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Abstract—Robots designed to interact with humans in realistic
environments must be able to handle uncertainty with respect
to the identities and properties of the people, places, and
things found in their environments. When humans refer to
these entities using under-specified language, robots must often
generate clarification requests to determine which entities were
meant. In this paper, we present recommendations for designers
of robots needing to generate such requests, and show how
a Dempster-Shafer theoretic pragmatic reasoning component
capable of generating requests to clarify pragmatic uncertainty
can also generate requests to resolve referential uncertainty when
integrated with a probabilistic reference resolution component.

I. INTRODUCTION

Imagine a robot named Cindy and a human named Bob.
Cindy and Bob are working together in a disaster relief
scenario, and have just left a kitchen containing two medical
kits: one on a table, and one on a counter. After driving for a
few minutes, Bob turns to Cindy and asks “Can you go back
to the kitchen and grab the medical kit?”

To successfully fulfill Bob’s request, Cindy must resolve
two types of ambiguity. Bob’s request is pragmatically am-
biguous as it could be interpreted directly (as a literal question
as to Cindy’s abilities) or indirectly (as a command to Cindy).
Bob’s request is referentially ambiguous because it could refer
to either the medical kit on the table or the one on the counter.

In previous work, we showed how Dempster-Shafer (DS)-
theoretic pragmatic reasoning could be used to both identify
sources of pragmatic ambiguity and generate pragmatically ap-
propriate clarification requests [27] to resolve such ambiguity.
However, that work could not resolve referential ambiguity,
and assumed that information about all referents was stored
in a single, centrally located knowledge base (c.f. [23]).

In this work, we demonstrate the integration of a DS-
theoretic pragmatic reasoning component with a probabilistic
reference resolution algorithm, and show how this integration
allows a robot to identify, and generate clarification requests
to resolve, referential ambiguity as well. This approach is
uniquely tailored to human-robot interaction (HRI) contexts,
as it produces human-preferred clarification requests that con-
form with the pragmatics of human-robot dialogue.

The remainder of this paper proceeds as follows: First, we
discuss previous work on clarification request generation in

HRI contexts. Next, we present the results of a human-subjects
experiment in which previous findings regarding human pref-
erences with respect to robot clarification request formulation
are replicated and refined. Then, we present and evaluate
an approach to clarification request generation designed to
align with human preferences. Finally, we discuss possible
directions for future work.

II. BACKGROUND

In this section, we first discuss previous work on natural
language generation and clarification request generation. We
then critique that work in order to generate a set of hypotheses
regarding human preferences that should be accounted for
when designing language-capable robots.

A. Previous Work

There has been much previous work in developing general
natural language generation (NLG) systems. For example,
Reiter et al. present an NLG framework comprised of six
stages: content determination, document structuring, aggrega-
tion, lexical choice, referring expression generation (REG),
and realization [16]. It is unclear, however, whether such
frameworks are well suited to situated contexts in which an
agent is embedded in a complex, dynamic, environment rife
with uncertainty and ambiguity [12]. In HRI, for example,
NLG is often performed to solicit information, whereas in
non-situated contexts it is more typically performed to provide
information. In previous work, we thus proposed an HRI-
oriented clarification request generation framework comprised
of five stages: (1) uncertainty identification, (2) decision to
communicate, (3) utterance choice, (4) surface realization,
and (5) speech synthesis [26]. In this paper, we present an
integrated approach that implements all five stages.

Clarification request generation itself has also attracted a
large amount of research overall [15] 23], but relatively little
in situated contexts such as human-robot interaction. Recently,
some researchers have used information-theoretic techniques
to identify random variables which could have their entropy
reduced if asked about. In such work, clarification requests
have taken the form of yes/no questions about the properties



of an object [5, 9, [14] or generic wh-questions (e.g., “What
do the words X refer to?”) [22, [14].

Recent experimental evidence [L1]] suggests, however, that
in HRI contexts, people prefer robots to list multiple options
rather than asking for confirmation about a single referent with
a yes/no- or generic wh-question (c.f. [3]]). This is particularly
striking as the evidence suggests that people maintain this
preference even when a yes/no- or generic wh-question would
be more efficient (c.f. [9])).

In contrast, Kruijff et al. present an approach in which
robots can generate multiple-option clarification requests such
as “Do you mean the blue or the red mug, Anne?” through
a continual planning approach [10]. This approach, however,
does not appear to be able to account for social context,
uncertainty, or ignorance, and is only used for generation. The
ability to handle social context is crucial for enabling natural
HRI, and typical HRI scenarios are plagued by uncertainty
and ignorance. An eldercare robot, for example, is not likely
to be familiar with every object in the home of the elder it
is assisting, nor with every person who might be referred
to. Furthermore, the robot is unlikely to have uncertainty-
free knowledge of all of the properties and relations involving
those entities it does know of. We desire an approach that can
account for these missing factors, and which can be used for
both generation and understanding.

B. Design Hypotheses

In developing a new HRI-oriented approach to clarification
request generation, our primary goal is to account for these
missing factors. But we believe it is equally important to
take human preferences into account as part of the design
process. We believe that the previous work discussed thus far
has not adequately considered what type of utterances humans
prefer to use and be used. We hypothesize that there are three
categories of human preferences that should affect the design
decisions made when developing HRI-oriented clarification
request generation algorithms.

Presentation of Options: Marge and Rudnicky| (2015) sug-
gests that people prefer that robots list options rather than ask
yes/no- or generic wh-questions. But clearly there are limits
to this preference. If a robot is asked “Could you get me
some ice cream?” It is unlikely that humans will prefer a robot
that lists twenty-seven available flavors instead of just asking
“Which flavor would you like?” It is not yet clear, however,
how many options can be listed until the use of a list is no
longer preferable. We hypothesize (H1) that humans prefer
options to be listed only for a very small number of options.

Demonstration of Intention Understanding: Similarly, many
previous approaches use clarification requests that do not
demonstrate understanding of the meaning of the sentence. If a
robot is asked “Could you get me some ice cream,” a robot that
replies “What do the words ‘ice cream’ refer to” or “Do you
mean ‘the chocolate ice cream’ or ‘the vanilla ice cream™ does
not allow its interlocutor to discern whether their intention
was understood. In contrast, a robot that replies “Would you
like me to get you the chocolate ice cream or the vanilla ice

cream?” communicates understanding that the human wants
ice cream brought to them. We hypothesize (H2) that humans
prefer clarification requests that demonstrate understanding of
their intentions.

Pragmatic Appropriateness: Finally, a robot that does
generate clarification requests reflecting its understanding of
human intentions will almost certainly need to use indirect
speech acts [19] (e.g., Would you like me to get you the
chocolate ice cream or the vanilla ice cream?), as the direct
alternatives (e.g., “I have an intention to know whether you
want me to have a goal to bring you the chocolate ice cream or
the vanilla ice cream”) are hard to express succinctly, and are
viewed as less polite. We hypothesize (H3) that humans prefer
indirectly rather than directly phrased clarification requests.

III. EXPERIMENT ONE: PREFERENCE ASSESSMENT

In this section, we present the results of a human subjects
experiment designed to test our three hypotheses.

A. Methodology

Participants were recruited (20 Male, 10 Female) using
Amazon Mechanical Turk. Participants ranged in age from 24
to 48 (M=32.67,SD=6.30). Each participant was asked seven
simple questions, presented in a randomized order. Participants
were told to imagine commanding a robot to “pick up the mug”
in a scenario with several different-colored mugs on a table.
For each question (which differed in the number of candidate
mugs) two ways of asking for clarification were presented.
Participants were asked to indicate which option they would
prefer the robot to use.

The first five questions evaluated H1. In each case, par-
ticipants chose between an option that listed out all options
(ranging from “Would you like the red mug or the orange
mug?”’ to “Would you like the red mug or the orange mug or
the yellow mug or the green mug or the blue mug or the purple
mug?”’) and a catch-all (“Which mug would you like?”).

The sixth question evaluated H2. Participants chose between
an option that indicated understanding of the speaker’s goals
(“Would you like the red mug or the green mug?”’) and one
that did not (“Do you mean the red mug or the green mug?”).

The last question evaluated H3. Participants chose between
a pragmatically appropriate option (“Would you like the red
mug or the blue mug?”’) and a pragmatically inappropriate
option (“I have an intention to know if you want me to have
a goal to bring you the red mug or the blue mug.”ﬂ

B. Results

As shown in Fig. |1} our results show that 70% of partici-
pants preferred options to be listed when there were only two
options. But for more than two options, this number rapidly
shrank. Only 20% of participants preferred options to be listed

'While this may seem a tortured construction, it is actually a straightforward
verbalization of the type of logical expression commonly needed to be
expressed in our robot architecture, and emphasizes how difficult it is to phrase
clarification requests without using any sort of indirect language. In future
work, however, it would be interesting to examine the effects of utterances
that trade off pragmatic appropriateness for specificity in various ways.
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Fig. 1: Experiment One Results. Percentage of participants who
preferred options to be listed, for each candidate number of options.

when there were three options, and preference for listing all
options fell lower still when more options were listed. This
confirms but clarifies the previous findings of Marge et al.
[L1], and suggests that robots likely do not need mechanisms
for listing more than two options when there is referential
ambiguity (H1). Our results show that 80% of participants
preferred the option that indicated understanding of their goals,
supporting H2. Our results show that 93% of participants
preferred the pragmatically appropriate option, supporting H3.

C. Discussion

The results of this experiment suggest three design recom-
mendations. (D1) When phrasing clarification requests, if there
are only two options, robots should present both options. Oth-
erwise, robots should use a yes/no- or generic wh-questio
(D2) When phrasing clarification requests, robots should use
phrasings that indicate that they understand the goals of
their interlocutors. (D3) When phrasing clarification requests,
robots should use pragmatically appropriate phrasings.

In the next section, we demonstrate how the integration of
architectural components for reference resolution and prag-
matic reasoning facilitates an approach to clarification request
generation that not only fulfills all three of these design
decisions, but also satisfies capabilities missing from previous
approaches (e.g., context sensitivity, handling of uncertainty
and ignorance, and use for both understanding and generation).

IV. APPROACH

In this section, we describe how each stage of our HRI-
oriented clarification request generation framework [26] is
handled by components of the DIARC architecture [18].

A. Uncertainty Identification
The first step in our clarification request generation frame-

work is identifying whether or not there is uncertainty that

2Future research will be needed to determine how the content of the options
to be offered may impact how this decision is made. The results of such
research may suggest refinements of this recommendation.

needs to be clarified. To achieve this, we first determine the
set of referential candidates and their respective levels of
uncertainty. We then provide those candidates to a pragmatic
inference component which produces a set of uncertain candi-
date interpretations. In this section, we will detail this process
and the integration challenges it presents.

Notation (c.f.[21])

M A robot’s world model of entities {mo ... mn}.

A A set of logical formulae \o ...\, denoting (literal,
%4
T

direct) semantic connotation of an incoming utterance.
A set of free variables found in A.
A set of bindings from variables in V' to entities in
M, denoting the semantic denotation of an incoming
utterance.

P A satisfaction variable which is True iff all formulae
in A hold when bound using T.

Our approach uses the DIST-POWER framework to facilitate
access to information about entities a robot knows of [25]].
The DIST-POWER framework uses a set of “consultants” to
integrate a central, domain-independent open-world reference
resolution component with a set of heterogeneous knowledge
bases distributed throughout a robot architecture, potentially
residing on multiple machines. In our instantiation of this
framework, we make use of GH-POWER: our Givenness Hier-
archy-theoretic reference resolution algorithm [28]. Based on
the theoretical linguistic framework presented by Gundel et
al. [8], GH-POWER treats DIST-POWER’s distributed memory
system as a Long Term Memory Store, and builds on top
of it a set of hierarchical caches representing models of the
robot’s Discourse Context, Short-Term Memory, and Focus of
Attention. This allows GH-POWER to resolve a wide array of
referring expressions (REs). And, like the non-GH-theoretic
version of POWER, GH-POWER handles both uncertain and
open worlds. For the sake of simplicity, we will use POWER
to refer to the distributed, GH-theoretic form of the POWER

algorithm and its associated data structures.

POWER uses the logical form of an RE to (1) hypothesize
new representations for previously unknown referents, and (2)
produce a distribution P(® | I', A); that is, the probability
of successful satisfaction conditioned on binding hypotheses
from variables to known referents:

{o=A{v00---70.} -, Tm = {¥mo - - - Yma }}
and semantic parse hypotheses:

{AO = {AOO~~->\OH}--~7Am = {)\mo Amn}}

For example, suppose Bob asked Cindy “Can you grab the
medical kit?” Cindy may parse this into something like

QuestionY N (b, s, can(s, grab(s, X)))

with additional semantic content A; = {medkit(X)} (Here-
after, we will use the abbreviations b="bob” and s=“self”).
If Cindy is 70% sure that the ms is a medical kit, reference
resolution will produce:

P(® =True |I' ={X — ms},A = {medkit(X)}) = 0.7

All sufficiently probable referential hypotheses are then
used to create a set of bound utterances with supplemen-
tal semantics (BUSSes) ¥ = {¢g...9,}. Bach v¢; €



U is associated with a unique sufficiently probable bind-
ing ~; from variables found in the parsed utterance form
and its supplemental semantics to entities found in Long
Term Memory. For example, the BUSS associated with form
QuestionY N (b, s, can(s, grab(s, X))), semantics {medkit(X)},
and binding {X — ms} would be:

{QuestionY N (b, s, can(s, grab(s,ms))) A medkit(ms)}.

One could then create a distribution over BUSSes P(1);) =
P(T;, A; | ;) using Bayes’ Rule, if the next natural language
component used a Bayesian framework. In fact, the next
component in our architecture (i.e., the pragmatic reasoning
component) uses a more general DS-theoretic framework [27]],
and thus another approach must be taken.

Dempster-Shafer (DS) Theory is a generalization of the
Bayesian uncertainty framework that allows for elegant reason-
ing about uncertainty and ignorance even when distributional
information is unavailable [ZOﬂ DS Theory is an attractive
option for HRI domains in which agents may encounter new
entities and concepts only a small number of times, with no
information regarding the distribution underlying their occur-
rence. DS Theory is also useful for tasks such as pragmatic
reasoning, because it would be impractical to store priors
over all combinations of intentions and contexts, as would be
required in a Bayesian framework; and because it allows the
use of DS-based logical rules such as Modus Ponens, which
cannot be used in a strictly Bayesian framework.

But not all components of a robot’s architecture will
likely be DS-theoretic. For some components, distributional
information may well be available, allowing for use of a
Bayesian approach. Each architectural component should be
able to use the knowledge representation and uncertainty
management approach most conducive to its own operation.
To facilitate this, researchers have developed mechanisms that
allow seamless integration between components with different
uncertainty management schemes [26].

Using the mechanisms discussed in such work, we produce a
DS-theoretic Frame of Discernment (FoD) © of hypotheses de-
scribed by the logical conjunctions (i.e., BUSSes) {¢q . .. 1y }.
Remember that each BUSS contains both a parsed utterance
form and a set of supplemental semantics, bound using a
single candidate variable binding. The next component in the
DIARC NL Pipeline (i.e., PRAG) only uses the utterance form,
however, and there may be multiple hypotheses in the resulting
Frame of Discernment © that have the same utterance form but
different supplemental semantics. Note, however, that each v
only uses those bindings in I'; associated with the utterance’s
root node (typically the formula representing the verb). There
may be variables in V' that had multiple possible bindings, but
which do not appear in the utterance’s root node, and thus there
may be identical hypotheses within our frame of discernment.

For example, if Bob had asked “Can you grab the medkit
that is near the book?”, and one candidate medkit (mq) is

3For reasons of space, this paper does not include a treatment of the basic
notions of DS Theory. We direct the unfamiliar reader to [27], upon which
this work builds and which covers DS Theory’s basic notions, or to [6], which
provides a more thorough treatment for the uninitiated.

actually near two books (me and mg), we could have two
hypotheses which can be described by BUSSes that have the
same utterance form (e.g. QuestionY N (b, s, grab(s,m1)))
but different supplemental semantics (e.g., {medkit(mi) A
book(ms) A near(my,ms)} vs {medkit(my) A book(ms) N
near(ms,ms)}. We thus cluster these hypotheses into sets
Cop,...,C, such that all hypotheses associated with each
set are described by BUSSes that have the same utterance
form. For example, if we have three singleton hypotheses
{61,0205}, and ¢y and 12 have the same utterance form,
C = {{01,02},{03}}.

We can now split our FoD © into a set of | C'| “binary”
FoDs, one for each cluster C;. Each binary FoD itself has
two hypotheses: (1) that the utterance form describing all
hypotheses in cluster C; represents what was communicated,
and (2) that it does not. This splitting has no theoretical
ramifications, but facilitates easier integration with PRAG.
Because each cluster is mutually exclusive from all other
clusters, each binary FoD can be represented entirely by the
bound utterance structure:

(utterance(vy), BI({Ci, ... Ci, }), Pl({Ci, ... Ci,, }))-
Suppose © = {61, 605,035} and U = {1,149, 13}, where

1 =(QuestionY N (b, s, can(s, grab(s,m1)))

A medkit(m1) A book(mz) A near(mi, ms)),
2 =(QuestionY N (b, s, can(s, grab(s,m1)))

A medkit(m1) A book(ms) A near(mi, ms)),
3 =(QuestionY N (b, s, can(s, grab(s,m4)))

A medkit(ma) A book(mz) A near(ma, m2)),

and assume the following DS-theoretic Basic Belief Assign-
ment(BBA) assigning probability masses to each hypothesis in
©, where Bl and Pl (belief and plausibility) are upper and
lower bounds on the expected probability of each hypothesis:

Hypothesis Mass Bl Pl

0 0.0 00 0.0
{61} 0.2 02 02
{62} 0.3 03 03
{63} 0.5 05 05
{61,02} 0.0 05 05
{02, 65} 0.0 0.8 0.8
{05, 61} 0.0 0.7 0.7

{61,65,051 00 1.0 1.0

Because 11 and 1o have the same utterance form, C' =
{{61,02},{05}}. From this, the following set of bound utter-
ance structures will be created:

{{QuestionY N (b, s, can(s, grab(s,o1))),
Bl({01,02}), PI({01,02})),
(QuestionY N (b, s, can(s, grab(s, 04))),
BI({05}), PL({63}))} =
{{QuestionY N (b, s, can(s, grab(s, 01))),0.5,0.5)
(QuestionY N (b, s, can(s, grab(s, 04))),0.5,0.5) }

The set of bound utterance structures is sent to PRAG,
which uses context to determine the intentions underlying
utterances [27], producing a set of intentional structures



(I, BI(I), PI(I)). If the difference between BI(I) and PI(I)
is sufficiently large, or if w is sufficiently close
to 0.5, (assessed using Nunez’ uncertainty measure [13]),
intention I is deemed in need of clarification. PRAG then
formulates an intention-to-know (itk) which of these intentions
is correct, denoted itk(s, or(ig,i1,...,0n)).

Before integration with POWER, PRAG only handled prag-
matic uncertainty. Because PRAG now receives a set of candi-
date utterance forms with potentially different argument bind-
ings, it now also automatically handles referential uncertainty.

Before we move on, we would like to point out that that be-
cause DIARC’s reference resolution component handles open
worlds, instances in which interlocutors refer to previously
unknown entities do not automatically generate clarification
requests. For example, if the robot is told “Go to the room
at the end of the hall” and does not know of a room at the
end of the hall, it will not ask for clarification, but will rather
hypothesize a new location, and carry on. We do not regard
such situations as referentially ambiguous (although it may be
valuable to ask for more information about this location). Here,
the robot knows what entity is being referred to: a previously
unknown room at the end of the hall.

B. Decision to Communicate

Currently, any intention-to-know (itk) formulated during
the previous stages is automatically asserted into the robot’s
knowledge base, triggering a decision to communicate this
intention once it is acceptable for the robot to accept the
conversational turn. When this decision is made, the itk is
passed to the pragmatic generation component for processing.

C. Utterance Choice

The robot must now determine a contextually appropriate
way to formulate its intention at the utterance level. This
is accomplished once again by PRAG, which uses the same
set of rules for generation as it uses for inference [27].
In Experiment One, we observed that if there were more
than two options, listing those options was dispreferred
over a more general question. Thus, if we are to send a
clarification request to PRAG that has semantics of the form
itk(self, or(optiony, ...optiony,)), we first check whether or
not n is greater than the acceptable number of candidates to
list, i.e., two. If n = 2, this intention is sent directly to PRAG.
Otherwise, all options are unified into a single predicate
whose only bound arguments are those that are identical
for all options. For example, if {option;, optionsy, options}
= {need(jim, objy), need(jim, objs), need(jim, objs)},
these will be unified into need(jim,?), and the intention
itk(sel f,need(jim,?)) will be sent to PRAG instead.

Using DS-theoretic logical operators, PRAG determines a
set of candidate utterance forms, each of which is forward-
simulated through pragmatic inference to ensure that the
agent does not accidentally communicate anything it does not
actually believe to be true as a side effect of communicating
its primary illocutionary point. The best candidate utterance is
then sent to NLG for surface realization.

This processing step is not typically included in traditional
NLG frameworks, which do not typically need to account
for social context or dialogue context. They instead typically
include a document structuring (c.f. [16l]) stage in which
the agent determines the order in which to convey multiple
utterances. Because clarification request generation in HRI
typically only involves a single utterance, we do not currently
handle this step, but it will be an important topic for future
work. A robot may, for example, need to preface a clarification
request by stating what parts of an utterance it did understand.

D. Surface Realization and Speech Synthesis

Once an appropriately phrased utterance form is chosen by
the pragmatic generation component, that utterance is sent
to the Natural Language Generation component for Surface
Realization. First, that component chooses sets of properties to
use to describe each of the utterance’s referents. For example,
consider the utterance form

QuestionW H (s, b, or(need(b, grab(s, m1)), need(b, grab(s,mz)))).

Here, there are two referents that must be described: m, and
mq. The referent m; may be described using the properties
{mug(X) AN white(X)}, and mge may be described using the
properties {mug(X) A black(X) Alarge(X)}.

The utterance form and sets of properties are then translated
into raw text using the open source SimpleNLG package,
producing, for example, “Do you need the white mug or do
you need the large black mug?” when there are two referential
candidates, and producing, for example, “Which one do you
need?” in the case of a larger number of referential candidates.
The open source MaryTTS package is then used to synthesize
this text into an audio form that is produced by the robot.

V. DEMONSTRATION

To demonstrate the operation of the presented approach,
we present a proof-of-concept interaction that occurs in a
simulated environment. This demonstration highlights the full
implementation of all stages of the clarification request gen-
eration framework through components of the DIARC archi-
tecture. Specifically, this demonstration uses the components
of the DIARC architecture shown in Fig. 2] In addition
to components responsible for the simulation of a Pioneer
robot within an office environment, our configuration used
the following components: ASR (which performs simulated
speech recognition), NLP (which uses the C&C parser within a
GH-theoretic framework), POWER (which performs reference
resolution), AGENTS, SPEX and OBJECTS (POWER Consultants
(c.f. [24]]) providing information about people, places, and
things), DIALOGUE (which, performs dialogue management,
and includes PRAG as a submodule), BELIEF (which allows
DIALOGUE to assess its current context), and ACTION (which
performs goal and action management). Of these components,
the POWER, NLP, NLG, and DIALOGUE components are central

to the integrated approach presented in this paper.

The interaction begins with the speaker saying to the
robot “I need the medkit” in an environment in which the
robot knows of two medkits, one red and one white. ASR
sends this sentence to NLP, which parses the utterance into a
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Fig. 2: Architecture Diagram. Knowledge base components are
depicted in blue (horizontal stripes), linguistic components in green
(no stripes), simulation components in purple (vertical stripes)), and
the action manager in yellow (diagonal stripes).

dependency tree, from which it extracts root semantic content
need(X1, X2), with utterance type Statement, additional se-
mantic content {speaker(X1) Amedkit(X2)}, and presumed
cognitive statuses { X1 — definite, X2 — definite}. Using
this information, POWER searches for the referents to bind to
X1 and X2; for X1, POWER finds a single probable candidate:
agti, with probability 1.0; for X2, two candidates are found:
obj1, with probability of satisfaction 0.82, and obj, with
probability of satisfaction 0.92. These bindings are then used
to create the following bound utterances

{Stmt(b, s,need(b,0bj1)), Stmt(b,s,need(b,obj2))}

with corresponding probabilitief] 0.82 and 0.92, respectively.
These are normalized and used to create DS-theoretic bound
utterance structures, which are passed to DIALOGUE:

{(Stmt(b, s,need(b, 0bj1)),0.471,0.471),
(Stmt(b, s, need(b, obj2)),0.529,0.529) }

PRAG possesses the rule:

(Stmit(X,Y,need(Z,W)) = goal(Y,bring(Y,W, Z)),0.9,0.99),

(1)
indicating that the robot is between 90 and 99% confident
in the rule; because the antecedent of this rule matches the
utterance form of each bound utterance structure, uncertain
Modus Ponens is applied in both cases, producing the set of
intentional structures:

{{goal(s,bring(s, obj1,b)),0.424,0.576),
(goal(s, bring(s, objz,b)),0.476,0.524) }

Note that at this point, belief no longer equals plausibility:
while the robot may not have encoded any ignorance with
respect to what utterance was heard, ignorance encoded with
respect to the context and rules the robot uses for pragmatic
inference are reflected in the uncertainty intervals of the rules’
consequents, thus painting a better picture of how much the

robot truly knows about its interlocutor’s intentions.
Nunez’ uncertainty rule determines that both of these inten-
tions are highly uncertain. DIALOGUE thus determines its own

“Here, agty is changed to the agent’s name for dialogue processing.
5 All beliefs and plausibilities in this section are rounded.

intention to know which is correct, encoded as the structure:
(itk(s, or(goal(s,bring(s, obj1,b)),
goal(s,bring(s, objz,b)))), 1.0,1.0)
To decide how to communicate this intention, the bound

utterance structure is passed through PRAG in reverse [27],
using a rule of the form:

(QuestionWH (X, Y, or(Z,W)) =

itk(X, or(Z,W)),0.95,0.95), @

Our approach allows recursive generation, and thus Eq. [2] is
chained with Eq. [I] to produce:

QuestionW H (s, b, or(need(b, obj1), need(b, objz))).

This utterance is then sent to our NLG component for gen-
eration of REs for “bob”, “obj,” and “objs”, and subsequent
realization of the entire expression. This produces the text “Do
you need the white medkit or do you need the red medkit?”
which is then synthesized and output by the robot.

VI. EXPERIMENT TWO: HUMAN-SUBJECTS EVALUATION

To evaluate our approach, we conducted a human-subject
experiment similar to Experiment One, comprised of (1) a
data collection stage, and (2) an evaluation stage.

A. Data Collection

We first created a tabletop scene containing twelve ob-
jects: four different colored waterbottles, four different colored
markers, and four different colored mugs (Fig. [3). For each
object type, we took photographs of the scene in which zero,
one, or two of that object type were taken away. This produced
nine tabletop scenes, three of which contained identical object
arrangements (i.e., those scenes in which no objects were
removed). In our data collection experiment, each participant
was shown one of these nine images at random, with a caption
describing the participant’s task, followed by a text box. For
example, for the image in which three of the four waterbottles
was shown, the following caption was used:

“You have been told ‘I need the bottle!” and would like to
fulfill the speaker’s request. However, as you can see, there
are three bottles on the table: a silver bottle, a green bottle,
and a blue bottle. Please type a sentence you would use to
ask the speaker for clarification, so that you will know what
bottle to pick up."

- '
)
A

e

Fig. 3: Tabletop Environment used in Experiment Two.



Vocabulary | Types | Type/Token Ratio | Diversity [2} [17] Generator | # | Utterance Generated in Part One Result
596 64 107 1.85 Robot 2 | Do you need __ or do you need __? 9.4%
Human 2 | Doyouneed __ or _? 45.3%

TABLE I: Vocabulary statistics for utterances collected in Human 2 | What color __ do you need? 22.6%
Experiment Two, Part One. Human 2 | What color __ do you want? 22.6%
Robot 3 | Which one do you need? 23.7%

Human 3 | Which color __ do you need? 33.9%

.. . . Human 3 | Which color __? 23.7%
Similar captions were used for the other images. Once the Human 3 | Which color __ would you like? 18.6%
participant entered text into the text box, they were free to Robot 4 [ Which one do you need? 20.0%
click to the next page, and end the experiment. Human 4 | What color __ do you need? 24.3%
Participants were recruited (53 Male, 39 Female) using Euman i gﬂlcﬁ CO{OT _?WOllld you like? %%ZZ//U

; . : uman ich color __? 4%

Amazon Mechanical Turk. Participants ranged in age from 20 Human 4 | What color is the 2 11.4%

to 77 (M=33.15,SD=8.94), and were paid $0.30 to participate.
As a total of 92 participants were recruited, an average of
30.7 utterances were collected for each grouping of scenes that
had the same number of objects removed. Vocabulary diversity
statistics for these utterances are reported in Tab. [I}

All utterances collected in this stage were standardized with
respect to noun phrasing. For example, “Do you want me to
pick up the silver bottle or the blue bottle?" was reduced to
“Do _ want _ to pick up _ or _?" All utterances within each
cluster were grouped by identical phrasing, and the three most
common phrasings for each cluster were selected (four in the
case of a tie). The REG algorithm described above was then
used to generate noun phrases to fill into the previously created
gaps, thus creating three to four utterances for each image.

Next, an additional utterance was generated for each image
using the approach presented in this paper: for each image,
knowledge of the objects in the image was provided to the
robot architecture, and the utterance “I need the [name of
object type]” was said to a robot running the architecture. Be-
cause the architecture also used the REG algorithm described
above, the utterances generated by our robot architecture had
the same noun-level phrasings as all other utterances, but a
different utterance-level phrasing. Thus, this stage produced
a set of thirty-nine utterances with unique utterance level
phrasings but identical noun level phrasings. The thirteen
utterance forms (before REs were filled in) are shown in
Tab. [ Column 3.

B. Evaluation

In this stage, each participant was shown one of the nine
tabletop scenes created in the first stage, along with a caption
such as: “Your friend Alex says to you, ‘I need the bottle!’
Which of the following sentences would be best to say to Alex,
so that you will know which bottle to give her?"

Each participant was then presented with the four to five
utterances associated with the presented image, in the form
of buttons. Clicking on one of the utterances moved the
participant to the next page, and ended the experiment. Par-
ticipants were recruited (94 Male, 88 Female) using Amazon
Mechanical Turk. Participants ranged in age from 18 to 74
(M=34.55, SD=11.16), and were paid $0.30 to participate. As
a total of 182 participants were recruited, an average of 20.22
data points were collected for each scene.

Robot-generated requests were chosen only slightly less
frequently than were human-generated requests: overall, robot-

TABLE 1II: Utterance forms generated in Experiment Two,
Part One, and chosen between in Experiment Two, Part Two.
Col. I indicates whether each utterance form was generated
by the presented approach or by a human in Part One. Col.
2 indicates how many suitable referents existed in the scene
for which each utterance was generated. Col. 3 indicates the
generated utterance form, generalized across noun phrases. In
Part Two, blanks were filled with generated REs. For example,
in scenes with initial utterance “I need the bottle”, gaps in the
first two rows were filled with “the green bottle” and “the
silver bottle”, and remaining gaps were filled with “bottle”.
Col. 4 indicates the percentage of participants in Part Two
who chose that utterance form as the best to use to ask for
clarification.

generated requests were chosen 18.13% of the time, whereas
each form of human-generated request was chosen, on average,
24.67% of the time. Overall, this is a positive result as it
suggests that the algorithm overall did not generate requests
that were much worse than the requests that humans used most
frequently. A request-by-request breakdown of participants’
choices is shown in Tab. [[I, Column 4.

But in fact, robot-generated requests stand to perform sig-
nificantly better than the majority of human-generated requests
when there are exactly two options to disambiguate. As shown
in the first section of Tab. [[I} in this case our robot-generated
requests were chosen significantly less frequently than were
human-generated requests, but were nearly identical to the top
performing human-generated requests. The robot-generated
requests were simply more verbose, as they used a conjunction
at the clause level rather than the noun-phrase level. This
suggests that if our approach had been modified to use
conjunctions at the phrase level, it may have outperformed the
second- and third-best human-generated requests combined.
We have since made this modification, as we will later discuss.

C. Discussion

In Experiment One, we observed that participants dispre-
ferred clarification requests that were insensitive to pragmatic
factors, did not indicate understanding of an interlocutor’s
goals or intentions, listed more than two options, or did not
list both options when there were only two likely candidates.
These observations were confirmed in Experiment two, part



two. The most commonly chosen clarification requests were
nearly identical to the clarification requests generated by
our robot architecture. But in neither the two-, three-, or
four-option utterance groupings were our chosen clarification
requests exactly identical to the most commonly chosen clar-
ification requests, and in fact differed from those requests in
small but important ways.

As previously mentioned, when there was referential am-
biguity between only two candidate referents, participants in
Experiment Two Part Two preferred clarification requests that
listed all options. However, the specific phrasing used by
our robot architecture was simply too verbose, as it failed
to identify structural similarities and distribute appropriately.
Since running this evaluation, we have added functionality
to the NLG component that performs such distribution when
structural similarity is detected, and our robot architecture
thus now generates the exact utterance forms that were most
preferred by humans (e.g., “Do you need __ or __” rather
than “Do you need __ or do you need __?”). Future work
will be needed to determine the distribution of selections
that would be seen if the overly verbose (originally robot-
generated) RE were not presented. We would expect the most
common human-generated (and now, robot-generated) RE to
be chosen between 45.3 and 54.5% of the time, putting the
robot’s performance on par with human performance.

A greater difference is observed when more than two
options present themselves. It is striking to observe that all
commonly-used human-generated utterances in these cases
do not explicitly ask for disambiguation between bottles,
but rather ask for information regarding a specific property
that could be used to disambiguate between bottles. This
suggests that in these cases, the optimal approach to clari-
fication request generation likely lies somewhere between the
approach presented in this paper and the information-theoretic
approaches seen in previous work [l 9, [14]. We predict that
the ideal approach to clarification request generation may
involve generation in a way quite similar to the approach
used in this paper, followed by a stage in which information-
theoretic mechanisms are used to add differentiating modifiers.

It is also important to note, however, that in all three
cases a significant percentage of participants did choose the
less popular choices. When four options were presented, for
example, “Which color__ would you like” was chosen by
less than two percent fewer participants than was the most
popular “What color __ do you need?”. This suggests that it
may be valuable in future work to develop models of human
interlocutors that model this type of individual difference.

While at first glance the difference between the alternate
strategies may seem arbitrary, we suspect that they in fact
represent different strategies that are either explicitly used, or
which arise from differential weightings of pragmatic princi-
ples. Utterances such as “Which color __ do you need” may
be used due to subconscious lexical entrainment or conscious
refashioning in which speakers use the same phrasing as that
used by their interlocutors [4, [1, [29]. Utterances such as
“Which color __ would you like” and “Which color __ do you

want” may be used if the pragmatic value of a refashioned
sentence is weighted lower than that of a more conventionally
indirect utterance form [19]]. And utterances such as “Which
color_,’ may be used due to the interaction of either afore-
mentioned pragmatic strategy with Grice’s Third Maxim of
Manner: “Be brief (avoid unnecessary prolixity)” [7].

VII. CONCLUSION

We have presented an integrated approach to clarification
request generation for HRI contexts, and shown how this
approach can identify and handle both pragmatic and refer-
ential ambiguity. We have also shown how our approach can
be used in architectures where information about referents is
distributed across multiple heterogeneous knowledge bases,
as is often the case in cognitive robot architectures. The
primary finding of this paper is that a language-enabled
robot’s pragmatic reasoning component can track and address
referential ambiguity when integrated with a probabilistic ref-
erence resolution component: a useful finding for designers of
language-enabled robot architectures intended for use in HRI
domains. We furthermore demonstrated an implementation of
this approach on a simulated robot.

In addition, we have provided the results of two human-
subject studies. Our first study replicated and refined the rec-
ommendations of previous studies of human-robot dialogue.
Our second experiment showed that the theoretical commit-
ments of our robot architecture align with human preferences,
and that the clarification requests generated by our full NLG
pipeline may be comparable to human-generated clarification
requests.

Our findings suggest several directions for future work.
First, research is needed on using information-theoretic mech-
anisms to adapt clarification requests generated by pragmatic
reasoning components. Second, research is needed to develop
speaker-specific models that can predict precisely what type
of clarification request they would most likely prefer, based
on their inferred weighting of pragmatic principles. Third,
future work should also further examine methods by which
components using different frameworks for representing uncer-
tainty can be optimally integrated. Finally, a tighter integration
between pragmatic reasoning and reference resolution can
be achieved. In previous work, we have shown how our
pragmatic reasoning component can use contextual knowledge
to abduce the most appropriate way to phrase an utterance;
but this contextual knowledge is assumed to be stored in a
robot’s centralized belief and dialogue components. In future
work, this should be extended to allow this knowledge to
be appropriately distributed across the robot’s heterogeneous
knowledge bases, as is its other knowledge.
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