
Towards Robot Knowledge Consultants
Augmented with Distributed Short Term Memory

Tom Williams∗, Evan Krause†, Bradley Oosterveld†,
Ravenna Thielstrom†, and Matthias Scheutz†
∗MIRRORLab

Colorado School of Mines
Golden, CO, USA

twilliams@mines.edu

†Human-Robot Interaction Lab
Tufts University

Medford, MA, USA
{firstname.lastname}@tufts.edu

I. INTRODUCTION

For robots to engage in natural task-based dialogues with
human teammates, they must both understand and generate
natural language expressions to refer to entities in their shared
environment, such as people, locations, and objects [7, 14, 19].
These tasks, reference resolution and referring expression
generation, are particularly challenging in realistic robotics
applications due to the realities of how knowledge is repre-
sented and distributed in modern robotic architectures.

In previous work we presented a Consultant Frame-
work [15] that allows a robot’s distributed sources of knowl-
edge to be used during both reference resolution [17] and
referring expression generation [18], without requiring the
language processing system to have any knowledge of how
knowledge in different domains is represented and accessed.

This domain independence, however, comes at increased
computational cost, especially during natural language gener-
ation. Specifically, we have used this framework to modernize
the classic Incremental Algorithm [4] for referring expression
generation, relaxing assumptions of that original algorithm:
that knowledge is certain, that knowledge is centrally stored,
and that a list of all properties known to hold for each known
entity is centrally available during referring expression gener-
ation. Our Consultant Framework allows these assumptions
to be relaxed, producing a referring expression generation
algorithm tailored to the realities of robotic architectures, but
which is computationally inefficient.

The Incremental Algorithm requires iterative consideration
of potential properties that could be added to the description,
considering for each whether that property holds for the
to-be-described target and does not hold for at least one
distractor. Under the assumptions of the classic Incremental
Algorithm, these considerations can be performed as simple
set-membership checks on the centrally available property sets.
When the assumption as to the existence of these property
sets is relaxed, however, as is the case in the modified
algorithm designed to leverage our Consultant Framework,
these considerations must instead be made through queries to
the Consultants responsible for the target and distractors. The
computational complexity of referring expression generation
combined with the computational cost of these queries results

in a significant computational burden.
To address this computational burden, we propose an

augmented Consultant Framework that includes Consultant-
Specific Short-Term Memory Buffers that cache a small num-
ber of properties determined to hold for various entities.

II. AUGMENTED FRAMEWORK

In previous work [15, 18] (see also [16, 17]), we presented
a framework of “Consultants” for the DIARC architecture [12]
that allows information about entities to be assessed when
knowledge is uncertain, heterogeneous, and distributed, in a
way that facilitates the use of Incremental Algorithm-inspired
approaches to referring expression generation. Specifically,
each consultant c facilitates access to one Knowledge Base
(KB) k, and must be capable of at least four functions:

1) providing a set cdomain of atomic entities from k,
2) advertising a list cconstraints of constraints that can be assessed

with respect to entities from cdomain, and that is ordered by
descending preference.

3) assessing constraints from cconstraints with respect to entities
from cdomain, and

4) adding, removing, or imposing constraints from cconstraints on
entities from cdomain.

In this section, we define a Short-Term Memory(STM)-
Augmented Framework with an additional requirement:

5) providing a list cSTM of properties that hold for some entity
from cdomain.

Crucially, the properties returned through this capability do
not need to be all of the properties that hold for the target
entity. A consultant may have a large number of properties that
it could assess for a given entity if need be, some of which
might be very expensive to compute. As such, the purpose
of this capability is not to request evaluation of all possible
properties for the specified entity, but rather to request the
contents of a small cache of properties recently determined to
hold for the specified entity, if any.

Drawing on insights from cognitive psychological theories
of working memory [10], the new capability required in the
STM-Augmented Consultant Framework requires each consul-
tant to maintain its own set of features currently remembered
for the set of entities for which it is responsible. This serves to
allow fast access to a set of entity properties likely to be rele-
vant, in order to avoid the expensive long-term memory queries



that make processes such as referring expression generation
so expensive in the current consultant framework. In the next
section we describe how our newly proposed framework can
be used during the course of referring expression generation.

III. ALGORITHMIC APPROACH

We will now motivate SD-PIA, an STM-Augmented and
Distributed variant of the Probabilistic Incremental Algorithm
(c.f. [18]). The key difference between this algorithm and our
previous approach, DIST-PIA, is our leveraging of the prop-
erties stored in STM before performing LTM-Query intensive
operations. We refer to the interested reader to our original
paper [18] for a full walkthrough of our original algorithm. In
this section, we will instead simply describe the differences
between DIST-PIA and SD-PIA.

While DIST-PIA crafted sub-descriptions using a single
algorithm, SD-PIA begins by crafting an initially (possibly
partial) sub-description using only the properties found in
Short Term Memory Buffers. If the sub-descriptions returned
through this algorithm are not fully descriminating, the partial
sub-description is augmented by passing the set of still-to-be-
eliminated distractors to a second algorithm, which operates
much the same as our original algorithm.

The other major difference between DIST-PIA and SD-PIA
comes in the design of SD-PIA’s helper function. Instead
of considering all properties advertised by the consultant
responsible for the target, SD-PIA considers only the properties
returned by querying that consultant’s STM buffer, requiring
a single query rather than O(cΛm) queries. For each of these
already-known-to-hold and already-bound queries, SD-PIA
iteratively rebinds the query to refer to each distractor x rather
than the target entity. For each re-bound query, SD-PIA calls
a function stm-apply, which checks whether that property
holds for that distractor (x), by first checking whether the
property exists in the Short Term Memory Buffer maintained
by Consultant cx for x, or, if and only if this is not the case, by
checking whether the property is known to hold by Consultant
cx using its’ apply method, as usual.

IV. DESIGN TRADE-OFFS

The use of Short Term Memory Buffers in this augmented
algorithm involves a number of design trade-offs. The primary
motivation behind this approach is increasing performance:
the number of queries needed when choosing properties to
use may be much lower when those properties alone are suf-
ficiently discriminating. Similarly, when determining whether
chosen properties serve to rule out distractors, there is potential
for significant performance gain, as such decisions may be able
to be made on the basis of set-membership checks, rather than
requiring costly queries of long term memory.

Moreover, we believe the use of these buffers may facilitate
lexical entrainment [2]: the process by which conversational
partners converge on common choices of labels and properties
over the course of a conversation. If a robot’s Short Term
Memory buffers are populated with those properties used by
itself and its interlocutors, and if the properties contained in

those buffers are considered before others, than the use of
these buffers may directly lead to such entrainment.

The use of these buffers may, however, come with neg-
ative consequences as well. Because the robot is arbitrarily
restricting itself to a subset of the properties it could otherwise
choose to use, it may force the robot into local maxima in
the landscape of possible referring expressions. Moreover,
the robot runs the risk of using a property that does not
actually hold if it does not appropriately handle contextual
dynamics. For example, an object previously described as “on
the left” may no longer be “on the left” if the object, robot,
or interlocutor has moved since the object was last discussed.

There is a vast body of psychological literature that could
be exploited to prevent such mistakes from being made:
A context-sensitive decay-based model of working memory
might prevent this by having different properties “decay” out
of cache after a certain amount of time or with a certain
probability, with time or probability proportional to the degree
to which the property is dynamic, i.e., how likely it is to
change over time [1, 13]. A resource-based model might
prevent this by having a limited total buffer size, and have
property dynamics factor into the decision of what to bump
from memory when new things need to be inserted into an
already-full buffer [3, 5, 6]. Finally, an interference-based
model might prevent this by having properties added to a
buffer “overwrite” the most similar property currently in the
buffer [8, 9, 11]. Note that these are loose characterizations
of their respective theories from cognitive psychology; a
comprehensive discussion of relevant psychological theories
perspective can be found in [10]. Of course, the approach
taken need not be cognitively plausible. The robot could, for
example, use a model of the dynamics of different properties
to periodically re-sample the properties held in its buffers.

The question of cognitive plausibility also raises a different
question: how extensive should the robot’s memory caches
be? Should the robot keep property caches for all entities,
for only those that are relevant in the current context, or
for an even smaller set? And for each entity, should the
robot track all relevant knowledge for so long as that entity
is tracked, or should it track only a fixed, small number
of properties? And should such limits be local, or global
limits shared between tracked entities? These are once again
questions for which candidate answers can be gleaned from the
psychological literature [10]. Here, interesting tradeoffs can be
made: while robots can be made to remember much more than
humans, expanded memory may come at a computational cost.
Moreover, choosing to remember more means increased risk of
incorrect behavior due to mishandling of property dynamics.

Ultimately, experimentation will be needed to tease out
different tradeoffs made by the proposed approach. We plan
to explore the efficacy of this approach and its tradeoffs using
a modified version of the evaluation framework proposed in
our previous work [18]. In more distant future work we plan
to evaluate the tradeoffs of aligning the robot’s approach with
that of different cognitive theories.



REFERENCES

[1] Alan D Baddeley, Neil Thomson, and Mary Buchanan.
Word length and the structure of short-term memory.
Journal of verbal learning and verbal behavior, 14(6):
575–589, 1975.

[2] S E Brennan and H H Clark. Conceptual pacts and
lexical choice in conversation. Journal of experimental
psychology. Learning, memory, and cognition, 22(6):
1482–1493, 1996. ISSN 0278-7393.

[3] Robbie Case, D Midian Kurland, and Jill Goldberg. Op-
erational efficiency and the growth of short-term memory
span. Journal of experimental child psychology, 33(3):
386–404, 1982.

[4] Robert Dale and Ehud Reiter. Computational interpreta-
tions of the gricean maxims in the generation of referring
expressions. Cognitive Science, 19(2):233–263, 1995.

[5] Marcel A Just and Patricia A Carpenter. A capacity the-
ory of comprehension: individual differences in working
memory. Psychological review, 99(1):122, 1992.

[6] Wei Ji Ma, Masud Husain, and Paul M Bays. Changing
concepts of working memory. Nature neuroscience, 17
(3):347, 2014.

[7] Nikolaos Mavridis. A review of verbal and non-verbal
human–robot interactive communication. Robotics and
Autonomous Systems, 63:22–35, 2015.

[8] James S Nairne. A feature model of immediate memory.
Memory & Cognition, 18(3):251–269, 1990.

[9] Klaus Oberauer and Reinhold Kliegl. A formal model of
capacity limits in working memory. Journal of Memory
and Language, 55(4):601–626, 2006.

[10] Klaus Oberauer, Simon Farrell, Christopher Jarrold, and
Stephan Lewandowsky. What limits working memory
capacity? Psychological bulletin, 142(7):758, 2016.

[11] Satoru Saito and Akira Miyake. On the nature of forget-
ting and the processing–storage relationship in reading
span performance. Journal of memory and Language,
50(4):425–443, 2004.

[12] Matthias Scheutz, Thomas Williams, Evan Krause,
Bradley Oosterveld, Vasanth Sarathy, and Tyler Frasca.
An overview of the distributed integrated cognition affect
and reflection diarc architecture. In Maria Isabel Ald-
inhas Ferreira, Joo S.Sequeira, and Rodrigo Ventura,
editors, Cognitive Architectures. 2018 (in press).

[13] Richard Schweickert and Brian Boruff. Short-term mem-
ory capacity: Magic number or magic spell? Journal
of Experimental Psychology: Learning, Memory, and
Cognition, 12(3):419, 1986.

[14] Kees Van Deemter. Computational Models of Referring:
A Study in Cognitive Science. MIT Press, Cambridge,
Massachusetts, 2016.

[15] Tom Williams. A consultant framework for natural
language processing in integrated robot architectures.
IEEE Intelligent Informatics Bulletin, 2017.

[16] Tom Williams and Matthias Scheutz. POWER: A
domain-independent algorithm for probabilistic, open-

world entity resolution. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems (IROS), pages 1230–1235, 2015.

[17] Tom Williams and Matthias Scheutz. A framework for re-
solving open-world referential expressions in distributed
heterogeneous knowledge bases. In Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence
(AAAI), pages 3598–3964, 2016.

[18] Tom Williams and Matthias Scheutz. Referring expres-
sion generation under uncertainty: Algorithm and evalua-
tion framework. In Proceedings of the 10th International
Conference on Natural Language Generation (INLG),
2017.

[19] Tom Williams and Matthias Scheutz. Reference reso-
lution in robotics: A givenness hierarchy theoretic ap-
proach. In Jeanette Gundel and Barbara Abbott, editors,
The Oxford Handbook of Reference. Oxford University
Press, 2017.


	Introduction
	Augmented Framework
	Algorithmic Approach
	Design Trade-offs

