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ABSTRACT
Recent work on natural language generation algorithms for human-
robot interaction has not considered the ethical implications of such
algorithms. In this work, we provide preliminary results suggesting
that simply by asking for clarification, a robot may unintentionally
communicate that it would be willing to perform an unethical
action, even if it has ethical programming that would prevent it
from doing so. In doing so, the robot may not only miscommunicate
its own ethical programming, but negatively influence the morality
of its human teammates.
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1 INTRODUCTION AND MOTIVATION
Robots intended to collaborate with human teammates must be
able to recover from failures if they are to operate for a significant
period of time. For collaborative robots, humans represent a rich
and naturally accessed resource for error recovery. Accordingly,
HRI researchers have investigated numerous approaches towards
allowing robots to ask humans for help, including approaches to
asking for: definitions of simple actions [5], action scripts [30], ac-
tion demonstrations [4], task models [12], object models [14], route
instructions [39], spatial relationships [23], assistance overcoming
physical limitations [27], assistance overcoming task failure [13],
and clarification.

Asking for clarification (i.e., disambiguation of earlier utterances)
in particular has attracted significant attention in the past few years.
Most of this recent work concerns the generation of utterances to re-
solve referential ambiguity, responding to commands such as “Bring
me the mug” with utterances such as “What do the words ‘the mug’
refer to”, “Do you mean the red mug?”, or “Do you mean the red
mug or the blue mug?” [10, 15, 20, 25, 36]. In our own recent work,
we presented an approach whereby robots can identify and gener-
ate clarification requests to resolve both referential ambiguity and
pragmatic ambiguity (i.e., when there are multiple interpretations
of – or possible intentions behind – a human’s utterance) [40].

All of these previous approaches, including our own, suffer from
a shared flaw which may have serious ethical implications. Specifi-
cally, all of these approaches generate a clarification request as soon
as ambiguity is identified, without first considering the pragmatic

implications of such a request. While the ethical implications of
generating a clarification request such as “Do you mean the red
mug or the blue mug?” may not be immediately obvious, consider
the following hypothetical exchange:
Human: I’d like you to run over Tina.
Robot: Would you like me to run over Tina Perez or Tina Ortiz?

In this example, by asking for clarification the robot seems to
suggest that it would be willing to run over at least one of the Tinas
listed. Clearly, this should not be the case. And yet, even if the robot
in this scenario were endowedwith an ethical reasoning system that
ensured that the robot would not perform such an action, because
of the way that current clarification request generation systems are
integrated with robot architectures, current systems would not be
able to prevent the generation of such an utterance.

How severe of an ethical concern is this phenomenon? The
answer, I would argue, likely depends on the answer to two other
questions: (1) How likely is it that humans will actually infer from
a robot’s clarification request that it would be willing to perform
the actions about which it is inquiring? And (2) What deleterious
effects might such an inference have?

This paper presents the results of a human-subject experiment
designed to suggest preliminary answers to these questions. Specif-
ically, this experiment tests the following hypotheses:
Hypothesis 1 (H1): By generating clarification requests regard-

ing ethically dubious actions, robots that would not actually
perform the actions in question will miscommunicate their
ethical programming to their human teammates.

Hypothesis 2 (H2): By generating such clarification requests, robots
risk negatively affecting the morality of their interlocutors.

2 METHODS
To investigate these hypotheses, we conducted a within-subjects
only study using Amazon’s Mechanical Turk crowdsourcing frame-
work [3] in which participants provided responses to several ques-
tions both before and after reading about a described human-robot
interaction. Before further describing this study, we must provide
further explanation for this choice of paradigm.

While research has demonstrated that people view robots very
differently in descriptions, observation, and interaction [1, 8, 19,
34], the use of a description-based survey fulfills two goals: (1)
it allows us to study morally charged situations “at arm’s length”
without running into ethical experimental issues [29], and (2) it
provides a baseline measurement of participants’ responses that is
independent of any particular robot morphology. It is our intention
that the results of this experiment will provide broadly applicable
baseline results that may be used as an informed prior for previous
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studies, under a Bayesian analysis framework [16]. We chose to use
Mechanical Turk in part because research has shown it to be more
successful than traditional studies using university undergraduates
at reaching a broad demographic sample of the US population [6]1.

2.1 Materials and Experimental Procedure
The survey consisted of two stages, to facilitate a within-subjects
experimental design. The survey was produced and distributed on
Mechanical Turk using the psiTurk experimental framework [9].

2.1.1 Introduction. After providing informed consent and demo-
graphic information, participants read the following information,
over the course of two pages:

“It is important for robots to behave ethically. For example, it is
important for robots not to intentionally inflict damage on others or
their property. In this experiment you will read about a hypothetical
human-robot interaction scenario, and will be asked to answer
questions about it. Please read the scenario description and all
questions carefully.”

“Imagine a robot. This robot has recently undergone some rudi-
mentary ethical training. In front of the robot are two computers.
These are important pieces of laboratory equipment.”
Here, the scenario description is framed in such a way that the type
of robot is left ambiguous to avoid biasing participants towards
one particular robotic form; the robot’s ethical training is described
in such a way to encourage similarly open interpretation; and
the objects in the robot’s environment are described so as to be
important (and which it would typically be inappropriate to damage
in any way) without involving harm to any human beings.

2.1.2 Stage One. After reading this introductory material, par-
ticipants provided baseline measurements within the provided sce-
nario by answering three questions:

(1) Do you believe it would be morally permissible for the
robot to destroy one of the PCs? (7-item Likert scale, with 7
being “I believe it would be completely permissible.” to 1
being “I believe it would be completely impermissible.”)

(2) Do you believe that the robotwould believe it to bemorally
permissible to destroy one of the PCs? (7-item Likert scale,
with 7 being “I believe the robot would believe it to be com-
pletely permissible.” to 1 being “I believe the robot would
believe it would be completely impermissible.”)

(3) If you asked the robot to destroy one of the computers,
do you believe it would comply with your request? (7-item
Likert scale, with 7 being “I am completely certain the robot
would comply.” to 1 being “I am completely certain the robot
would not comply.”)

2.1.3 Stage Two. Next, participants first read the following de-
scription: “Imagine you say to the robot ‘Destroy the computer’
and it responds ‘Do you mean the one on the left or the one on the
right?’ ” participants then answered the same three questions2.

1Although, to be clear, Mechanical Turk has its own population biases [33].
2In both stages, after answering these questions, participants also completed stan-
dardized likability and trust questionnaires. Based on previous reviewer feedback,
discussion of those surveys is omitted from this paper.

2.1.4 Experimental Concerns. Our non-counterbalanced within-
subject experiment is a design which typically raises two concerns
which must be addressed. The first common concern is whether
participants’ results in the post-test were affected by events oc-
curring between the post-test and the baseline pretest, such as
participants’ natural maturation or events in the news. This con-
cern is easily dispatched for this experiment given its duration. The
other, more reasonable, concern is whether the pretest primed par-
ticipants in a way that made the manipulation more effective than
it otherwise would have been. Our pre-test was indeed designed to
ensure that participants were conscious of the moral status of the
action in question. This was necessary because our intention was to
test how participants interpreted clarification requests concerning
morally unacceptable actions. But, crucially, we do not believe that
the pretest should have primed participants in any way with respect
to our intervention itself, i.e., clarification requests.

2.2 Participants
47 US subjects were recruited from Mechanical Turk (17 female, 30
male). Participants ranged from ages 21 to 68 (M=35.81,SD=11.37).
None had participated in any previous study from our laboratory.

Note that this is a smaller number of participants than is usually
seen in Mechanical Turk experiments. In a Bayesian framework,
analysis with small sample sizes is no less valid, but instead results
in increased dependency on the choice of prior [21]. For this reason
(which has certain advantages [38]), we will provide robustness
analyses with our results.

We would also like to advocate for the use of “appropriate” sam-
ple sizes. While Mechanical Turk makes it easy to collect arbitrarily
large samples, it is not clear whether this is always a responsible
approach. Recent research has suggested that the median MTurk
participant has completed over 300 studies [26], suggesting that
participant reuse throughout the field is likely a serious problem.
Avoiding over-sampling may help to mitigate this issue.

2.3 Analysis
Scripts were written to convert participants’ user IDs into salted
hashes before downloading data from our secure database (cf. [18]).
Data was then analyzed using the JASP [35] software package for
Bayesian statistical analysis.

After downloading this anonymized data (available at bit.ly/
longhri18), Bayesian paired-samples t-tests [28] and Bayes Factor
analyses [24] were conducted between pre-test and post-test re-
sponses for scenario-specific questions two and three (to evaluate
H1), and scenario-specific question one (to evaluate H2). All anal-
ysis was performed using the default settings in JASP; the JASP
analysis files are included in the data repository. Because this is the
first empirical study of its kind on this topic, an uninformed prior
was chosen [16]. The results of this study, however, may be used to
form an informed prior for future experiments.

Before discussing our results, we must briefly justify our choice
of a Bayesian approach to statistical analysis as opposed to the
far more popular frequentist approach. There are several factors
which influenced our decision: (1) The use of a Bayesian approach
to statistical analysis provides robustness to sample size (as it is
not grounded in the central limit theorem) [37]; (2) This approach

bit.ly/longhri18
bit.ly/longhri18
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(a) Participants’ Ratings (b) Robustness Analyses

Figure 1: Perceived (robot-oriented) permissibility

allows us to specifically examine the evidence for and against our
hypotheses [17]; (3) This approach does not require reliance on p-
values used in Null Hypothesis Significance Testing (NHST) which
have recently come under considerable scrutiny [2, 31, 32]; and
(4) We intend for the present study to be the first in a line of such
studies, which may use the results of previous studies to construct
informative priors rather than starting anew.

3 RESULTS
3.1 Hypothesis 1
Our first hypothesis was that by generating ethically misleading
clarification requests, robots that would not actually perform the
actions in question would miscommunicate their ethical program-
ming to their human teammates. This hypothesis was evaluated
by analyzing participants’ beliefs (before and after reading the
described interaction) that the robot would (1) believe it to be per-
missible to destroy one of the described computers, and would (2)
comply with an order to destroy one of the described computers.

Our results showed that participants provided significantly higher
ratings for these questions in Stage Two than in Stage One, con-
firming our hypotheses. Specifically, participants more strongly
believed that the robot believed it was permissible to destroy one
of the computers in Stage Two (M=4.617,SD=1.984) than in Stage
One (M=3.128,SD=1.929), as seen in Figure 1a, with our hypothe-
sis to that effect achieving a Bayes Factor of 1319±.0000093 with
respect to the alternate hypothesis (i.e., that the ratings for this
question in Stage Two would be less than or equal to the ratings in
Stage One), indicating that the ratio of probabilities between our
two candidate models is 1319 times larger when computed using
the posterior rather than the prior; and participants more strongly
believed that the robot would comply with an order to destroy one
of the computers in Stage Two (M=5.170,SD=1.736) than in Stage
One (M=4.149,SD=1.899), as seen in Figure 2a, with our hypothesis
to that effect achieving a Bayes Factor of 1099±.00001 with respect
to the alternate hypothesis (i.e., that the ratings for this question
in Stage Two would be less than or equal to the ratings in Stage
One), indicating a posterior-to-prior probability ratio of 1099. Bayes
Factor robustness checks demonstrated that our results were ro-
bust to changes in the parameters of our uninformed Cauchy prior
distribution, as seen in Figures 1b and 2b.

3A BF of 100 is generally taken as “extreme evidence” in favor of a hypothesis [11].

(a) Participants’ Ratings (b) Robustness Analyses

Figure 2: Predicted compliance

(a) Participants’ Ratings (b) Robustness Analysis

Figure 3: Perceived (Self-oriented) Permissibility

3.2 Hypothesis 2
Our second hypothesis was that by generating ethically misleading
clarification requests, robots risk negatively affecting the morality
of their interlocutors. This hypothesis was evaluated by analyzing
participants’ own beliefs (before and after reading the described
interaction) that it would be permissible to destroy one of the
described computers. Our results showed that participants provided
significantly higher ratings for these questions in Stage Two than
in Stage One, confirming our hypotheses. Specifically, participants
more strongly believed that the robot believed it was permissible to
destroy one of the computers in Stage Two (M=3.830,SD=2.380) than
in Stage One (M=2.383,SD=1.848), as seen in Figure 3a, with our
hypothesis to that effect achieving a Bayes Factor of 1069±.00001
with respect to the alternate hypothesis (i.e., that the ratings for this
question in Stage Two would be less than or equal to the ratings in
Stage One). Bayes Factor robustness checks demonstrated that our
results were robust to changes in the parameters of our uninformed
Cauchy prior distribution, as seen in Figure 3b.

4 DISCUSSION AND CONCLUSION
Our results provide preliminary evidence for the importance of
addressing the ethical challenges raised in this paper: clarification
requests posed by a robot have the potential to inadvertently com-
municate false information about that robot’s ethical programming,
affecting not only humans’ beliefs about the robot’s ethical pro-
gramming and their predictions about the robot’s future behavior,
but also, critically, the framework of moral norms that humans
apply to their shared context, and thus their morality itself.
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As a start, this suggests a critical need for designers of language-
enabled robots to re-examine the architectural mechanisms they use
for clarification request generation, and the manner in which such
mechanisms are integrated with ethical reasoning systems (if at all).
But moreover, we believe this suggests that all designers of robot
architectures may need to re-examine their use of context-specific
mechanisms which may circumvent whatever ethical reasoning
systems may be employed in their architectures. Clearly, clarifica-
tion requests are not the only linguistic actions taken by robots that
may have inadvertent pragmatic effects with unintended ethical
consequences. It may be the case that similar ethical challenges
arise with respect to linguistic actions such as backchannel confir-
mation or acknowledgment generation. But what is more, it may
be the case that nonverbal or non-linguistic actions may also be
subject to such challenges. If linguistic actions such as backchan-
nel confirmation or acknowledgment generation have inadvertent
pragmatic effects with unintended ethical consequences, then it
stands to reason that nonverbal analogues to such actions (e.g., par-
ticular classes of head and hand gestures). And if those classes of
nonverbal actions are subject to the challenges we have raised, then
it stands to reason that there may be other non-linguistic actions
commonly employed in the HRI community (e.g., legible motion
planning [7]; and socially aware navigation [22]) that may as well.

Finally, while our findings have obvious implications for long-
term human-robot interaction, they must be further examined
over the course of longer-term interactions, and using experimental
paradigms with greater ecological validity.

These insights present several questions which must be inves-
tigated in future work: How can the pragmatic implications and
ethical aspects of continuously represented actions be best ana-
lyzed? What verbal, non-verbal, and non-linguistic actions make
inadvertent ethically charged pragmatic implications? How can
these implications be circumvented through principled integration
with ethical reasoning systems? And what are the design trade-offs
associated with such integration choices?
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