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Abstract Robots designed to interact with humans in realistic environments must be
able to handle uncertainty with respect to the identities and properties of the people,
places, and things found in their environments. When humans refer to these entities
using under-specified language, robots must often generate clarification requests to
determine which entities were meant. In this paper, we first present recommenda-
tions for designers of robots needing to generate such requests. We then show how a
Dempster-Shafer theoretic pragmatic reasoning component capable of generating re-
quests to clarify pragmatic uncertainty can also generate requests to resolve referen-
tial uncertainty when integrated with probabilistic reference resolution and referring
expression generation components. Our system is then demonstrated in a simulated
alpine search and rescue context enabled by a novel hybrid architecture.

1 Introduction

Imagine a robot named Cindy and a human named Bob. Cindy and Bob are working
together in a disaster relief scenario, and have just left a kitchen containing two med-
ical kits: one on a table, and one on a counter. After driving for a few minutes, Bob
turns to Cindy and asks “Can you go back to the kitchen and grab the medical kit?”
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To successfully fulfill Bob’s request, Cindy must resolve two types of ambigu-
ity. Bob’s request is pragmatically ambiguous as it could be interpreted directly (as a
literal question as to Cindy’s abilities) or indirectly (as a command to Cindy). Bob’s
request is referentially ambiguous because it could refer to either the medical kit on
the table or the one on the counter. Referential ambiguity is a key challenge in real-
istic robotics applications, as in realistic task contexts there may be a large number
of task-relevant entities that could be referred to. What is more, these entities must
be disambiguated using the properties they hold and the relationships between them-
selves: a challenge not often encountered in other conversational applications such
as personal assistants, where many candidate referents (e.g., people, songs, and com-
mercial locations) have uniquely identifying proper names. This challenge is made
even more difficult by the necessity for grounding and uncertainty and incomplete-
ness of knowledge in realistic robotics applications (Mavridis, 2015).

When humans are confronted with this sort of ambiguity, they typically resolve
it using clarification requests such as “Do you want me to retrieve the medical kit
that is on the counter or the medical kit that is on the table?” (Tenbrink et al, 2010).
In previous work, we showed how Dempster-Shafer (DS)-theoretic pragmatic rea-
soning could be used to both identify sources of pragmatic ambiguity and generate
pragmatically appropriate clarification requests (Williams et al, 2015) to resolve such
ambiguity. However, that work could not resolve referential ambiguity, and assumed
that information about all referents was stored in a single, centrally located knowl-
edge base (cf. Williams and Scheutz, 2016a).

In this work, we demonstrate the integration of a DS-theoretic pragmatic reason-
ing component with algorithms for performing reference resolution and referring ex-
pression generation under uncertainty, and show how this integration allows a robot to
identify, and generate clarification requests to resolve, referential ambiguity as well.
This approach is uniquely tailored to human-robot interaction (HRI) contexts, as it
produces human-preferred clarification requests that conform with the pragmatics of
human-robot dialogue.

The remainder of this paper (which is largely based on our previous work
in (Williams and Scheutz, 2017b)) proceeds as follows: First, we discuss previous
work on clarification request generation in human-robot interaction contexts. Next,
we present the results of a human-subjects experiment in which previous findings
regarding human preferences with respect to robot clarification request formulation
are replicated and refined. We then present an HRI-oriented framework for clarifica-
tion request generation along with an algorithmic implementation of that framework
which is designed to align with human preferences. As part of this evaluation, we
introduce a novel hybrid architecture, in which the language understanding and gen-
eration components of the ADE-based DIARC architecture described in this paper
are integrated with the ROS-based KnowRob Knowledge processing framework and
CRAM architecture. Here, KnowRob+CRAM provide knowledge of – and potential
for action within – a simulated alpine search and rescue context. Using this hybrid ar-
chitecture, we demonstrate the behavior of our presented approach within that alpine
search and rescue context. Finally, we conclude with possible directions for future
work.
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2 Background

In this section, we first discuss previous work on natural language generation in gen-
eral, and clarification request generation. We then critique that work in order to gen-
erate a set of hypotheses regarding human preferences that should be accounted for
when designing architectural components for language-capable robots.

There has been much previous work in developing general natural language gen-
eration (NLG) systems. For example, Reiter et al. present an NLG framework com-
prised of six stages: content determination, document structuring, aggregation, lexical
choice, referring expression generation (REG), and realization (Reiter et al, 2000). It
is unclear, however, whether such frameworks are well suited to situated contexts in
which an agent is embedded in a complex, dynamic, environment rife with uncer-
tainty and ambiguity (Matarić, 2002). In HRI, for example, NLG is often performed
to solicit information, whereas in non-situated contexts it is more typically performed
to provide information. Accordingly, we propose an HRI-oriented clarification re-
quest generation framework comprised of six stages: (1) uncertainty identification,
(2) decision to communicate, (3) utterance choice, (4) content selection, (5) surface
realization, and (6) speech synthesis. This framework extends the framework intro-
duced in previous work (Williams and Scheutz, 2016b) by re-introducing a stage
dedicated to content selection. In this paper, we will discuss this framework in detail,
and then present an integrated approach that implements all six stages.

Given the role of clarification (also known as repair) as a central component of
natural language dialogue (Ginzburg, 2009; Schegloff, 1987), clarification request
generation itself has attracted a large amount of research overall (Benotti and Black-
burn, 2017; Gabsdil, 2003; Purver et al, 2003; Rodríguez and Schlangen, 2004; Stoy-
anchev et al, 2013; Traum, 1994). However, there has been relatively little work on
clarification request generation in situated contexts such as human-robot interaction.
Recently, some researchers have used information-theoretic techniques to identify
random variables which could have their entropy reduced if asked about. In such
work, clarification requests have taken the form of yes/no questions about the prop-
erties of an object (Deits et al, 2013; Hemachandra et al, 2014; Purver, 2004) or
generic WH-questions (e.g., “What do the words X refer to?”) (Tellex et al, 2013;
Purver, 2004)1.

Recent experimental evidence from Marge and Rudnicky (2015) suggests, how-
ever, that in HRI contexts, people prefer robots to list multiple options rather than
asking for confirmation about a single referent with a yes/no- or generic WH-
question (cf. Clark, 1996). This is particularly striking as the evidence suggests that
people maintain this preference even when a yes/no- or generic WH-question would
be more efficient (cf. Hemachandra et al, 2014).

In contrast, Kruijff et al. present an approach in which robots can generate
multiple-option clarification requests such as “Do you mean the blue or the red mug,
Anne?” through a continual planning approach (Kruijff et al, 2008) (see also Brenner
and Kruijff-Korbayová, 2008; Kruijff et al, 2006b). This approach, however, does not

1 While not directly relevant to the present work, there has also been research on using interaction
patterns to identify opportunities for clarification in situated settings (Carrillo and Topp, 2016).
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appear to be able to account for social context, uncertainty, or ignorance, and is only
used for generation. The ability to handle context (Benotti and Blackburn, 2017), es-
pecially social context, is crucial for enabling natural HRI (Mutlu and Forlizzi, 2008),
and typical HRI scenarios are plagued by uncertainty and ignorance (Talamadupula
et al, 2011). An eldercare robot, for example, is not likely to be familiar with every
object in the home of the elder it is assisting, nor with every person who might be re-
ferred to. Furthermore, the robot is unlikely to have uncertainty-free knowledge of all
of the properties and relations involving those entities it does know of. This inability
to handle uncertainty is shared by similar ontology-based approaches to disambigua-
tion (Maurtua et al, 2016).

3 Experiment One: Preference Assessment

In developing a new HRI-oriented approach to clarification request generation, our
goal is to account for uncertainty and ignorance while taking human preferences into
account. We believe that the previous work discussed thus far has not adequately
considered what type of utterances humans prefer to use and be used. We hypothe-
size that there are three categories of human preferences that should affect the design
decisions made when developing HRI-oriented clarification request generation algo-
rithms. In this section, we first describe these three hypotheses, and then present the
results of a human subjects experiment designed to test them.

3.1 Design Hypotheses

Presentation of Options

Marge and Rudnicky (2015) suggests people prefer that robots list options rather than
ask yes/no- or generic WH-questions. But clearly there are limits to this preference. If
a robot is asked “Could you get me some ice cream?”, it is unlikely that humans will
prefer the robot to list twenty-seven available flavors instead of just asking “Which
flavor would you like?”. It is not yet clear, however, how many options can be listed
until the use of a list is no longer preferable. We hypothesize (H1) that humans prefer
options to be listed only for a very small number of options.

Demonstration of Intention Understanding

Similarly, many previous approaches use clarification requests that do not demon-
strate understanding of the meaning of the sentence. If a robot is asked “Could you
get me some ice cream,” a robot that replies “What do the words ‘ice cream’ refer
to” or “Do you mean ‘the chocolate ice cream’ or ‘the vanilla ice cream”’ does not
allow its interlocutor to discern whether their intention was understood. In contrast, a
robot that replies “Would you like me to get you the chocolate ice cream or the vanilla
ice cream?” communicates understanding that the human wants ice cream brought to
them. We hypothesize (H2) that humans prefer clarification requests that demonstrate
understanding of their intentions.
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Pragmatic Appropriateness

Finally, a robot that does generate clarification requests reflecting its understanding of
human intentions will almost certainly need to use indirect speech acts (Searle, 1975)
(e.g., Would you like me to get you the chocolate ice cream or the vanilla ice cream?),
as the direct alternatives (e.g., “I have an intention to know whether you want me to
have a goal to bring you the chocolate ice cream or the vanilla ice cream”) are hard to
express succinctly, and are viewed as less polite. We hypothesize (H3) that humans
prefer indirectly rather than directly phrased clarification requests.

3.2 Methodology

Participants were recruited (20 Male, 10 Female) using Amazon Mechanical Turk.
All participants were American, and ranged in age from 24 to 48 (M=32.67,SD=6.30).
Only high-reputation participants were used to guard against potential participation
from automated "bots". Each participant was asked seven simple questions, presented
in a randomized order. Participants were told to imagine commanding a robot to “pick
up the mug” in a scenario with several different-colored mugs on a table. For each
question (which differed in the number of candidate mugs) two ways of asking for
clarification were presented. Participants were asked to indicate which option they
would prefer the robot to use. Finally, participants answered an "attention check"
question asking them to indicate what object was talked about in the previous ques-
tions, in order to guard against participants "clicking through" questions without read-
ing them. No participants failed this attention check.

The first five questions evaluated H1. In each case, participants chose between an
option that listed out all options (ranging from “Would you like the red mug or the
orange mug?” to “Would you like the red mug or the orange mug or the yellow mug
or the green mug or the blue mug or the purple mug?”) and a catch-all (“Which mug
would you like?”). For each question, the number of options provided directly corre-
sponded to the number of entities in the context description provided to participants
for that question.

The sixth question evaluated H2. Participants chose between an option that indi-
cated understanding of the speaker’s goals (“Would you like the red mug or the green
mug?”) and one that did not (“Do you mean the red mug or the green mug?”).

The last question evaluated H3. Participants chose between a pragmatically ap-
propriate option (“Would you like the red mug or the blue mug?”) and a pragmatically
inappropriate option (“I have an intention to know if you want me to have a goal to
bring you the red mug or the blue mug.”).

These seven questions were presented in a randomized order to each participant,
and the options for each question were also presented in a randomized order for each
participant.

Before moving on, we must briefly discuss our inclusion of this sentence. It seems
obvious to us that no reasonable participant would prefer this tortured form, and thus
do not expect the statistical results for this particular question to be terribly surprising.
However, we included this question in our experiment to call attention to the obvious
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Fig. 1: Experiment One Results. Proportion of participants who preferred options
to be listed, for each candidate number of options.

shortcomings of such forms, because this calls attention to the importance of prag-
matic natural language generation. This form directly and literally communicates the
robot’s intentions; accordingly, if a robot does not have the mechanisms necessary to
generate pragmatically appropriate language, it would have no choice but to use that
direct (and clearly suboptimal) form.

3.3 Results

As shown in Fig. 1, our results show that 70% of participants preferred options to be
listed when there were only two options. But for more than two options, this number
rapidly shrank. Only 20% of participants preferred options to be listed when there
were three options, and preference for listing all options fell lower still when more
options were listed. This confirms but clarifies the previous findings of Marge and
Rudnicky (2015), and suggests that robots likely do not need mechanisms for listing
more than two options when there is referential ambiguity (H1). Our results show that
80% of participants preferred the option that indicated understanding of their goals,
supporting H2. Our results show that 93% of participants preferred the pragmatically
appropriate option, supporting H3.

3.4 Discussion

The results of this experiment suggest three design recommendations. (D1) When
phrasing clarification requests, if there are only two options, robots should present
both options. Otherwise, robots should use a yes/no- or generic WH-question2.

2 Future research will be needed to determine how the content of the options to be offered may impact
how this decision is made. The results of such research may suggest refinements of this recommendation.
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(D2) When phrasing clarification requests, robots should use phrasings that indicate
that they understand the goals of their interlocutors. (D3) When phrasing clarification
requests, robots should use pragmatically appropriate phrasings.

The experiment presented in this section presents an initial assessment of human
preferences regarding clarification requests, but suffer from a number of limitations.

First, there are limitations with respect to stimuli. While we intended to evalu-
ate communication of intentions and pragmatic appropriateness separately, these are
multifaceted and interacting dimensions. Our utterance "Would you like the red mug
or the green mug", for example, certainly communicates intentions more clearly than
"Do you mean the red mug or the green mug?", but it could also be considered as more
polite, and thus, potentially more pragmatically appropriate. Similarly, it is possible
that participants may have been subtly affected by the use of multiple or-clauses.
Future work will be needed to tease apart the difference between these two factors.

Second, there are limitations with respect to our prompt. Participants were asked
to indicate which option they would prefer the robot to use, but this may also be mul-
tifaceted, with different people using different preference metrics. Future work will
need to tease apart the differences between such metrics and their relative importance.

Third, there are limitations with respect to experimental setting: in crowdsourced
experiments, it is not possible to control participants’ experimental setting, and we
did not control for web browser, operating system, or other factors that may have
impacted viewing experience. In addition, while attention checks are helpful, it does
seem strange that two participants out of thirty chose what would seem to be the
clearly less preferable choice for the last question. If these two participants had been
treated as outliers and removed, we would have had the following results: For two-
through-six presented options, 67.9, 17.9, 10.7, 3.5, and 7.1 percent, respectively, of
the remaining participants would have preferred options to be listed, and 78.6 percent
of the remaining participants would have preferred the request that demonstrated un-
derstanding of intentions.

Fourth, there are limitations with respect to context generalizability. Our results
are specific to environments in which there are between two and six objects of the
same type, assumed to be visible to both speaker and listener. It is important to rec-
ognize that under variations of these contextual factors, human preferences may have
changed. For example, when two agents do not share an environment, the hearer ask-
ing for clarification may need to clarify the specific candidates they see, or the fact
that they see a number of candidates, before asking for clarification. In such contexts,
people may actually prefer a greater number of options to be listed because it is in-
herently informative to them. In future work, it will be important to reevaluate human
preferences in a wider range of scenarios, under varying levels of shared knowledge.
For the time being, we will simply conclude that, in contexts such as those we eval-
uated, listing options for two candidates and generating a more general question for
more than two candidates is a reasonable strategy.

In the following sections, we will demonstrate how the integration of architectural
components for reference resolution and pragmatic reasoning facilitates an approach
to clarification request generation that not only fulfills all three of these design deci-
sions, but also satisfies capabilities missing from previous approaches (e.g., context
sensitivity, handling of uncertainty and ignorance, and use for both understanding and
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generation). In Section 4, we will begin by defining a general, HRI-oriented frame-
work for clarification request generation. In Section 5, we then present our algorithms
and architectural mechanisms for implementing each stage of that framework.

4 An HRI-Oriented Framework for Clarification Request Generation

We identify six stages necessary for successful clarification request generation: (1)
uncertainty identification, (2) decision to communicate, (3) utterance choice, (4) con-
tent selection, (5) surface realization, and (6) speech synthesis. In this section we
describe the actions necessary at each stage.

Uncertainty Identification

Suppose that in our original example, Bob had asked Cindy “Can you grab the med-
kit?” During the stage of uncertainty identification, The robot (Cindy) must determine
if it is unsure how to interpret any part of this utterance. This may be uncertainty as
to what entities are being referenced, e.g., which medkit Bob is referring to, or uncer-
tainty as to the speaker’s intentions, e.g., whether Bob wishes Cindy to bring him the
medkit or whether he meant something else by the utterance. Furthermore, this uncer-
tainty may take different forms (cf. Stirling, 2010): the utterance may be ambiguous
(e.g., if Cindy knows of multiple medkits) or the utterance may reveal ignorance
(e.g., if Cindy knows of no medkits, or is unsure whether a particular object qualifies
as a “medkit”).

Decision to Communicate

If a robot has identified a point in need of clarification, it must decide whether it would
be appropriate to actually ask for clarification. This decision will depend on a variety
of factors: Is it permissible for the robot to ask for clarification? Is the robot’s inter-
locutor likely to be able to provide clarification? Would obtaining clarification really
be the highest utility action at the current time (compared to, e.g., exploration)? For
example, if Cindy determines there are actually two medkits that Bob could be refer-
ring to, but while coming to this decision Bob has already engaged another teammate
in conversation, it may be necessary for Cindy to wait until this conversation finishes
before asking for clarification.

Utterance Choice

Once a robot has decided to request clarification on a particular point, it must de-
termine what utterance form to use to communicate its request: depending on the
relationship between the robot and its interlocutor, and the obligations of each party,
certain utterance forms may be more or less appropriate (Brown, 1987). For example,
if Cindy is Bob’s subordinate, it may be more appropriate to use an indirect request
such as “Which medkit do you need?”, whereas if Cindy is Bob’s superior, it may be
more appropriate to use a direct request such as “Tell me which medkit you need.”
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This processing step is not typically included in traditional NLG frameworks,
which do not typically need to account for social context or dialogue context. They
instead typically include a document structuring stage, where the agent determines
the order in which to convey multiple utterances (Reiter et al, 2000). Because clarifi-
cation request generation in HRI typically only involves a single utterance, we do not
currently handle this step, but it will be an important topic for future work. A robot
may, for example, need to preface a clarification request by stating what parts of an
utterance it did understand.

Content Selection

Once a robot chooses an utterance form to use, it must determine a referring form to
use for each referent within that utterance. If the robot elects to generate a definite
noun phrase, it must choose what properties to use to describe entities referenced in
that utterance (Garoufi and Koller, 2014). For example, if the robot decides to use
an utterance of the form “Would you like [medkit1]”, it must choose how to actually
describe medkit1, e.g., by referring to it by its location, color, size, and so forth.
Alternatively, at this stage the robot may elect to generate an anaphoric or deictic
expression (involving eye gaze, gesture, or other modalities) rather than a complex
noun phrase.

Surface Realization

Once a robot chooses a referring form to use, it must decide what words to use in
service of that referring form (as well as how to communicate information from other
modalities, if applicable), especially in order to express properties selected during
content selection, in the case of complex noun phrases.

Speech and Gesture Synthesis

Finally, once a robot determines what words to use, it must synthesize an appropriate
sound pattern and/or execute appropriate communicative motor programs.

5 Algorithmic Approach

In this section, we will present the set of algorithms and architectural mechanisms
we have developed in order to implement each stage of the framework defined in the
previous section. While this framework is designed to incorporate both language and
gesture, we will focus on the linguistic portions of the framework in this work, leaving
gestural communication to future work. Throughout this section, we will refer to var-
ious components of the Distributed Integrated Affect Reflection Cognition (DIARC)
architecture (Schermerhorn et al, 2006), in which these algorithms and mechanisms
are implemented. A diagram of these components and their connections can be seen
in Figure 2.
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Fig. 2: Architectural Diagram of the DIARC Architecture

Notation3

M A robot’s world model of entities {e0 . . . en}.
Λ A set of logical formulae λ0 . . . λn, denoting (literal, direct) semantic connotation of an incoming

utterance.
V A set of free variables found in Λ.
Γ A set of bindings from variables in V to entities in M , denoting the semantic denotation of an

incoming utterance.
Φ A satisfaction variable which is True iff all formulae in Λ hold when bound using Γ .

5.1 Uncertainty Identification

The first step in our clarification request generation framework is identifying whether
or not there is uncertainty that needs to be clarified. To achieve this, we first determine
the set of referential candidates and their respective levels of uncertainty. We then
provide those candidates to a pragmatic inference component which produces a set
of uncertain candidate interpretations. In this section, we will detail this process and
the integration challenges it presents.

5.1.1 Reference Resolution

Our approach uses the DIST-POWER framework to facilitate access to information
about entities a robot knows of (Williams and Scheutz, 2016a). The DIST-POWER

3 We have chosen to adopt (and extend) the notation used in Tellex et al (2011) in order to facilitate
easier comparison to related work. We would advocate for its adoption as a common notation across the
reference resolution and symbol grounding communities.
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framework uses a set of “Consultants” to integrate a central, domain-independent
open-world reference resolution component with a set of heterogeneous knowledge
bases distributed throughout a robot architecture, potentially residing on multiple ma-
chines (Williams, 2017a). In our instantiation of this framework, we make use of GH-
POWER: our Givenness Hierarchy-theoretic reference resolution algorithm (Williams
et al, 2016). Based on the theoretical linguistic framework presented by Gundel et al
(1993), GH-POWER treats DIST-POWER’s distributed memory system as a Long Term
Memory Store, and builds on top of it a set of hierarchical caches representing mod-
els of the robot’s Discourse Context, Short-Term Memory, and Focus of Attention, as
shown in Figure 3. This allows GH-POWER to resolve a wide array of referring expres-
sions (REs). And, like the non-GH-theoretic version of POWER, GH-POWER handles
both uncertain and open worlds. Finally, GH-POWER offers a significant performance
advantage over the use of DIST-POWER by itself. DIST-POWER has worst-case time
complexity of O(j ∗ mk) assuming a query of j k − arity predicates4 and a world
model containingm entities (Williams, 2017b). While GH-POWER uses DIST-POWER
in the worst case to resolve definite noun phrases, in most cases this will be unneces-
sary, as entities already being discussed in a conversation are likely to be identified in,
e.g., the small set of currently activated entities, precluding the need for an expensive
search through long-term memory. For the sake of simplicity, we will use POWER to
refer to the distributed, GH-theoretic form of the POWER algorithm and its associated
data structures.

Like many others (see, e.g. Kollar et al, 2013; Lemaignan et al, 2017; Matuszek
et al, 2012; Tenorth and Beetz, 2017; Zettlemoyer and Collins, 2012), we use an
approach where natural language semantics are represented using a simple, struc-
tured, predicate logic extracted from text using a CCG or Dependency Parser. While
the logical forms we use are not sufficiently flexible to handle the variety of tem-
porally complex expressions that can be handled using, e.g., Temporal or Dynamic
Logics (cf. Dzifcak et al, 2009), they are able to sufficiently represent the referring
language found in the types of clarification dialogues discussed in the paper. More-
over, they provide an intermediary representation that allows discussion and reason-
ing that is not possible in approaches that directly and statistically associate vision
and language.

POWER uses the logical form of a referring expression to (1) hypothesize new
representations for previously unknown referents, and (2) produce a distribution
P (Φ | Γ,Λ); that is, the probability of successful satisfaction conditioned on binding
hypotheses from variables to known referents:

{Γ0 = {γ00 . . . γ0n} . . . , Γe = {γe0 . . . γen}}

and semantic parse hypotheses:
{Λ0 = {λ00 . . . λ0n} . . . , Λe = {λe0 . . . λen}}.

For example, suppose Bob asked Cindy “Can you grab the medical kit?” Cindy may
parse this into something like

QuestionY N(b, s, can(s, grab(s,X)))

4 Note that for most utterances j will be very small, and k will in almost all circumstances be either 1
or 2.
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Fig. 3: Memory Model: The Focus of Attention, Short Term Memory, Discourse
Context are hierarchically nested, and contain references to entities stored in the
Distributed, Heterogeneous Knowledge Bases which comprise long-term memory
(Mapping, Vision, Social), access to which is enabled and controlled using a set of
Consultants (locs, objs, ppl).

with additional semantic content Λi = {medkit(X)} (Hereafter, we will use the
abbreviations b=“bob” and s=“self”). If Cindy is 70% sure that the e5 is a medical
kit, reference resolution will produce:

P (Φ = True |Γ = {X → e5}, Λ = {medkit(X)}) = 0.7

All sufficiently probable referential hypotheses are then used to create a set of
bound utterances with supplemental semantics (BUSSes) Ψ = {ψ0 . . . ψn}. Each
ψi ∈ Ψ is associated with a unique sufficiently probable binding γi from vari-
ables found in the parsed utterance form and its supplemental semantics to en-
tities found in Long Term Memory. For example, the BUSS associated with
form QuestionY N(b, s, can(s, grab(s,X))), semantics {medkit(X)}, and bind-
ing {X → e5} would be:

{QuestionY N(b, s, can(s, grab(s, e5))) ∧medkit(e5)}.
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One could then create a distribution over BUSSes P (ψi) = P (Γi, Λi | Φi) using
Bayes’ Rule, if the next natural language component used a Bayesian framework.
In fact, the next component in our architecture (i.e., the pragmatic reasoning com-
ponent) uses a more general Dempster-Shafer (DS) theoretic framework (for reasons
described in the next section), and thus another approach must be taken (Williams
et al, 2015).

5.1.2 Dempster-Shafer Theory: A Primer

Dempster-Shafer (DS) Theory is a generalization of the Bayesian uncertainty frame-
work that allows for elegant reasoning about uncertainty and ignorance even when
distributional information is unavailable (Shafer, 1976). DS Theory is an attractive
option for HRI domains in which agents may encounter new entities and concepts
only a small number of times, with no information regarding the distribution underly-
ing their occurrence. DS Theory is also useful for tasks such as pragmatic reasoning,
because it would be impractical to store priors over all combinations of intentions
and contexts, as would be required in a Bayesian framework; and because it allows
the use of DS-based logical rules such as Modus Ponens, which cannot be used in a
strictly Bayesian framework (Núñez et al, 2013b,a; Tang et al, 2012).

In Dempster-Shafer Theory, the uncertainty of an event E is represented using
the interval [Bl(E), P l(E)]. Bl(E) and Pl(E) are the belief and plausibility of E:
lower and upper bounds on P (E) such that 0 ≤ Bl(E) ≤ P (E) ≤ Pl(E) ≤
1. The width of this uncertainty interval (Pl(E) − Bl(E)) indicates the degree of
ignorance in eventE. For a set of mutually exclusive singleton hypothesesΘ (known
as a Frame of Discernment (FoD)), a basic belief assignment (BBA) m(·) : 2Θ →
[0, 1] can be defined, assigning a probability mass to each set in the power set of
hypotheses. Another, potentially more intuitive way of viewing DS-Theory, presented
by Dempster (2008), is to view a Dempster-Shafer Model (i.e., the Body of Evidence)
as an assignment from each assertion you could make about a given State Space
Model (each corresponding to a one of the 2n possible subsets of that State Space
Model (i.e., Frame of Discernment)) to a triple (p, q, r), where p is the probability
"for" the assertion, q is the probability "against" the assertion, and r is the probability
of "don’t know". Below, we provide more formal definitions for each of DS Theory’s
basic notions.

Frame of Discernment:
In DS theory, a set of elementary events of interest is called a Frame of Discern-

ment (FoD). A FoD is a finite set of mutually exclusive events Θ = {θ1, ..., θN}. The
power set of Θ is denoted by 2Θ = {A : A ⊆ Θ}.

Basic Belief Assignment:
Each set A ∈ 2Θ has a certain weight, or mass associated with it. A Basic Belief

Assignment (BBA) is a mapping mΘ(·) : 2Θ → [0, 1] such that
∑
A⊆ΘmΘ(A) = 1

and mΘ(∅) = 0. The BBA measures the support assigned to the propositions A ⊆ Θ
only. The subsets of A with non-zero mass are referred to as focal elements and
comprise the set FΘ. The triple E = {Θ,FΘ,mΘ(·)} is called the Body of Evidence
(BoE).

Belief, Plausibility, and Uncertainty:
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Given a BoE {Θ,FΘ,mΘ(·)}, the belief for a set of hypotheses A is Bel(A) =∑
B⊆AmΘ(B). This belief function captures the total support that can be committed

to A without also committing it to the complement Ac of A. The plausibility of A
is Pl(A) = 1 − Bel(Ac). Thus, Pl(A) corresponds to the total belief that does
not contradict A. The uncertainty interval of A is [Bel(A), P l(A)], which contains
the true probability P (A). In the limit case with no uncertainty, we get Pl(A) =
Bel(A) = P (A).

Thus, we see how information regarding the probability of some event can be
gathered from the Dempster-Shafer theoretic notions of belief and plausibility, and
how these notions themselves are derived from the masses mΘ ascribed to specific
hypotheses.

5.1.3 Integration of Bayesian and Dempster-Shafer Theoretic Architectural
Components

In this section, we will discuss how the set of BUSSes constructed in Section 5.1.1 is
transformed into a DS-theoretic Body of Evidence for use by our pragmatic reason-
ing module. Recall that the output of reference resolution was a set Ψ = {ψ0 . . . ψn}
where each ψi was a Bound Utterance with Supplemental Semantics (BUSS) with as-
sociated likelihood P (Φi | Γi, Λi), reflecting the degree to which the chosen variable
bindings Γi are believed to satisfy the logical constraints specified in the set of sup-
plemental semantics Λi, based on the probability judgments provided by POWER’s
Consultants.

Using this set of BUSSes, we define a Body of Evidence with Frame of Discern-
ment Θ = {θ1, . . . , θn} where each θi is a mutually exclusive singleton hypothesis
described by BUSS ψi, and with a Basic Belief Assignment assigning each θi the
following mass:

P (Φi | Γi, Λi)∑|Θ|
j=0 P (Φj | Γj , Λj)

(1)

This operation is linear in the number of referential hypotheses. Note, here, that
these singleton hypotheses are guaranteed to be mutually exclusive because each cor-
responds to a particular set of intended referents: POWER only provides probability
judgments about specific referential hypotheses, and does not provide any evidence
for sets of hypotheses, which is why no mass is assigned to non-singleton sets. As
mass is only assigned to singleton sets, this means that:

Bl(θi) = Pl(θi) = m(θi).

The confidence interval associated with each hypothesis according to this mass as-
signment is identical to:

[Bl(Γi, Λi | Φi), P l(Γi, Λi | Φi)]

as calculated using Heendeni et al (2016)’s DS-theoretic equivalent to the formu-
lation of Bayes’ Rule (Equation 2) when a uniform prior distribution Bl(Γ,Λ) =
Pl(Γ,Λ) = 1

|Θ| is assumed.
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Bl(A|B) ≥ Bl(B|A)Bl(A)

Bl(B|A)Bl(A) + Pl(B|Ā)Pl(Ā)

Pl(A|B) ≤ Pl(B|A)Pl(A)

Pl(B|A)Pl(A) +Bl(B|Ā)Bl(Ā)

(2)

Here, Bl(A) and Pl(A) denote belief and plausibility as defined above, Ā denotes
singleton hypotheses not appearing in the set A, and Bl(A|B) and Pl(A|B) denote
conditional beliefs and plausibilities defined according to the Fagin-Halpern (FH)
Conditional (Fagin and Halpern, 1991).

For example, suppose speaker Bob asks “Can you grab the medkit that is near the
book?”, in an environment containing two medkits (e1 and e4) and two books (e2 and
e3), and that POWER produces the following BUSSes, each with the same utterance
form but describing a different referential hypothesis:

ψ1 =(QuestionY N(b, s, can(s, grab(s, e1))) ∧medkit(e1) ∧ book(e2) ∧ near(e1, e2))

ψ2 =(QuestionY N(b, s, can(s, grab(s, e1))) ∧medkit(e1) ∧ book(e3) ∧ near(e1, e3))

ψ3 =(QuestionY N(b, s, can(s, grab(s, e4))) ∧medkit(e4) ∧ book(e2) ∧ near(e4, e2))

Suppose the likelihoods associated by POWER with these BUSSes are:

{ψ1 → 0.4, ψ2 → 0.6, ψ3 → 1.0}.

The likelihoods used in this section are chosen arbitrarily for the sake of a clean
working example, but are in practice derived by POWER from a variety of sources.
For this example, the Consultant responsible for answering questions about these
particular entities could determine using standard object recognition classifiers (e.g.
Redmon et al, 2016) and spatial reasoning algorithms that it is 100% sure that e4 is
a medical kit, e2 is a book, and e4 qualifies as "near" e2. Similarly, these classifiers
could provide probabilities of 0.6 that e1 is a medical kit, 1.0 that e3 is a book, 1.0
that e1 is "near" e3, and 0.66 that e1 is "near" e2, resulting in the final likelihoods
under an assumption of independence between constraints.

Normalizing these likelihoods through the process described above will pro-
duce the following DS-theoretic Basic Belief Assignment(BBA) assigning probability
masses to each hypothesis in Θ, where Bl and Pl (belief and plausibility) are upper
and lower bounds on the expected probability of each hypothesis:

Hypothesis Mass Bl Pl
∅ 0.0 0.0 0.0
{θ1} 0.2 0.2 0.2
{θ2} 0.3 0.3 0.3
{θ3} 0.5 0.5 0.5
{θ1, θ2} 0.0 0.5 0.5
{θ2, θ3} 0.0 0.8 0.8
{θ3, θ1} 0.0 0.7 0.7
{θ1, θ2, θ3} 0.0 1.0 1.0
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Through the calculations above, we are thus able to produce a DS-theoretic Frame
of Discernment (FoD) Θ of hypotheses described by the logical conjunctions (i.e.,
BUSSes) {ψ0 . . . ψn} 5. Remember that each BUSS contains both a parsed utterance
form and a set of supplemental semantics, bound using a single candidate variable
binding Γi. The next component in the DIARC NL Pipeline (i.e., the Pragmatics
Component, PRAG) only uses the utterance form, however, and there may be multiple
hypotheses in the resulting Frame of Discernment Θ that have the same utterance
form but different supplemental semantics.

For instance, in the example used in this section, one candidate medkit (e1) is
actually near two books (e2 and e3), and accordingly, two hypotheses are described
by BUSSes that have the same utterance form (e.g.,QuestionY N(b, s, grab(s, e1)))
but different supplemental semantics (e.g., {medkit(e1)∧ book(e2)∧near(e1, e2)}
vs {medkit(e1) ∧ book(e3) ∧ near(e1, e3)}. We thus cluster these hypotheses into
sets C0, . . . , Cn such that all hypotheses associated with each set are described by
BUSSes that have the same utterance form, an operation linear in the number of ref-
erential hypotheses. For example, if we have three singleton hypotheses {θ1, θ2, θ3},
and ψ1 and ψ2 have the same utterance form, C = {{θ1, θ2}, {θ3}}.

We can now split our FoD Θ into a set of | C | “binary” FoDs, one for each
cluster Ci. Each binary FoD itself has two hypotheses: (1) that the utterance form
describing all hypotheses in cluster Ci represents what was communicated, and (2)
that it does not. This splitting has no theoretical ramifications, but enables easier
integration with PRAG. Moreover, the use of binary FoDs significantly reduces the
complexity of inference, precluding the need for DS-theoretic approximate inference
algorithms (Bauer, 1997) or other efficiency improvements (Polpitiya et al, 2017).
Because each cluster is mutually exclusive from all other clusters, each binary FoD
can be represented entirely by the bound utterance structure:

〈utterance(ψi), Bl({Ci0 . . . Cin}), P l({Ci0 . . . Cin})〉.

calculated as

〈utterance(ψi),
|Ci|∑
j=0

m(Cij ),

|Ci|∑
j=0

m(Cij )〉.

In our example, for instance, because ψ1 and ψ2 have the same utterance form,
C = {{θ1, θ2}, {θ3}}. From this, the following set of bound utterance structures will
be created:

{〈QuestionY N(b, s, can(s, grab(s, o1))), Bl({θ1, θ2}), P l({θ1, θ2})〉,
〈QuestionY N(b, s, can(s, grab(s, o4))), Bl({θ3}), P l({θ3})〉} =

{〈QuestionY N(b, s, can(s, grab(s, o1))), 0.5, 0.5〉
〈QuestionY N(b, s, can(s, grab(s, o4))), 0.5, 0.5〉}

5 Note, however, that low-probability hypotheses are pruned out during the resolution process, and thus
the remaining hypotheses have a higher concentration of mass (and thus, higher belief and plausibility)
than they would if this pruning process were not employed. This pruning process is further described
by Williams et al (2016).
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5.1.4 Pragmatic Inference

In the previous section, the output of reference resolution was converted into a
form which could be sent to our DS-theoretic pragmatic reasoning component
(PRAG). Accordingly, after this conversion, we send the resulting set of bound ut-
terances structures to PRAG, which uses context to determine the intentions under-
lying utterances (Williams et al, 2015), producing a set of intentional structures
〈I,Bl(I), P l(I)〉. This operation is of complexity O(rb), where r is the number of
pragmatic rules and b is the number of bound utterance structures. If the difference
between Bl(I) and Pl(I) is sufficiently large, or if Pl(I)+Bl(I)

2 is sufficiently close
to 0.5, (assessed using Núñez et al (2013a)’s uncertainty measure shown in Eq. 3
(and further discussed by Williams et al (2014))), intention I is deemed in need of
clarification.

1+
Pl(I)

K
log2

Pl(I)

K
+

1−Bl(I)

K
log2

1−Bl(I)

K
where K = 1 + Pl(I)−Bl(I).

(3)

PRAG then formulates an intention-to-know (itk) which of these intentions is correct,
denoted itk(s, or(i0, i1, . . . , in)). Note that before integration with POWER, PRAG
only handled pragmatic uncertainty. Because PRAG now receives a set of candidate
utterance forms with potentially different argument bindings, it now also automati-
cally handles referential uncertainty.

In the future, it will be important to investigate how these may be even more
tightly integrated; if pragmatic analysis is carried out concurrently with the resolu-
tion process, it may be possible to determine that resolution can stop early, if, e.g., it
is determined that an expression is ambiguous and more options have already been
found than should be enumerated by the robot, or if it is determined that regardless of
what entity is being referred to, the robot cannot or should not carry out the command
in which the entity was referenced. That being said, a tighter integration between ref-
erence resolution and pragmatics would require making certain trade-offs. On the one
hand, a tighter integration might lead to increased efficiency and accuracy, and may
align better with recent psychological models of the interplay between reference and
pragmatics (e.g. Huang and Snedeker, 2011). On the other hand, a tighter integration
between any two architectural component necessarily introduces additional complex-
ity, prevents the use of one component without the other, and accordingly, makes it
difficult to separate the performance of the two components.

Before we move on, we would like to point out that because DIARC’s reference
resolution component handles open worlds, instances in which interlocutors refer to
previously unknown entities do not automatically generate clarification requests. For
example, if the robot is told “Go to the room at the end of the hall” and does not
know of a room at the end of the hall, it will not ask for clarification, but will rather
hypothesize a new location, and carry on. We do not regard such situations as refer-
entially ambiguous (although it may be valuable to ask for more information about
this location). Here, the robot knows what entity is being referred to: a previously un-
known room at the end of the hall. Similar logic applies in the case of indefinite noun
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phrases. If the robot is told “Bring me a medical kit”, and it knows of multiple medi-
cal kits, perhaps containing different supplies, it may indeed be worthwhile to ask for
clarification. However, this command is not ambiguous in and of itself, and as such
we do not automatically ask for clarification as part of the language understanding
process when such forms are used by human teammates.

5.2 Decision to Communicate

Currently, any intention-to-know (itk) formulated during the previous stages is auto-
matically asserted into the robot’s knowledge base, triggering a decision to communi-
cate this intention once it is acceptable for the robot to accept the conversational turn.
When this decision is made, the itk is passed to the pragmatic generation component
for processing.

We note, however, that there may be many instances in which the robot may elect
not to immediately communicate its own intentions to know, or may elect not to sat-
isfy its interlocutors’ intentions to know. There may be many situations in which it
would be inopportune for a robot to ask for clarification, e.g., if its interlocutor is
busy, already under high workload, or is unable to be able to answer the robots’ ques-
tions (see, for example, (Cai and Mostofi, 2016; Rosenthal et al, 2012b; Rosenthal
and Veloso, 2012). In addition, it may be inappropriate to ask for clarification (or to
respond to a request for information) for ethical grounds (Williams, 2018a; Williams
and Jackson, 2018). All of these considerations represent interesting and important
directions for future work.

5.3 Utterance Choice

The robot must now determine a contextually appropriate way to formulate its in-
tention at the utterance level, determining the illocutionary force (e.g., statement,
question, command) and high-level phrasing (including indirectness strategies) that
will be most effective to communicate the intended semantic content.

This is accomplished once again by PRAG, which uses the same set of rules for
generation as it uses for inference (Williams et al, 2015). In Experiment One, we
observed that if there were more than two options, listing those options was dis-
preferred over a more general question. Thus, if we are to send a clarification re-
quest to PRAG that has semantics of the form itk(self, or(option1, ...optionn)),
we first check whether or not n is greater than the acceptable number of candi-
dates to list, i.e., two. If n = 2, this intention is sent directly to PRAG. Other-
wise, all options are unified into a single predicate whose only bound arguments are
those that are identical for all options. For example, if {option1, option2, option3}
= {need(jim, obj1), need(jim, obj2), need(jim, obj3)}, these will be unified into
need(jim, ?), and the intention itk(self, need(jim, ?)) will be sent to PRAG in-
stead.

Using DS-theoretic logical operators, PRAG determines a set of candidate utter-
ance forms, each of which is forward-simulated through pragmatic inference to en-
sure that the agent does not accidentally communicate anything it does not actually
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believe to be true as a side effect of communicating its primary illocutionary point.
The best candidate utterance is then sent to NLG for surface realization.

While this type of forward simulation has been previously undertaken for other
stages of the language generation process (e.g., for referring expression genera-
tion (Brick and Scheutz, 2007; Tellex et al, 2014; Orita et al, 2015)), we believe
this is the first use of such a simulation step during the utterance choice stage6. What
is more, doing so during this stage goes beyond simply increasing the accuracy of
language generation, but also serves as a safeguard against utterances that could not
only misalign the mental models shared by a robot and its teammates, but which
could negatively affect teammates’ perceptions of the robot. That being said, the pro-
posed mechanism only provides such a safeguard against false implications that are
explicitly represented on the right-hand side of a robots’ pragmatic rules, typically as
the interpretations of conventionalized indirect speech acts7. Possible false implica-
tions not prevented by our approach are discussed in (Williams, 2018a,b; Williams
and Jackson, 2018).

5.4 Content Selection

Once an appropriately phrased utterance form is chosen by the pragmatic generation
component, it is sent to the Referring Expression Generation Component for Content
Selection. The job of this component is to select the properties that will be used to
describe target referents. For example, consider the utterance form

QuestionWH(s, b, or(need(b, grab(s, e1)), need(b, grab(s, e2)))).

Ultimately, this will be translated to something like “Do you need me to grab 〈e1〉 or
〈e2〉?”8 It is the job of the Referring Expression Component to choose property sets
that will be used in the description of e1 and e2, e.g., {mug(X) ∧ white(X)}, or
{mug(X) ∧ black(X) ∧ large(X)}.

Selecting such property sets presents a challenge for robots operating in realistic
human-robot interaction scenarios. Classic Referring Expression Generation (REG)

6 Some other groups have, since the publication of our original work on this topic (Williams et al, 2015),
followed a similar approach, notably in the Rational Speech Act Theory inspired robotics literature (Fried
et al, 2017) and in work on "inverse semantics" (Knepper et al, 2015, 2017). See also both prior and pos-
terior work on language understanding from the Rational Speech Act psychological literature (Goodman
and Stuhlmüller, 2013; Goodman and Frank, 2016), as well as critiques of such approaches (Gatt et al,
2013; Qing and Franke, 2015).

7 It is important to note that our pragmatic reasoning system currently is only equipped to handle con-
ventionalized Indirect Speech Acts. For a comprehensive handling of ISAs, it will be necessary to integrate
this approach with a plan reasoning system (Perrault and Allen, 1980; Briggs and Scheutz, 2013; Trott and
Bergen, 2017).

8 Note here that we have chosen to use rules, in our example as well as in our evaluation, that use the
form "Do you need Y or Z" rather than the more indirect and hence more polite "Would you like Y or
Z". These two forms trade off between our desiderata. "Do you need Y or Z" (in response to "I need X"
better demonstrates intentions, but is less pragmatically appropriate, than "Would you like Y or Z", and
vice versa. Although we are able to generate both forms using the presented approach, we chose to use the
form "Do you need Y or Z", in part because, while it may be less pragmatically appropriate than "Would
you like Y or Z", both forms are significantly more pragmatically appropriate than the use of a direct
command.
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algorithms like the Incremental Algorithm (Dale and Reiter, 1995) cannot be straight-
forwardly applied for a variety of reasons; most crucially, because they do not account
for uncertain information. And while there have been some previous approaches to re-
ferring expression generation under uncertainty (Zarrieß and Schlangen, 2016; Roy,
2002; Meo et al, 2014), these are specifically designed for referring to objects in vi-
sual scenes, and as such, cannot generate references to entities that are not currently
visible or which (in the case of, e.g., goals, ideas, and utterances), cannot be visual-
ized.

To address these challenges, we presented DIST-PIA (Williams and Scheutz,
2017a), an algorithm inspired by the classic Incremental Algorithm, but tailored to
realistic robotics applications by using the same Consultant framework used during
reference resolution (Williams, 2017a; Williams and Scheutz, 2016a) to handle un-
certain, heterogeneous, and distributed knowledge. The pseudocode for this algorithm
is presented below in Algs. 1 and 2 with detailed in-line comments. For a thorough
explanation and demonstrative example, we direct the interested reader to (Williams
and Scheutz, 2017a).

Notation

C A set of Consultants {c0, . . . , cn}
cΛm The set of formulae {λ0, . . . , λn} advertised by the Consultant c ∈ C responsible for m.
M A robot’s world model of entities {e0 . . . en} found in the domains provided by C.
D The incrementally built up description, comprised of mappings from entities M to sets of pairs

(λ, Γ ) of formulae and bindings for those formulae.
DM The set of entities m ∈M for which sub-descriptions have been created.
dM The set of entities m ∈M involved in sub-description d.
P The set of candidate (λ, Γ ) pairs under consideration for addition to a sub-description.
Q The queue of referents which must be described.
X The incrementally pruned set of distractors

Algorithm 1 DIST-PIA(m,C)

1: D = new Map() // The Description
2: Q = new Queue(m) // The Referent Queue
3: while Q 6= ∅ do
4: // Consider the next referent
5: m′ = pop(Q)
6: // Craft a description d for it
7: d = DIST-PIA-HELPER(m′, C)
8: D = D ∪ {m→ d}
9: // Find all entities used in d

10: for all m′′ ∈ dM \ keys(D) do
11: // And add undescribed entities to the queue
12: push(Q,m′′)
13: end for
14: end while
15: return D
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Algorithm 2 DIST-PIA-HELPER(m,C)

1: d = ∅ // The Sub-Description
2: X = M \m // The Distractors
3: // Initialize a set of properties to consider: those advertised by the Consultant c responsible for m
4: P = [∀λ ∈ cΛm : (λ, ∅)]
5: // While there are distractors to eliminate or properties to consider
6: while X 6= ∅ and P 6= ∅ do
7: (λ, Γ ) = pop(P )
8: // Find all unbound variables in the next property
9: V = find_unbound(λ, Γ )

10: if |V |> 1 then
11: // If there’s more than one, create copies of that property under all possible variable bindings

that leaving unbound exactly one variable of the same type as the target referent
12: for all Γ ′ ∈ cross_bindings(λ, Γ, C) do
13: // And push them onto the property list
14: push(P, (λ, Γ ′))
15: end for
16: // Otherwise, if it is sufficiently probable that the property applies to the target referent...
17: else if apply(cm, λ, Γ ∪ (v0 → m)) > τdph then
18: // And it’s sufficiently probable that it does not apply to at least one distractor...
19: X̄ = [x ∈ X | apply(cx, λ, Γ ∪ (v0 → x)) > τdph]
20: // Then bind its free variable to the target referent, and add it to the sub-description...
21: if X̄ 6= ∅ then
22: // And remove any eliminated distractors
23: d = d ∪ (λ, Γ ∪ (v0 → m))
24: X = X \ X̄
25: end if
26: end if
27: end while
28: return d

5.5 Surface Realization, and Speech Synthesis

The final stage of clarification request generation is to send the Bound Utterances with
Supplemental Semantics produced by Content Selection to the Natural Language
Generation Component for Surface Realization, and then to the Speech Production
Component for Speech Synthesis.

For the first of these two stages, we use the open source SimpleNLG pack-
age (Gatt and Reiter, 2009) to translate an REG-produced BUSS into a textual
form such as “Do you need the white mug or the large black mug?” when there
are two referential candidates, or “Which one do you need?” in the case of a
larger number of referential candidates. Given the types of sentences we generate
in this work, translation from utterance form to text is relatively straightforward
using SimpleNLG. Utterance type is used to determine clause type (e.g., an Utter-
ance of type QuestionYN is used to generate a Sentence with SimpleNLG type
InterrogativeType.YES_NO); supplemental semantics are used to add mod-
ifiers and prepositional phrases based on predicate arity, which are in turn used by
SimpleNLG to create complex noun phrases; finally, "and" and "or" predicates are
used to create coordinated phrases with subclauses for each predicate argument.
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For the second of these stages, the open source MaryTTS package (Schröder and
Trouvain, 2003; Schröder et al, 2011) is then used to synthesize this text into an audio
form that is produced by the robot. We note, however, that given the modular nature of
the DIARC architecture and the loose coupling between NLG and TTS, this particular
TTS Component can easily be substituted out for other TTS Components, if desired
(e.g., Festival (Black et al, 1998)).

6 Demonstration

To demonstrate the operation of the presented approach, we present proof-of-concept
interactions in two simulated environments. These demonstration highlights the
full implementation of all stages of the clarification request generation framework
through components of the DIARC architecture. In Section 6.1, we present a demon-
stration in a hypothetical office environment, in which the robot does not have full
certainty with respect to the properties of objects found in its environment. This
demonstration is conducted entirely within DIARC. In Section 6.2, we present a
demonstration in a simulated alpine search and rescue environment, in which the
robot (an aerial search and rescue drone) does have full certainty with respect to the
properties of objects found in its environment. This demonstration is conducted in a
novel hybrid architecture, where natural language processing and goal-directed rea-
soning is performed in DIARC, whereas reasoning about and processing knowledge
in large scale outdoor missions is performed in the KnowRob system. In order to en-
able robotic systems to autonomously perform tasks without being controlled with or
teleoperated through any human low-level commands, we use the CRAM cognitive
robot architecture. CRAM enables robotic systems to ground symbolic descriptions
into robots’ action-perception domains in order to autonomously execute instructions
in a way that is sensitive to the context of the mission.

6.1 Demonstration One

Our first demonstration uses the components of the DIARC architecture shown in
Fig. 2, as well as components responsible for the simulation of a Pioneer robot within
an office environment, and a set {AGENTS, SPEX, OBJECTS} of POWER Consul-
tants (Williams and Scheutz, 2015, 2016a; Williams, 2017a) providing information
about people, places, and things, respectively.

The interaction begins with the speaker saying to the robot “I need the medkit”
in an environment in which the robot knows of two medkits, one red and one white.
ASR sends this sentence to NLP, which parses the utterance into the dependency tree:
[rootVB like [ncsubj I] [aux would] [dobj ball [det the]]].

From this tree, NLP extracts root semantic content need(X1, X2), with utterance
type Statement, additional semantic content {speaker(X1) ∧medkit(X2)}, and
presumed cognitive statuses {X1 → definite,X2 → definite}. Using this infor-
mation, POWER searches for the referents to bind to X1 and X2; for X1, POWER
finds a single probable candidate: agt1, with probability 1.0; for X2, two candidates
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are found: obj1, with probability of satisfaction 0.82, and obj2, with probability of
satisfaction 0.929 These bindings are then used to create the following bound utter-
ances10:

{Stmt(b, s, need(b, obj1)), Stmt(b, s, need(b, obj2))}

with corresponding probabilities11 0.82 and 0.92, respectively. These are normalized
and used to create DS-theoretic bound utterance structures, which are passed to DIA-
LOGUE:

{〈Stmt(b, s, need(b, obj1)), 0.471, 0.471〉,
〈Stmt(b, s, need(b, obj2)), 0.529, 0.529〉}

PRAG possesses the rule:

〈Stmt(X,Y, need(Z,W ))⇒ goal(Y, bring(Y,W,Z)), 0.9, 0.99〉, (4)

indicating that the robot is between 90 and 99% confident in the rule12. because the
antecedent of this rule matches the utterance form of each bound utterance structure,
uncertain Modus Ponens is applied in both cases, producing the set of intentional
structures:

{〈goal(s, bring(s, obj1, b)), 0.424, 0.576〉,
〈goal(s, bring(s, obj2, b)), 0.476, 0.524〉}

Note that at this point, belief no longer equals plausibility: while the robot may not
have encoded any ignorance with respect to what utterance was heard, ignorance
encoded with respect to the context and rules the robot uses for pragmatic inference
are reflected in the uncertainty intervals of the rules’ consequents, thus painting a
better picture of how much the robot truly knows about its interlocutor’s intentions.

Nunez’ uncertainty rule determines that both of these intentions are highly uncer-
tain. DIALOGUE thus determines its own intention to know which is correct, encoded
as the structure:

〈itk(s, or(goal(s, bring(s, obj1, b)), goal(s, bring(s, obj2, b)))), 1.0, 1.0〉

To decide how to communicate this intention, the bound utterance structure is passed
through PRAG in reverse (Williams et al, 2015), using a rule of the form:

〈QuestionWH(X,Y, or(Z,W ))⇒ itk(X, or(Z,W )), 0.95, 0.95〉, (5)

9 As above, the probabilities of different properties holding for these objects were arbitrarily hand-
selected for the sake of a clear and simple demonstration walkthrough. A set of “dummy” Consultants were
used that provided these hand-selected probabilities when asked for probability judgments. In practice,
these probability judgments can be provided by arbitrary classifiers, such as those commonly used for
object recognition (e.g. Redmon et al, 2016), which may often return different levels of confidence for
different observed objects.

10 Here, agt1 is changed to the agent’s name for dialogue processing.
11 All beliefs and plausibilities in this section are rounded.
12 The uncertainty intervals associated with different rules were arbitrarily hand-selected for the sake of

the demonstration walkthrough. For a discussion of how these intervals might be adapted over time, we
direct the interested reader to (Williams et al, 2014).



24 Tom Williams, Fereshta Yazdani, Prasanth Suresh, Matthias Scheutz, and Michael Beetz

Our approach allows recursive generation, and thus Eq. 5 is chained with Eq. 4 to
produce:

QuestionWH(s, b, or(need(b, obj1), need(b, obj2))).

This utterance is then sent to NLG for generation of REs for “bob”, “obj1” and “obj2”,
and subsequent realization of the entire expression. This produces the text “Do you
need the white medkit or do you need the red medkit?” which is then synthesized and
output by the robot.

6.2 Demonstration Two

Our second demonstration uses a novel hybrid architecture comprised of (1) the DI-
ARC architecture (Schermerhorn et al, 2006), used for goal-oriented reasoning, nat-
ural language understanding, and natural language generation, (2) the open-source
ROS-based (Quigley et al, 2009) KnowRob system (Tenorth and Beetz, 2009), for
domain-specific knowledge representation and reasoning, and (3) the open source
ROS-based CRAM architecture (Beetz et al, 2012), for grounding symbolic descrip-
tions into robots’ environmental contexts in order to effectively execute navigation
commands. The components of this hybrid architecture are shown Fig. 7. Also seen
in this diagram are components of the ROS-based Gazebo simulator (Koenig and
Howard, 2004), which is used for visualizing the simulated alpine search and rescue
task context used for this demonstration, as shown in Fig. 4.

Fig. 4: Visualization of the simulated alpine search and rescue environment in the
Gazebo simulator

In the remainder of this section, we will begin by describing the components
of this hybrid architecture that have not yet been introduced (i.e., KnowRob (in



Dempster-Shafer Theoretic Resolution of Referential Ambiguity 25

Sec. 6.2.1), CRAM (in Sec. 6.2.2), and their integration (in Sec. 6.2.3)). We will
then discuss how KnowRob and CRAM are integrated with DIARC in Sec. 6.2.4.
Finally, we will provide a walkthrough of our clarification request generation process
as it plays out in this novel hybrid architecture, in Sec 6.2.5.

6.2.1 KnowRob: Knowledge Representation and Reasoning

The KnowRob system provides an efficient reasoning engine equipped with a num-
ber of mechanisms important to robot autonomy, e.g., for reasoning about physical
objects, actions, and uncertainty (Tenorth and Beetz, 2009). To effect such reasoning,
KnowRob uses an ontology of structured concepts, properties, and relations. This
ontology is implemented in the Web Ontology Language (OWL) (Bechhofer, 2009;
McGuinness et al, 2004), which formally represents relational knowledge using an
XML-like standard. In order to load, store and reason about the knowledge contained
in the OWL files, we use SWI-Prolog (Wielemaker, 1987; Wielemaker et al, 2012).
While KnowRob by default uses an ontology of household concepts, in the context of
the outdoor search-and-rescue scenario used for our demonstration, we instead use an
extended ontology developed as part of the European SHERPA project (Marconi et al,
2012). This extended ontology includes additional concepts related to alpine search-
and-rescue and metric/topological location, some of which are shown in Fig. 5. To
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Fig. 5: The KnowRob ontology was extended with additional concepts and classes
in order to equip humans and robots with additional knowledge coming from search
and rescue applications, including knowledge of terrain (e.g. the concepts of rocks,
trees and lakes) and of different agent types (e.g., humans and robots).

provide this additional spatial and domain-specific knowledge, a semantic map was
constructed, from which information can be extracted regarding the terrain and fea-
tures thereof, physical information about objects found within that terrain, and quali-
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tative descriptions of the agents’ surroundings. This domain-specific information can
be used to augment the knowledge, navigation, task planning, and interaction capa-
bilities of robots operating as human teammates within this task context.

6.2.2 CRAM: Cognitive Robot Abstract Machine

To enable robotic systems that are more general, flexible, and reliable than other con-
trol systems, we use CRAM (Beetz et al, 2012, 2010): a cognitive robotic architecture
that provides a set of mechanisms for reasoning and making decisions about under-
specified human instructions.

Implemented in Common Lisp (Steele, 1990), CRAM provides both a plan library
and a library of designators: symbolic descriptions that specify plan parameters using
high-level symbols that, like logical predicates in DIARC, serve as a common cur-
rency used throughout disparate parts of the CRAM architecture. These designators
can be grounded into robots’ perceptions and actions using CRAM’s geometric rea-
soning engine. As an example, a CRAM plan description for the human instruction
“Go to the pylon” is shown in Listing 1.

Listing 1: Plan Description of the instruction "Go to the pylon"
(an action

(to go)
(receiver quadrotor)
(sender human_operator)
(destination
(visible

(viewpoint human_operator)
(destination

(next-to "pylon01")))))

This plan description provides an easily executable action designator comprised
of two nested location designators equated with a target destination. Those location
designators include an object labeled in the robot’s semantic map, corresponding
with a physical object in the terrain of the alpine search and rescue environment. The
designator also contains a set of symbolic constraints that describe the action, the
specific robotic teammate assigned to the current task, and conditions regarding the
visibility of both the target location and the viewpoint of the robot’s human team-
mate. Finally, this designator also includes the qualitative spatial relation “next-to”
constraint that further restricts the search space of the terrain. These descriptive con-
straints are obtained from an empirical study in a search and rescue mission (Yazdani
et al, 2017) conducted specifically to enable natural tasking of robotic teammates in
mixed human-robot teams.

Next, this abstract and qualitative plan description must be translated into a robot
motion command to travel to a set of quantitative metric coordinates (Mösenlechner
and Beetz, 2011). This is achieved by CRAM using a set of Prolog rules which ana-
lyze the designator’s correctness and generate metric solutions that satisfy symbolic
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navigational constraints, as depicted in Figure 6. The robot then selects and travels to
one of these satisficing goal locations.

Fig. 6: Satisficing goal locations generated by CRAM. Here, the heatmap in the call-
out represents the distribution over likely locations for a command to go to the pylon.

6.2.3 Inter- and Intra-Architectural Communication

Both KnowRob and CRAM are implemented in the open-source Robot Operating
System (ROS) (Quigley et al, 2009) middleware. Like the ADE middleware in which
DIARC is implemented, ROS supports the generation of robust robot behavior across
heterogeneous robotic platforms, and uses a component-based architecture in which
a set of "nodes" are run in parallel. While in ADE, inter-component communica-
tion is performed using a service-based model, inter-component communication in
ROS is performed both through service calls as well as through message passing
through a publish-subscribe model. Interfaces to both KnowRob and CRAM are pro-
vide using the open source json_prolog ROS package, which allows ROS nodes
to issue Prolog queries in a standard JSON format (Crockford, 2006). Queries issued
to KnowRob and CRAM can be used to, respectively, retrieve information from its
semantic map and issue navigation commands.

To simulate alpine search and rescue missions, KnowRob and CRAM are inte-
grated with the ROS-integrated Gazebo Simulator (Koenig and Howard, 2004): a
multi-robot simulator suitable for both indoor and outdoor environments, in which
we simulate robots’ physical activities and robots’ perceptions of the objects in their
environmental context.

6.2.4 Architectural Integration

While DIARC and KnowRob+CRAM share an overlapping set of capabilities, each
provides its own unique capabilities that are not found in the other. For example,
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DIARC provides the natural language processing capabilities previously detailed in
this paper, and KnowRob+CRAM provides a unique ontology of search and rescue
oriented knowledge, as well as mechanisms for grounding commands to a robot in an
alpine search and rescue scenario.

Fig. 7: Integrated Architectural Diagram: On the left are shown the components of
the DIARC architecture used throughout this paper. On the right hand side are the
components of KnowRob and CRAM (as well as the Gazebo simulator) introduced
in this section. Between them sits the autogenerated ROS Node injected by DIARC
into KnowRob+CRAM. Further details can be found in the text.

In this section, we will describe how DIARC and KnowRob+CRAM are inte-
grated together so that each architecture may make use of the other’s complemen-
tary capabilities, as shown in Fig. 7. To integrate the DIARC and KnowRob+CRAM
architectures together, we use a strategy we refer to as "component injection", in
which the Sherpa Component13 (a dedicated component of the DIARC Architec-
ture) interacts with an autogenerated ROS node which is injected into the ROS-based
KnowRob+CRAM architecture to enable inter-architectural communication. In this
section, we will begin by discussing the KnowRob Component. We will then describe
how the ROS node it makes use of is created and injected into the KnowRob+CRAM
architecture. Finally, we will discuss how we use this connection to allow DIARC
and KnowRob+CRAM to leverage each others’ capabilities.

The Sherpa Component serves as a POWER Consultant to the rest of DIARC (see
Sec. 5.1.1). Accordingly, this component advertises the properties that can be han-
dled by KnowRob , provides upon request a list of entities currently known of by

13 This Component is named after the European SHERPA project (Marconi et al, 2012) for which the
alpine search and rescue KnowRob ontologies used in this integration were developed.
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KnowRob , and provides probability judgments regarding whether certain proper-
ties hold for certain entities, assessed through queries to KnowRob . Many of these
capabilities require translating the names of entities between the format used by
KnowRob+CRAM and the format used by DIARC. Specifically, KnowRob+CRAM
refer to entities by their type, through names such as "tree01" and "rock03". DIARC,
in contrast, refers to entities using pairs of the form < Consultant, id > where
Consultant is the name of the POWER Consultant responsible for the entity, and
id is an integer id assigned by that Consultant to that entity. We will now describe
how the Sherpa Component implements each of the capabilities required of POWER
Consultants.

First, all POWER Consultants must be able to provide a list of properties that can
be assessed in their associated knowledge base. When the Sherpa Component is ini-
tialized, it automatically sends a query to KnowRob+CRAM asking for a list of prop-
erties and relations that can be assessed during the processes of reference resolution
and referring expression generation. Crucially, this means that the Sherpa Compo-
nent does not need to store any domain-specific knowledge about these properties.
Accordingly, when the KnowRob ontology is updated with new search and rescue
relevant properties, the Sherpa Component is automatically informed of these new
properties at startup.

Second, all POWER Consultants must be able to provide a list of entities currently
known of to their associated knowledge base. When POWER asks the Sherpa Compo-
nent for a list of entities known about by KnowRob+CRAM, the Sherpa Component
makes a query for this same list to KnowRob+CRAM. It then updates its mapping
between DIARC-style ID pairs and Sherpa-style entity names, creating new ID pairs
for any entities it did not previously know of.

Third, all POWER Consultants must be able to provide probability judgments as
to whether particular properties and relations hold for particular entities. When the
Sherpa Component receives such a request, it translates it into a JSON Prolog query,
which is then sent to KnowRob+CRAM through the architectural bridge we will
go on to describe in this section. Because Prolog does not represent the uncertainty
of knowledge, KnowRob+CRAM returns to the Sherpa Component a Boolean rep-
resenting whether or not the queried property appears in (or can be inferred from)
KnowRob+CRAM’s Prolog knowledge base. This is then translated by the Sherpa
Component to a probability value of either 0.0 or 1.0. As such, in this architectural
integration, Dempster-Shafer theoretic, point-probability theoretic, and Boolean rep-
resentations are used seamlessly alongside each other.

Finally, all POWER Consultants must be able to assert new hypothetical rep-
resentations into their associated knowledge bases. When this is requested of the
Sherpa Component, it creates a new DIARC-style ID pair, associates it with a
new Sherpa-style entity name beginning with the prefix "hyp" which is unused by
KnowRob+CRAM. The Sherpa Component then issues a JSON Prolog request to
KnowRob+CRAM to assert the existence of a new entity with this name, along with
the properties attributed to it, into its Prolog knowledge base.

In addition to these Consultant capabilities, KnowRob provides search and res-
cue specific action specifications to DIARC that can be automatically identified and
executed by DIARC’s Goal Manager, such as commands to navigate an aerial search
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and rescue robot to a particular location or to command it to take a picture using
its onboard camera. When these actions are executed, they trigger associated CRAM
commands (through mechanisms we will shortly describe) which determine how to
execute that action given the robot’s current context.

To allow the Sherpa Component to interact with KnowRob+CRAM, we use an
offline utility to automatically generate a ROS Node that can serve as a bridge be-
tween DIARC and KnowRob+CRAM (see also (Wilson et al, 2016)). Specifically,
by pointing this offline utility towards the JSON Prolog node of KnowRob+CRAM,
a new ROS node is created that can both communicate with DIARC through a ros-
java bridge and also communicate with KnowRob+CRAM by passing messages to
the JSON Prolog node. While DIARC is fully aware that this node is part of an exter-
nal ROS-based architecture, from the perspective of KnowRob+CRAM it is simply
yet another ROS node publishing and subscribing to messages. KnowRob+CRAM is
thus unaware that it is communicating with another robot architecture (i.e., DIARC).

It is interesting to contrast this Component Injection paradigm with the Dual Citi-
zen paradigm introduced in our previous work (Williams et al, 2017). In that previous
work, so-called "Dual Citizen" components were true components of both architec-
tures, and accordingly, neither architecture was aware of the Dual-Citizen status of
these components, or in fact of the presence of the other architecture at all. In contrast,
while the ROS-based KnowRob+CRAM is not aware of the ADE-based DIARC, DI-
ARC is in fact aware that it is interacting with another architecture through the use of
this autogenerated ROS node.

6.2.5 Demonstration Walkthrough

Now that we have detailed the components of this novel hybrid architecture, we can
present a second demonstration of this paper’s integrated approach, within a very dif-
ferent task context and evaluation environment. While in the first demonstration, all
knowledge was hard-coded into components specifically designed for that demon-
stration (and accordingly was not grounded into any situated context), in this demon-
stration, the robot’s knowledge is actually grounded into the simulation environment
provided by the KnowRob+CRAM architecture.

In the previous demonstration, we used the indirect request "I need the medkit."
In this demonstration, we use instead the direct command "Go to the pylon," in an en-
vironment containing (among other scenario-relevant objects, locations, and people,
as shown in Fig. 4) two pylons: a red pylon, and a blue pylon. To begin, ASR sends
this command to NLP to be parsed. While in the previous demonstration, we used the
CNC dependency parser to translate the request into a dependency tree from which
logical formulae were extracted, in this demonstration, we instead use an in-house
Combinatory Categorical Grammar (CCG) (Steedman and Baldridge, 2011) parser
to incrementally translate text to a logical form. While both parsers may still be used
in our system, since performing our initial demonstration we have moved to primarily
use this CCG-based parser in order to exploit the incrementality and other benefits it
affords, as described by Krause et al (2013) and Scheutz et al (2017).

Specifically, NLP parses this command into a bound utterance with type In-
struction, with root semantic content move(self,X0), additional semantic content
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{pylon(X0)}, and presumed cognitive statuses {X0 → definite}. POWER then
uses the Sherpa Component to retrieve a list of currently known entities, and to as-
sess whether each of them has the property pylon(X0) using the JSON Prolog query
check_object_property([entity name],pylon,A). Sherpa identifies two
candidates, redpylon01 and bluepylon01 (which the Sherpa Component knows of
as sherpa_14 and sherpa_23), each with probability of satisfaction 1.0. These bind-
ings are then used to create the following bound utterances, each with a corresponding
probability of 1.0:

{INSTRUCT (speaker, self,move(self, sherpa_14)),

INSTRUCT (speaker, self,move(self, sherpa_23))}

{INSTRUCT (speaker, self,move(self, sherpa_14)),

INSTRUCT (speaker, self,move(self, sherpa_23))}.}

These are normalized and used to create DS-theoretic bound utterances, which
are passed to DIALOGUE:

{〈INSTRUCT (speaker, self,move(self, sherpa_14)), 0.5, 0.5〉,
〈INSTRUCT (speaker, self,move(self, sherpa_23)), 0.5, 0.5〉}

the Pragmatics Rule Set contains the rule:

〈INSTRUCT (X,Y,move(Y,Z))⇒ goal(Y, at(Y,Z)), 0.7, 0.7〉. (6)

Because the antecedent of this rule matches the utterance form of each bound
utterance structure, uncertain Modus Ponens is applied in both cases, producing the
set of intentional structures:

{〈goal(self, at(self, sherpa_14)), 0.35, 0.65〉,
〈goal(self, at(self, sherpa_23)), 0.35, 0.65〉}.

Nunez’ uncertainty rule determines that both of these intentions are highly uncer-
tain. D thus determines its own intention to know which is correct, encoded as the
structure:

〈itk(self, or(goal(self, at(self, sherpa_14)),

goal(self, at(self, sherpa_23))), 1.0, 1.0)〉

To decide how to communicate this intention, the bound utterance structure is
passed through PRAG in reverse, using a rule of the form

〈QuestionWH(X,Y, or(Z,W ))⇒ itk(X, or(Z,W )), 0.95, 0.95〉, (7)

Our approach allows recursive generation, and thus Eq. 7 is chained with Eq. 6 to
produce:
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QuestionWH(self, speaker, or(move(self, sherpa_14),move(self, sherpa_23))).

This utterance is then sent to NLG for generation of REs for sherpa_14 and
sherpa_23. To do so, NLG once again leverages the Sherpa Component, issuing re-
quests to KnowRob+CRAM to assess which properties and relations hold for these
entities and their distractors. For each of these two referents, the DIST-POWER algo-
rithm will first determine that the property pylon(X) holds, and rules out all non-
pylon distractors. It will then determine that the properties red(X) and blue(X),
respectively, hold for these two referents while eliminating all other distractors (i.e.,
each other). NLG then uses this information to generate the final clarification request,
in which sherpa_14 is referred to as "the red pylon" and sherpa_23 is referred to as
"the blue pylon".

7 Human-Subjects Evaluation

To further evaluate our approach, we conducted an additional human-subject experi-
ment, comprised of (1) a data collection stage, and (2) an evaluation stage. The goal
of this evaluation was to compare clarification requests authored by our integrated
approach with those authored by humans, using human preference judgments as an
evaluation metric. While we would not necessarily expect the quality of requests au-
thored by our approach to surpass that of requests generated by humans, we would
hope and expect that they would approach reasonably close.

7.1 Data Collection

We first created a tabletop scene containing twelve objects: four different colored
waterbottles, four different colored markers, and four different colored mugs (Fig. 8).
This type of tabletop environment is typical of the challenging environment in which
natural language dialogue in general (Kruijff et al, 2006a; Scalise et al, 2018; Scheutz
et al, 2014) and clarification dialogues specifically (Wyatt, 2005) have typically been
studied in robotics. Not only is clutter a pervasive and challenging aspect of nat-
ural environments (Berenson and Srinivasa, 2008), but it produces an environment
in which speakers may not be aware of – or hold in working memory – all distrac-
tors which need to be disambiguated in their referring expressions. This has similarly
made these types of environments particularly valued in the fields of natural language
generation and psycholinguistics (Koolen et al, 2016).

For each object type, we took photographs of the scene in which zero, one, or
two of that object type were taken away. This produced nine tabletop scenes, three
of which contained identical object arrangements (i.e., those scenes in which no ob-
jects were removed). In our data collection experiment, each participant was shown
one of these nine images at random, with a caption describing the participant’s task,
followed by a text box. For example, for the image in which three of the four water-
bottles was shown, the following caption was used:
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“You have been told ‘I need the bottle!’ and would like to fulfill the speaker’s
request. However, as you can see, there are three bottles on the table: a silver bottle,
a green bottle, and a blue bottle. Please type a sentence you would use to ask the
speaker for clarification, so that you will know what bottle to pick up."

Fig. 8: Tabletop Environment used in Experiment Two.

Similar captions were used for the other images. Once the participant entered text
into the text box, they were free to click to the next page, and end the experiment. It is
important to note that while these captions likely primed participants to use particular
features (e.g., object type and color), this is unimportant for our experiment: as we
will go on to describe, those features of participants’ sentences were not used in
the subsequent stage of our experiment. Because we were only interested in – and
thus only made use of the sentence content regarding – how the clarification requests
themselves were phrased, this priming has no impact on the ecological validity of our
experiment.

Participants were recruited (53 Male, 39 Female) using Amazon Mechanical
Turk. All participants were American, ranged in age from 20 to 77 (M=33.15,SD=8.94),
and were paid $0.30 to participate. Only high-reputation participants were used to
guard against potential participation from automated "bots". As a total of 92 partic-
ipants were recruited, an average of 30.7 utterances were collected for each group-
ing of scenes that had the same number of objects removed. Vocabulary diversity
statistics for these utterances are reported in Tab. 1 (Carroll, 1964; Richards, 1987).
Here, Vocabulary indicates the number of words collected; Types indicates the num-
ber of unique words collected; and Type/Token ratio ( Types

V ocabulary ) and Diversity
( Types√

2∗V ocabulary ) provide competing metrics of the size of vocabulary used by speak-
ers. These measures may help the reader better gauge the relative complexity of our
experimental setup. All utterances collected in this stage were standardized with re-
spect to noun phrasing. For example, “Do you want me to pick up the silver bottle
or the blue bottle?" was reduced to “Do _ want _ to pick up _ or _?" All utterances
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Vocabulary Types Type/Token Ratio Diversity
596 64 .107 1.85

Table 1: Vocabulary statistics for utterances collected in Experiment Two, Part One.

Generator # Utterance Generated in Part One Result
Robot 2 Do you need __ or do you need __? 9.4%
Human 2 Do you need __ or __? 45.3%
Human 2 What color __ do you need? 22.6%
Human 2 What color __ do you want? 22.6%
Robot 3 Which one do you need? 23.7%
Human 3 Which color __ do you need? 33.9%
Human 3 Which color __? 23.7%
Human 3 Which color __ would you like? 18.6%
Robot 4 Which one do you need? 20.0%
Human 4 What color __ do you need? 24.3%
Human 4 Which color __ would you like? 22.9%
Human 4 Which color __? 21.4%
Human 4 What color is the __? 11.4%

Table 2: Utterance forms generated in Experiment Two, Part One, and chosen be-
tween in Experiment Two, Part Two. Col. 1 indicates whether each utterance form
was generated by the presented approach or by a human in Part One. Col. 2 indicates
how many suitable referents existed in the scene for which each utterance was gener-
ated. Col. 3 indicates the generated utterance form, generalized across noun phrases.
In Part Two, blanks were filled with generated REs. For example, in scenes with ini-
tial utterance “I need the bottle”, gaps in the first two rows were filled with “the green
bottle” and “the silver bottle”, and remaining gaps were filled with “bottle”. Col. 4
indicates the percentage of participants in Part Two who chose that utterance form as
the best to use to ask for clarification.

within each cluster were grouped by identical phrasing, and the three most common
phrasings for each cluster were selected (four in the case of a tie). The REG algo-
rithm described above and presented in (Williams and Scheutz, 2017a) was then used
to generate noun phrases to fill into the previously created gaps, thus creating three
to four utterances for each image.

Next, an additional utterance was generated for each image using the approach
presented in this paper: for each image, knowledge of the objects in the image was
provided to the robot architecture, and the utterance “I need the [name of object type]”
was said to a robot running the architecture. Because the architecture also used the
REG algorithm described above and presented in (Williams and Scheutz, 2017a), the
utterances generated by our robot architecture had the same noun-level phrasings as
all other utterances, but a different utterance-level phrasing. Thus, this stage produced
a set of thirty-nine utterances with unique utterance level phrasings but identical noun
level phrasings. The thirteen utterance forms (before REs were filled in) are shown in
Tab. 2, Column 3.
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7.2 Evaluation

In this stage, a new set of participants were recruited (94 Male, 88 Female) using
Amazon Mechanical Turk. These participants were American, ranged in age from 18
to 74 (M=34.55, SD=11.16), and were paid $0.30 to participate. Only high-reputation
participants were used to guard against potential participation from automated "bots".

Each of these new participants was shown one of the nine tabletop scenes created
in the first stage, along with a caption such as: “Your friend Alex says to you, ‘I need
the bottle!’ Which of the following sentences would be best to say to Alex, so that
you will know which bottle to give her?"

Each participant was then presented with the four to five utterances associated
with the presented image, in the form of buttons. Clicking on one of the utterances
moved the participant to the next page, and ended the experiment. As a total of 182
participants were recruited, an average of 20.22 data points were collected for each
scene.

As previously mentioned, while we would not necessarily expect the quality
of requests authored by our approach to surpass that of requests generated by hu-
mans, we would hope and expect that they would approach reasonably close. And in
fact, Robot-generated requests were chosen only slightly less frequently than were
human-generated requests: overall, robot-generated requests were chosen 18.13% of
the time, whereas each form of human-generated request was chosen, on average,
24.67% of the time. Overall, this is a positive result as it suggests that the algorithm
overall did not generate requests that were much worse than the requests that hu-
mans used most frequently. A request-by-request breakdown of participants’ choices
is shown in Tab. 2, Column 4.

This table also indicates, however, a more complex story, in the case where there
were only two referential candidates. As shown in the first section of Tab. 2, in this
case our robot-generated requests were chosen significantly less frequently than were
human-generated requests, but were nearly identical to the top performing human-
generated requests. The robot-generated requests were simply more verbose, as they
used a conjunction at the clause level rather than the noun-phrase level. We thus sub-
sequently adapted our algorithm to ensure that this type of elision was automatically
performed, the result being that our algorithm now produces exactly the form that was
most preferred by our participants. Without running a replication experiment with the
modified algorithm, however, we cannot make new claims as to the performance of
our approach nor re-calculate our statistics, as this would implicitly use a test set of
compromised validity.

7.3 Discussion

In Experiment One, we observed that participants dispreferred clarification requests
that were insensitive to pragmatic factors, did not indicate understanding of an inter-
locutor’s goals or intentions, listed more than two options, or did not list both options
when there were only two likely candidates. These observations were confirmed in
Experiment two, part two. The most commonly chosen clarification requests were
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nearly identical to the clarification requests generated by our robot architecture. But
in neither the two-, three-, or four-option utterance groupings were our chosen clarifi-
cation requests exactly identical to the most commonly chosen clarification requests,
and in fact differed from those requests in small but important ways.

As previously mentioned, when there was referential ambiguity between only two
candidate referents, participants in Experiment Two Part Two preferred clarification
requests that listed all options. However, the specific phrasing used by our robot ar-
chitecture was simply too verbose, as it failed to identify structural similarities and
distribute appropriately. As previously mentioned, this fault has since been rectified.
Future work will be needed to determine the distribution of selections that would be
seen if the overly verbose (originally robot-generated) RE were not presented. We
would expect, however, that the most common human-generated (and now, robot-
generated) RE to be chosen between 45.3 and 54.5% of the time, putting the robot’s
performance on par with human performance.

A greater difference is observed when more than two options present themselves.
It is striking to observe that all commonly-used human-generated utterances in these
cases do not explicitly ask for disambiguation between bottles, but rather ask for in-
formation regarding a specific property that could be used to disambiguate between
bottles. This suggests that in these cases, it may be advantageous to combine tech-
niques from approaches such as that presented in this paper and the information-
theoretic approaches seen in previous work (Deits et al, 2013; Hemachandra et al,
2014; Purver, 2004).

It is also important to note, however, that in all three cases a significant per-
centage of participants did choose the less popular choices. When four options were
presented, for example, “Which color__ would you like” was chosen by less than two
percent fewer participants than was the most popular “What color __ do you need?”.
This suggests that it may be valuable in future work to develop models of human
interlocutors that model this type of individual difference.

While at first glance the difference between the alternate strategies may seem
arbitrary, we suspect that they in fact represent different strategies that are either
explicitly used, or which arise from differential weightings of pragmatic principles.
Utterances such as “Which color __ do you need” may be used due to subconscious
lexical entrainment or conscious refashioning in which speakers use the same phras-
ing as that used by their interlocutors (Clark and Schaefer, 1989; Brennan et al, 2010;
Yoon and Brown-Schmidt, 2013). Utterances such as “Which color __ would you
like” and “Which color __ do you want” may be used if the pragmatic value of a
refashioned sentence is weighted lower than that of a more conventionally indirect
utterance form (Searle, 1975). And utterances such as “Which color __” may be used
due to the interaction of either aforementioned pragmatic strategy with Grice (1970)’s
Third Maxim of Manner: “Be brief (avoid unnecessary prolixity)”.

Before concluding, let us discuss a few limitations of the evaluation presented in
this section. First, our instructions may have primed participants to prefer utterances
of the form "Do you need" through lexical entrainment. As such, while our evalua-
tion effectively demonstrated human preference for the utterances generated by our
approach, it’s unclear whether this is due to communication of intentions or due to
lexical entrainment. It will be valuable to further evaluate this distinction in future
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work. More generally, it would be valuable to perform an ablation study to more
deeply investigate the benefit gleaned from each of our three initial desiderata, e.g.
by increasing the threshold for generalization, by bypassing the pragmatic inference
module, and/or by varying the pragmatic rules used during pragmatic generation.

Second, as with our first experiment, there are limitations with respect to experi-
mental setting: in crowdsourced experiments, it is not possible to control participants’
experimental setting, and we did not control for web browser, operating system, or
other factors that may have impacted viewing experience.

Third, while we only used high reputation participants, we did not use attention
checks14 or Captchas (Von Ahn et al, 2003), which may have been warranted as even
further caution against "bots" (Schenk and Guittard, 2009). While this was not a
concern for the first portion of this experiment, as no participants entered infelicitous
responses to our questions, it may have been a concern for our second experiment.

Finally, in the future, it would also be valuable to evaluate our approach (and fu-
ture extensions thereof) not only subjectively, but objectively as well. While in this
work our evaluative focus was on alignment of clarification requests with human pref-
erences, an inherently subjective metric, it will also be important to perform objective
evaluation. The NLG community has recently, through community efforts such as the
GIVE challenge (Byron et al, 2009; Koller et al, 2010), demonstrated the importance
of task-based evaluations where language generation is evaluated with respect to task
performance: an approach to evaluation that is objective while avoiding the observed
flaws of previous methods such as BLEU scores (Papineni et al, 2002). In our own
previous work, we have developed novel task-based evaluation frameworks for evalu-
ating Referring Expression Generation algorithms (Williams and Scheutz, 2017a). In
future work, it would be a natural next step to investigate how such a framework could
be appropriately modified to apply to evaluate the full clarification request generation
framework as well.

8 Conclusion

We have presented an integrated approach to clarification request generation for HRI
contexts. Our initial experiment replicated and refined the recommendations of pre-
vious studies of human-robot dialogue, suggesting that for human-robot interaction
contexts, it may be important for robots’ clarification requests to be pragmatically ap-
propriate, demonstrate intention understanding, and list options for disambiguation so
long as there are a small number of options. In this work, we demonstrated how our
integrated approach was able to fulfill these desiderata in two scenarios, including a
simulated alpine search and rescue environment enabled through a hybrid architec-
tural approach. In addition, we showed how our approach can be used in architectures
where information about referents is uncertain and distributed across multiple hetero-
geneous knowledge bases, as is often the case in cognitive robot architectures. But
most importantly, the primary finding of this paper is that a language-enabled robot’s
pragmatic reasoning component can track and address referential ambiguity when

14 Although, see recent discussion of the shortcomings of such checks (Hauser and Schwarz, 2015),
especially in crowdsourced experiments (Curran, 2016).
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integrated with probabilistic reference resolution and referring expression generation
components: a useful finding for designers of language-enabled robot architectures
intended for use in HRI domains.

Our findings suggest several directions for future work. First, research is needed
on using information-theoretic mechanisms to adapt (Tellex et al, 2013) – and local
context (Rosenthal et al, 2012a) – to frame clarification requests generated by prag-
matic reasoning components. Second, research is needed to develop speaker-specific
models that can predict precisely what type of clarification request they would most
likely prefer, based on their inferred weighting of pragmatic principles. Third, fu-
ture work should also further examine methods by which components using different
frameworks for representing uncertainty can be optimally integrated. Fourth, it would
be valuable to evaluate the integrated system presented in this paper using task-based
and ablation-based evaluations that address the shortcoming of our current evalua-
tions. Finally, a tighter integration between pragmatic reasoning and reference res-
olution can be achieved. In previous work, we have shown how our pragmatic rea-
soning component can use contextual knowledge to abduce the most appropriate way
to phrase an utterance; but this contextual knowledge is assumed to be stored in a
robot’s centralized belief and dialogue components. In future work, this should be
extended to allow this knowledge to be appropriately distributed across the robot’s
heterogeneous knowledge bases, as is its other knowledge.
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