

Next, consider the example utterance “Can you grab
the medkit?”. This may be parsed by Cindy into some-
thing like QuestionY N (b, s, can(s,grab(s, X))) with
additional semantic content A; = {medkit(X)}, where
b="bob” and s="self” (we will use these abbreviations
throughout this section). If the robot is 70% sure that
the object with identifier my is a medkit, reference res-
olution will produce:

P(® =True |I' ={X — ms}, A = {medkit(X)}) = 0.7

The set of sufficiently probable referential hypothe-
ses is then used to create a set of bound utter-
ances with supplemental semantics (BUSSes) ¥ =
{tg ...} where each ¢; is created by binding the
free variables of the parsed utterance form (e.g.,
QuestionY N (b, s, can(s, grab(s, X)))) and supplemen-
tal semantics (e.g., {medkit(X)}) with variable bind-
ings v; (e.g., {X — ms}), producing something like:

{QuestionY N (b, s, can(s, grab(s,ms))) A medkit(ms)}.

While it would be possible to create a distribution
over this set, where P(¢;) = P(I';, A; | ®;) using, e.g.,
Bayes’ Rule, this would only be appropriate if the next
component in the NL pipeline also used a Bayesian ap-
proach. In fact, the next component (i.e., the pragmatic
reasoning component) actually uses a Dempster-Shafer
theoretic approach (Williams et al. 2015).

Dempster-Shafer (DS) Theory is a generalization of
the Bayesian uncertainty framework that allows for el-
egant reasoning about uncertainty and ignorance even
when distributional information is not available (Shafer
1976). DS Theory is an attractive option for many
robotics applications, where agents may need to learn
about new entities and concepts from a small number
of examples drawn from an unknown distribution.

Of course, not all of a robot architecture’s compo-
nents are likely to be DS-theoretic. For some compo-
nents, distributional information may be readily avail-
able, encouraging the use of a Bayesian approach. To
allow each architectural component to use the knowl-
edge representation and uncertainty management ap-
proaches most conducive to its own operation, we must
thus develop mechanisms that allow those components
to integrate seamlessly. In the rest of this section, we
will (1) briefly provide some preliminaries of DS Theory,
(2) describe how it is used in our architecture, and (3)
describe the technique we use for interoperability be-
tween our DS-theoretic pragmatic reasoning component
and our probabilistic reference resolution component.

We can use Dempster-Shafer Theory to represent
the uncertainty of an event FE using the interval
[BI(E), PI(E)]. BI(FE) and PI(E) are the belief and
plausibility of E: lower and upper bounds on P(F) such
that 0 < BI(E) < P(E) < PI(E) < 1. The width of
this uncertainty interval (PI(E) — BI(F)) indicates the
degree of ignorance one has regarding event F.

We thus take the following DS-theoretic approach.
Let © = {0, ...,0,} be a Frame of Discernment (FoD)
where each 6; is a mutually exclusive singleton hypothe-
ses described by ;. Let m(-) : 2° — [0,1] be a basic
belief assignment which assigns to each 6; a mass:



—P(®; | T, As), (1)
where
[©]
Z=> P(®;|T;,A)).

7=0
As mass is only assigned to singleton sets, Bl(6;) =
P1(8;) = m(6;). The confidence interval associated with
each hypothesis according to this mass assignment is
identical to [BI(T;, A; | ®;), PI(T;, A; | ®;)] as calcu-
lated using Heendeni et al.’s (2016) DS-theoretic equiv-
alent to Bayes’ Rule (Eq. 2), assummg a uniform prior

distribution BI(I', A) = PI(T, A)f Ter-
BI(B|A)BI(A)

BUAIB) 2 GiBa)BiA) + PUBIDPICA) o
PIAIB) < PU(B|A)PI(A)

PI(B|A)PI(A) + BI(B|A)BI(A)’

Before we move on, it is important to note that hy-
potheses with probabilities below a given threshold are
pruned out during the resolution process, as described
in our previous work (e.g., Williams et al. (2016)). This
has the effect of concentrating extra probability mass
in the remaining hypotheses, leading, respectively, to
higher beliefs and plausibilities.

The result of the above calculations is a Frame
of Discernment whose singleton hypotheses can be
described by the logical conjunctions (i.e., BUSSes)
g . .. Y,. However, the next component in the DIARC
NL Pipeline (i.e., the pragmatic reasoning component)
only uses the utterance form, and not the supplemen-
tal semantics, and there may be multiple hypotheses
in © that have the same utterance form but different
supplemental semantics.

As an example, if Bob had said “Grab the med-
kit that is near the book”, and one candidate med-
kit (o01) is actually near two books (02 and o3), we
could have two hypotheses which can be described
by BUSSes that have the same utterance form (e.g.
Instruct(b, s, grab(s,01))) but different supplemental
semantics (e.g., {medkit(o1) A book(o2) A near(o1,02)}
vs {medkit(o1) Abook(os) Anear(o1,03)}. We thus clus-
ter these hypotheses into sets Cy, ..., C, such that all
hypotheses associated with each set are described by
BUSSes that have the same utterance form. As an ex-
ample, if we have three singleton hypotheses {61, 62 03},
and v, and 19 have the same utterance form, C' =
{{6:,02},{63}}.

We can now split our Frame of Discernment © into a
set of |C'| “binary” FoDs, one for each cluster C;. Each
binary FoD itself has two hypotheses: (1) that the ut-
terance form describing all hypotheses in cluster C; does
represent what was communicated, and (2) that it does
not. This splitting has no theoretical ramifications, but
facilitates easier integration with our pragmatic infer-
ence component. Because each cluster is mutually ex-
clusive from all other clusters, each binary FoD can be
represented entirely by the bound utterance structure:

(utterance(vy), BI({Ci, ... Ci, }), Pl{Ci, ... Ci,, }))-

Suppose © = {01,02,0s} and W = {t)1,1)2,¢3}, where

1 = (QuestionY N (b, s, can(s, grab(s,o01)))

A medkit(o1) A book(oz2) A near(o1,02)),
P2 = (QuestionY N (b, s, can(s, grab(s,o01)))

A medkit(o1) A book(os) A near (o1, 03)),
3 = (QuestionY N (b, s, can(s, grab(s, 04)))

A medkit(o4) A book(oz2) A near (o4, 02)),

and assume the example basic belief assignment shown
in the following table:
Hypothesis Mass Bl Pl
[ 0.0 0.0 0.0

{61} 02 02 02
{62} 03 03 03
{63} 05 05 05
{61,602} 00 05 05
{6,603} 00 08 08
{03,0:} 00 07 0.7

{61,62,65} 1.0 1.0 1.0

Because 7 and 15 have the same utterance form,
C = {{61,02},{0s}}. From this, the following set of
bound utterance structures will be created:

{{QuestionY N (b, s, can(s, grab(s,o1))),
Bi({01,02}), PI({01,02})),
(QuestionY N (b, s, can(s, grab(s, 04))),
Bi({03}), PI({03}))} =
{{QuestionY N (b, s, can(s, grab(s,o1))),0.5,0.5)
(QuestionY N (b, s, can(s, grab(s,04))),0.5,0.5)}

The set of bound utterance structures is sent to DI-
ARC’s DS-theoretic pragmatic reasoning component,
which uses contextual knowledge to determine the in-
tentions underlying these utterances (Williams et al.
2015). The pragmatic reasoning component produces
a set of intentional structures (I, BI(I), Pl(I)). If the
difference between Bl(I) and PI([) is sufficiently large,

or if w is sufficiently close to 0.5, (assessed us-

ing Nuiiez et al.’s uncertainty measure (2013), shown in
Eq. 3), intention I is deemed “uncertain” and in need
of clarification.
B 8 1—«a 11—«
+KloggK + 17 loga e 3)
where K =1+ 8 — a.

If there are multiple intentions in need of clari-
fication, the agent formulates an intention-to-know
(itk) which intention is correct. This itk is denoted
itk(s,or(ig,i1,...,i,)). We currently only handle sit-
uations with four or fewer possible interpretations. In
future work, we plan to check for cases with five or more
interpretations before they are sent through pragmatic
reasoning; in such cases, a more general clarification
request should be immediately generated.

Previously this itk only captured intentional uncer-
tainty (e.g., when someone says “The commander needs
a medical kit”, it’s possible they intend for the speaker
to retrieve a medical kit for the commander, but it’s also
possible they intend for the speaker to inform them of



where to find a medical kit). Because the pragmatic
inference process now receives a set of candidate utter-
ance forms, each of which may have different argument
bindings, this process thus acknowledges ambiguity, and
thus captures referential uncertainty as well.

Before we move on, we would like to point out that
that because DIARC’s reference resolution component
handles open worlds, instances in which interlocutors
refer to previously unknown entities do not automati-
cally generate clarification requests. For example, if the
robot is told “Go to the room at the end of the hall”
and did not previously know of a room at the end of
the hall, it will not ask for clarification, but will rather
hypothesize a new location, and carry on.

We do not regard such situations as referentially am-
biguous. Here, the robot knows what entity is being
referred to: a previously unknown room at the end of
the hall. It may, of course, be valuable for the robot
to ask for more information about this location, but we
believe such a decision is not appropriate at the stage
of processing we discuss in this paper.

Decision to Communicate

Currently, any such formulated itk is asserted into the
robot’s knowledge base, automatically triggering the
decision to communicate this intention. Once it is ac-
ceptable for the robot to accept the conversational turn
(as decided by a turn-taking algorithm), the robot will
find this itk in its knowledge base and automatically
decide to communicate it, passing the itk to the prag-
matic generation component for processing.

Utterance Choice

During this stage, a robot must determine a contextu-
ally appropriate way to formulate its intention as a set
of logical formulae. In DIARC, this is accomplished by
the pragmatic generation component, which uses a set
of DS-theoretic pragmatic rules. Each such rule maps
an utterance to an intention under a particular context
(these rules are also used for pragmatic understand-
ing) (Williams et al. 2015). Using DS-theoretic logical
operators, the pragmatic generation component is able
to determine a set of candidate utterance forms, each
of which is then forward-simulated through pragmatic
inference in order to ensure that the agent does not ac-
cidentally communicate anything it does not actually
believe to be true as a side effect of communicating its
primary illocutionary point. The best candidate utter-
ance is then sent to NLG for surface realization.
Because typical NLG systems do not need to account
for social and dialogue context, this stage is not typi-
cally included. In contrast, NLG frameworks typically
include a document structuring (c.f. (Reiter, Dale, and
Feng 2000)) stage in which the agent determines the
order in which to convey multiple utterances. Because
situated clarification request generation typically only
involves a single utterance, we do not currently han-
dle this step. However, this will be an important topic
for future work, since a robot may occasionally need to

preface a clarification request by stating, for example,
what aspects of an utterance it did understand.

Surface Realization

This stage subsumes facets of the lexical choice, re-
ferring expression generation, and realisation stages
of Dale and Reiter’s framework. While NLG capa-
bilities have been previously integrated into the DI-
ARC architecture, and even been used for clarifica-
tion request generation (e.g., (Williams et al. 2015)),
we have not yet implemented the Referring Expres-
sion Generation mechanisms necessary for robust sur-
face realization. That is, while DIARC’s NLG compo-
nent can craft surface realizations for utterance forms
such as Statement(s,b,would_like(s, medkit)) (that
is, a statement from an agent to bob that the agent
would like a medkit), it does not yet handle utterance
forms such as Statement(s,b,need(s,objss)), where
objs4 may indeed be a medkit, but it is up to the agent
to decide how best to describe it. We plan to integrate
such mechanisms in future work.

Speech Synthesis

In DIARC, speech synthesis is performed using the open
source MaryTTS (Schroder and Trouvain 2003) library.

Demonstration

To demonstrate the operation of the implemented
framework stages, we present a proof-of-concept inter-
action that occurs in a simulated environment.

Architecture Configuration

For this interaction, we used one configuration of
the DIARC Architecture. In addition to compo-
nents responsible for the simulation of a Pioneer robot
within an office environment, our configuration used
the following components (see Fig. 2): ASR (which
performs simulated speech recognition), NLP (which
uses the C&C parser within a GH-theoretic frame-
work), POWER (which performs reference resolution),
AGENTS,SPEX and OBJECTS (POWER Consultants (c.f.
(Williams and Scheutz 2015)) providing information
about people, places, and things), DIALOGUE (which,
performs dialogue management, and includes a prag-
matic reasoning component as a submodule), BE-
LIEF (which allows DIALOGUE to assess its current
context), and ACTION (which performs goal and ac-
tion management). The interaction begins with the
speaker saying to the robot “I would like the med-
kit.” ASR sends this to NLP, which parses the utter-
ance into a dependency tree, from which it extracts
root semantic content would(X1,like(X1,X2)), with
utterance type Statement, additional semantic content
{speaker(X1) A medkit(X2)}, and presumed cognitive
statuses {X1 — definite, X2 — definite}. Using this
information, POWER searches for the referents to bind
to X1 and X2; for X1, POWER finds a single proba-
ble candidate: agents;, with probability 1.0; for X2,
two candidates are found: objects;, with probability of
satisfaction 0.82, and objectss, with probability of sat-
isfaction 0.92. These bindings are then used to create
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Figure 2:  Architecture Diagram. Knowledge base com-
ponents are depicted in blue; linguistic components are de-
picted in green; simulation components are depicted in pur-
ple; the action manager is depicted in yellow. The main
contribution of this paper is the integration of the POWER
and DIALOGUE components.

the following bound utterances?:

{Statement(bob, sel f, would(bob, like(bob, objects1))),
Statement(bob, sel f, would(bob, like(bob, objectsz)))}

with corresponding probabilities® 0.82 and 0.92, respec-
tively. These are normalized (see Eq. 1) and used to
create DS-theoretic bound utterance structures, which
are passed to DIALOGUE:

{(Statement(bobd, sel f, would(bob, like(bob, objects1))),
0.471,0.471),
(Statement(bob, sel f, would(bob, like(bob, objectsz))),
0.529,0.529) }
The pragmatic reasoning component possess the rule:
(Statement(X,Y, would(Z, like(Z, W))) = )
goal(Y, bring(Y, W, Z)),0.9,0.99),

indicating that the robot is between 90 and 99% con-

fident in the rule; because the antecedent of this rule
matches the utterance form of each bound utterance
structure, uncertain Modus Ponens is applied in both
cases, producing the set of intentional structures:

{{goal(sel f,bring(sel f,objects1,bod)),0.424,0.576),
(goal(self,bring(sel f, objectsz, bob)),0.476,0.524) }

Note that at this point, belief no longer equals plau-
sibility: while the robot may not have encoded any ig-
norance with respect to what utterance was heard, ig-
norance encoded with respect to the context and rules
the robot uses for pragmatic inference are reflected by
ignorance now encoded with respect to the rules’ conse-
quents, thus painting a better picture of how much the
robot truly knows about its interlocutor’s intentions.

Nunez’ uncertainty rule (see Eq. 3) determines that
both of these intentions are highly uncertain. DIA-
LOGUE thus determines its own intention to know which
is correct, encoded as the structure:

(itk(self, or(goal(sel f,bring(sel f, objectsi, bob)),
goal(sel f, bring(sel f, objectsa, bob)))), 1.0, 1.0)
2Here, agent; is changed to the name of that agent for

the sake of dialogue processing.
3All beliefs and plausibilities in this section are rounded.

To decide how to communicate this intention,
the bound utterance semantic structure is passed
through the pragmatic reasoning component in reverse
(Williams et al. 2015), using a rule of the form:

(QuestionWH(X,Y,or(Z,W)) = 5)
itk(X, or(Z,W)),0.95,0.95),

Our approach allows recursive generation, allowing
Eq. 5 to be chained with Eq. 4 to produce:
QuestionW H (sel f, bob, or(would(bob, like(bob, objectsi)),

would(bobd, like(bob, objectsz)))).

At this point, we would ideally send this utterance
form to our NLG component for generation of referring
expressions for “bob”, “object;” and “objecty”. As pre-
viously discussed, this will be a point for future work.

Conclusion

We have presented an HRI-oriented framework for clar-
ification request generation, and shown how the first
three stages of this framework as implemented in the
DIARC architecture can identify and handle both prag-
matic and referential ambiguity, both theoretically and
in practice on a simulated robot. While this demon-
stration serves as proof-of-concept of the capabilities
afforded by this integration effort, a full evaluation
will clearly be necessary. Once all stages of the pro-
posed framework have been implemented, we plan to
run an extrinsic evaluation to determine how the extent
to which the proposed algorithm benefits human-robot
teaming in realistic HRI scenarios.

While the primary contributions of this paper is the
finding that a pragmatic reasoning framework can track
and address referential ambiguity, the work presented
in this paper is also novel with respect to its integra-
tion of DS-theoretic and Bayesian theoretic architec-
tural components. Because components of a robot ar-
chitecture may often use different uncertainty frame-
works, it is important for us to develop theoretically
justified mechanisms for integrating such components.
The presented approach provides one such technique
for integration; in future work, we would like to exam-
ine others, as well as techniques to allow information
to appropriately flow in the other direction (i.e., from
DS-theoretic to Bayesian components).

There are several other extensions we would like to
make in the near future. First, we must extend our ap-
proach in order to allow for more general questions to
be asked. While prior research has shown that people
prefer robots to enumerate options, there may be cases
when it is necessary to ask a more general question,
such as when there are a very large number of possi-
ble candidates for resolution. Future work must also
involve integration of the REG capabilities required for
the fourth stage of the proposed NLG framework. This
will be the immediate focus of future work.
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