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Abstract—Robots participating in natural dialogue may need
to discuss, reason about, or initiate actions concerning dialogue-
referenced entities. To do so, the robot must first identify or
create new representations for those entities, a capability known
as reference resolution. We previously presented GH-POWER:
an algorithm that used a Givenness Hierarchy theoretic approach
to resolving definite, indefinite, anaphoric, and deictic noun
phrases in uncertain and open worlds. In this work, we introduce
GROWLER: a new reference resolution algorithm which enables
more robust reference resolution by extending GH-POWER with
a model of relevance, and discuss how this extension is able to
handle some cases not handled by our original algorithm.

I. INTRODUCTION AND MOTIVATION

The ability for robots to engage in natural language dialogue
with human interlocutors is crucial for many domains of
interest to the field of Human-Robot Interaction [43], such
as eldercare robotics, education robotics, space robotics, and
urban search-and-rescue robotics. Two crucial facets of natural
language capability are the twin tasks of understanding and
generating referring expressions. Consider, for example, a
natural-language-capable robot wheelchair operating in an
eldercare facility. If the wheelchair’s user says “Bring me to
the recreation room”, the robot must be able to understand
what location is being referred to by “the recreation room”.
If the robot knows of multiple recreation rooms, it may need
to generate referring expressions that describe those different
rooms, in order to ask “Do you mean the recreation room near
the garden, or the recreation room near the dining hall?”

The first problem, known as language grounding, can be
broken into two subtasks: reference resolution, in which refer-
ring expressions are associated with symbolic representations,
and symbol grounding, in which symbolic representations are
associated with continuously represented percepts [55]. In our
work, we are particularly interested in domain-independent
open-world reference resolution: the association of referring
expressions with symbolic representations under the relaxation
of two common assumptions: (1) candidate referents (i.e., the
“real world entities” referred to in natural language) are not
assumed to be known at resolution time, and thus new symbols
may need to be hypothesized; and (2) candidate referents are
not assumed to be drawn from a single domain, and thus may
be distributed across multiple heterogeneous knowledge bases.

The relaxation of these assumptions is particularly important
for realistic human-robot interaction scenarios. Imagine the
following command to an urban search-and rescue robot:

(1) The east wing needs to be evacuated. Please tell that
to all personnel.

In order to handle these utterances, the robot needs a domain-
independent reference resolution algorithm that can resolve
references to both locations (e.g., “the east wing”) and people
(e.g., “all personnel”). Furthermore, the robot needs an open
world reference resolution algorithm, because the robot should
be able to reason about and carry out the supervisor’s request
even if it did not previously know that the building being
discussed had an “east wing”.

In previous work, we developed GH-POWER (Givenness
Hierarchy-theoretic Probabilistic Open World Entity
Resolution) [57, 55]: a domain-independent open-world
reference resolution algorithm which made use of the
Givenness Hierarchy (GH) [22] framework of reference. GH-
POWER was able to resolve the majority of references found
in a corpus of human-robot and human-human dialogues,
including anaphoric and deictic expressions. However, as we
will later discuss, there are some cases in which GH-POWER
makes counterintuitive decisions due to how it rules out
referential candidates. In this paper, we present a new
reference resolution algorithm, GROWLER, which resolves
these issues using a model of relevance.

In the next section (Section II-A), we provide an overview
of previous reference resolution work in robotics that has
not taken a GH-theoretic approach. In Section II-C, we
then provide an overview of the GH. In Section II-D we
then discuss previous Gh-theoretic approaches, including GH-
POWER. In Section III, we present the GROWLER reference
resolution algorithm. In Section IV, we present a proof-of-
concept demonstration of GROWLER, and demonstrate how it
avoids the occasional counterintuitive decisions made by GH-
POWER. Finally, in Section VI we conclude with a discussion
of possible directions for future work.

II. RELATED WORK

In this section we will discuss previous approaches to
reference resolution in robotics. In Section II-A we provide



a broad overview of previous non-GH-theoretic approaches.
In Section II-B, we discuss concerns related to the problem
of reference resolution, such as ability to handle anaphoric
and deictic references, domain independence, and the ability
to operate in uncertain and open worlds; we then provide a
deeper analysis of these previous approaches with respect to
those concerns. In Section II-C we provide an overview of the
Givenness Hierarchy (GH). In Section II-D we discuss previous
approaches to reference resolution (including our own) which
have taken a GH-theoretic approach.

A. Previous Approaches

While there has been significant work on open-world di-
rective grounding [33, 32], in which utterances are translated
directly into action sequences (thus bypassing the need to
ground constituent noun phrases) these has been relatively
little work in open-world reference resolution. In this section
we will discuss both closed-world and open-world approaches.

Work on reference resolution in robotics can be traced
back to Terry Winograd’s SHRDLU system [58], in which a
simulated robot used a procedural semantics approach to nat-
ural language understanding in order to carry out commands
in a simple environment. Under this approach, words were
associated with short procedures, such as searching through
objects in the scene, which were executed when those words
were encountered. This approach inspired several modern
models of reference resolution, especially those presented by
Gorniak and Roy [19, 38] and Kruijff et al. [29].

Other researchers have also taken a “knowledge-based ap-
proach” in which properties are assessed based on the infor-
mation stored in a centralized knowledge base. For example,
Lemaignan uses a semantic parser to translate utterances into
lists of RDF triples [26]; for example, “the yellow banana” is
translated into {((?obj type banana) (?obj hasColor yellow))}.
These triples can then be used to query a central knowledge
base populated by input from perception systems, thus pro-
ducing the set of entities in that knowledge base that satisfy
the conjunction of triples [30].

Similarly, Zender et al., who focus on reference resolution
in the domain of large-scale topological spaces such as rooms
and hallways (as opposed to the domain of objects used
by the previous approaches), parse utterances into SPARQL
queries [37] (a particular form of RDF query) [59]. This
approach also differs from the approach used by Lamaignan
through the use of a dedicated co-reference resolution step,
which attempts to add the references found in an utterance to
clusters of references found in past utterances – a step which
results in resolution of some anaphoric expressions.

Meyer uses tightly coupled co-reference resolution and
reference resolution algorithms to jointly resolve anaphoric
and non-anaphoric references [35]. The reference resolution
algorithm used by Meyer uses a Markov Logic Network whose
weights are learned based on the connections between lexical
items and the taxonomic classes of possible referents.

Chai et al. also use a co-reference resolution pre-processing
step. After this step, Chai et al. use incoming utterances and

perceived deictic gestures to build up a graph representing
the relations between the entities mentioned in conversation,
and perform reference resolution by finding the best partial
match between this graph to a similar graph that represents the
relations between entities observed in the world [5, 14, 31, 6].

A different approach is taken by Fasola and Mataric [15],
through their work on semantic fields. Fasola and Mataric use
a simple reference resolution procedure in which a knowledge
base of labels is checked when particular nouns are used – their
approach is interesting, however in how they process relations.
When a noun is ambiguous, if that noun is a constituent of
a prepositional phrase it is disambiguated using a semantic
field: a data-driven model of the preposition that produces a
probability distribution over coordinates in the environment;
the referent whose location has the highest probability value
according to this distribution is selected as the referent.

In our own previous (non GH-theoretic) work [53, 54], we
presented a probabilistic approach to open world reference
resolution where natural language is parsed into a set of logical
formulae that are used to guide a best-first search through the
space of possible assignments from known entities to variables
occurring in those formulae. This approach was later integrated
into the GH-theoretic framework we discuss below.

A probabilistic approach is also taken by a number of
Bayesian modelers. Kennington and Schlangen present an
incremental Bayesian model in which each word is used
to modulate the probability of reference for each entity
in a scene [25]. Similarly, Tellex and Kollar’s Generalized
Grounding Graph (G3) approach uses utterances (after a co-
reference resolution pre-processing step) to instantiate prob-
abilistic graphical models that are used to resolve refer-
ences [47, 48]. This approach has been extended by Tellex
and Kollar’s colleagues through the Hierarchical Distributed
Correspondance Graph approach, which differs in that it uses
the “type” associated with each observed noun to restrict the
set of possible values associated with each noun-node in the
resulting graphical model [8] (see also [49]).

Finally, similar to all three of these approaches, Matuszek
et al. present an approach in which utterances are parsed into
lambda expressions associated with visual classifiers used to
identify objects (which return confidence values that given
objects satisfy those expressions).

B. Other Concerns

Each of the approaches mentioned in the previous section
addresses, at the least, the classic reference resolution problem
(cp. the classic REG problem[50]): given a definite description,
a set of candidate referents from a common domain, and a set
of properties held by each of those referents, determine the
candidate referent associated with each entity mentioned in
the definite description.

But solutions to this “classic” problem framing are not
sufficient for robots operating in realistic human-robot inter-
action scenarios. First, robots cannot assume that referring
expressions will always come in the form of definite descrip-
tions: interlocutors may use anaphoric expressions (e.g., “it”)



that reference entities previously mentioned in dialogue; or
they may use deictic expressions (e.g., “this”) that reference
entities based on their joint situated perspective with the robot.
Second, robots cannot assume that candidate referents will
be drawn from a single domain; interlocutors may refer in
a single utterance to some combination of locations, objects,
people, utterances, ideas, actions, and so on. Third, robots
cannot assume that candidate referents will even be known a
priori; interlocutors may refer to entities that were previously
unknown to the robot. Finally, robots cannot assume that
they will have perfect knowledge regarding the properties of
objects: they may only have confidence to some extent that
a certain property or relation holds for a certain object or
set of objects. In this section, we will analyze the previous
approaches and assess the extent to which they address each
of these four additional concerns.

1) Anaphoric and Deictic Reference: Many of the dis-
cussed approaches handle anaphoric reference to at least a
limited extent. Winograd associated anaphoric expressions
such as “it” with special procedures that gave preference to
elements considered to be “in focus” [58] (see also [36]); a
simpler procedure is used by Gorniak and Roy [19]. Kruijff
et al. also select items based on focus when “this” is used,
and use occurrences of “it” to constrain search to the domain
of objects [29]. Lemaignan et al.[30] and Fasola and Mataric
[16] both handle anaphora by replacing anaphoric references
with the last entity in the dialogue history that matches the
animacy and gender constraints imposed by that referent.
As previously discussed, a number of previous approaches
(e.g., [59, 35, 6, 48]) handle anaphora through dedicated co-
reference resolution pre-processing stages. Kennington and
Schlangen handle anaphora by attributing a special property to
entities selected in dialogue, and then statistically associating
pronouns with that special property through training [25].

Few approaches handle deictic references. Kruijff et al.
use deictic references to impose preference orderings over
candidate referents [29]. Lemaignan et al. resolve deictic
references to the last entity in the dialogue history that was
the focus of simultaneous eye gaze and gesture [30]. Chai et
al. incorporate gestural information into their dialogue graph
structures [5]. Kennington and Schalngen [25] and Matuszek et
al. [34] handle deixis and gaze by combining the probability of
reference given an utterance with the probability of reference
given gaze and the probability of reference given gesture.

2) Domain Independence: The majority of the examined
approaches are dependent on a particular domain. The majority
of these approaches were designed to operate only on visible
objects [58, 19, 30, 6, 15, 25, 34], while others operate in the
domain of large-scale topological locations [59, 56].

Meyer appears to consider objects and units of time, with
entities from both domains stored in a single, centralized
knowledge base [35]. Similarly, Kruijff et al.’s approach under-
stands references to both objects and small-scale locations (i.e.,
local points in space), with information from both domains
stored in a single, centralized knowledge base (but informed
by a set of independent sensory systems) [29].

The approaches of Tellex et al. [47] and ourselves [53]
make steps forward with respect to these previous approaches.
The approach presented by Tellex et al. is not hand tailored
to a particular domain, but appears to handle references to
entities from whatever dataset it is trained on – so long as
they are physically extant and can be grounded to coordinates
in Cartesian space. We expect that this assumption is also true
of the work presented by Chung et al. [8]. Similarly, our own
previous approach uses a domain-independent framework into
which domain-dependent algorithms can be used as “consul-
tants” [52]. Their approach does not make any assumptions
about the physical existence or nonexistence of candidate
entities.

3) Operation in Uncertain Worlds: It is important to note
that the Bayesian approaches do not handle uncertainty in the
way we describe: the approaches presented by Kennington
and Schalngen, Tellex and Kollar, and Chung et al. represent
uncertainty with respect to the relationship between words and
features, but not the uncertainty in whether certain entities
have certain features. And in fact, representing this uncertainty
would undermine the features of some of these algorithms.
Chung et al., for example, use entity type to restrict the values
considered for each noun-node in the models instantiated by
their approach. This approach would need modification if there
was uncertainty as to an entity’s type.

While the Semantic Fields approach does not appear able
to handle uncertain properties, it does handle uncertain spatial
relations [15]. Finally, Fang et al. describes how Chai et
al.’s approach handles uncertain properties by incorporating
an extent of compatibility measure into their graph-matching
scoring functions [14] ; the approach taken by Matuszek et
al. is able to represent the uncertainty in the properties of the
objects it reasons about, based on classifier confidences [34];
and our own framework is specifically designed to use domain-
specific “consultants” that provide probability values of just
this sort [53, 54].

4) Operation in Open Worlds: Of the previous approaches,
only two begin to address operation in open worlds. Recent
work from Duvallet et al. in the G3 framework allows a
robot to handle references to previously unknown objects
described in relation to previously known objects [11]. This
approach is limited, however, to spatially situated objects: the
pose of the new object is sampled with respect to the other
object according to a learned distribution. Our own previously
presented framework is also able to hypothesize new entities,
but is domain independent in nature, and thus does not have
this limitation [53, 54].

5) Discussion: We have argued that a robot operating in
natural human-robot interaction scenarios must use a domain-
independent reference resolution algorithm capable of han-
dling not only definite descriptions, but also anaphoric and
deictic expressions, and must do so in both uncertain and open
worlds. our previously presented framework [53, 54], known
as POWER (Probabilistic Open World Entity Resolution),
makes progress towards this as a domain-independent frame-
work designed to operate in uncertain and open worlds. But



this framework falls short in that it is not able to handle
anaphora or deictic expressions. In order to extend POWER
to handle this wider variety of referring expressions, we have
turned to a linguistic framework known as the Givenness
Hierarchy (GH).

C. The Givenness Hierarchy

As shown in Table I, the GH [22] is comprised of six hier-
archically nested tiers of cognitive status, where information
with one cognitive status can be inferred to also have all
lower statuses. For example, a piece of information that is
activated is also familiar, {uniquely identifiable}, referential,
and type identifiable. Each level of the GH is “cued” by a set
of linguistic forms, as seen in Table I. For example, the second
row of the table shows that the definite use of “this” can be
used to infer that the speaker assumes the referent to be at
least activated to their interlocutor.

TABLE I
COGNITIVE STATUS AND FORM IN THE GH

Cognitive Status Mnemonic Status Form
In focus in the FOA it
Activated in STM this,that,this N
Familiar in LTM that N
Uniquely identifiable in LTM or new the N
Referential new or hypothetical indefinite this N
Type identifiable new or hypothetical a N

The GH presents an attractive framework for computational
research for several reasons. First, it provides a clear mapping
between linguistic form and cognitive status. But second, un-
like other frameworks (c.f., e.g., Ariel’s Accessibility Theory
[1, 2]), the GH focuses on means of access rather than salience,
and thus each status in the hierarchy evokes distinct actions
taken to search or modify a discrete set of cognitive struc-
tures. Specifically, the “In Focus”, “Activated” and “Familiar
/ Uniquely Identifiable” statuses suggest searching specific
structures: the Focus of Attention (FOA), Short-Term Memory
(STM), and Long-Term Memory (LTM). On the other hand,
“Referential” and “Type identifiable” evoke the concept of
hypothesization, by which these structures are modified by
the creation and insertion of a new representation. We call
the actions evoked by each tier the mnemonic status of the
tier, as shown in the second column of Table I.

In order to determine the cognitive status ascribed to a
piece of information, one can use rules based on the Coding
Protocol provided by Gundel et al. [23]. To determine the
most restrictive status a referent can be assumed to have (given
the pronoun used to refer to it) one can consult a table such
as Table I which associates linguistic forms with cognitive
statuses: when “this N” is used, the most restrictive status is
activated – lower statuses can also be inferred, but are less
restrictive; it is possible that the referent is in focus, but this
cannot be inferred, and is less likely as if the referent were in
focus, the speaker could have used a more restrictive pronoun
such as “it” to refer to the referent. The GH can also be used
for reference resolution and referring expression generation,
but does not allow these tasks to be solved automatically. In

the next section, we will discuss previous approaches to use
the GH to facilitate reference resolution.

D. GH-Theoretic Approaches to Reference Resolution

We now turn to previous GH-theoretic approaches to refer-
ence resolution. While we are not the first to draw inspiration
from the GH, there have been few others. Specifically, we
are aware of only three previous GH-theoretic approaches to
reference resolution.

The first two such approaches are the partial GH implemen-
tations presented by Kehler [24] and Chai [4]. Of the two
approaches, Chai et al.’s is the more extensive, and we direct
the author to their paper, as well as our critiques of Kehler’s
approach [57]. We refer to both approaches as “partial imple-
mentations” as they do not attempt to handle all tiers of the
GH. Chai et al., for example, use reduced four-tier hierarchy
which hierarchy combines the GH’s in focus and activated tiers
into a single “Focus” tier, and combines the GH’s familiar
and uniquely identifiable tiers into a single “Visible” tier.
Chai et al. also include a new top-most tier devoted entirely
to Gestured-towards entities, and include a bottom-most tier
“Others”, which nominally combines the GH’s referential and
type identifiable tiers, but does not actually appear to be used.

In our previous work [57] we show that while Chai et
al.’s approach may be sufficient for the multi-modal user
interfaces for which it was designed, it cannot satisfactorily
address aspects of reference resolution that concern the domain
of human-robot interaction. Like the majority of non-GH-
theoretic reference resolution approaches we discussed in
the previous section, Chai et al.’s approach does not handle
uncertain or open worlds and is restricted to the domain of
objects. Furthermore, the modified hierarchy used by Chai et
al. necessarily prevents important categories of linguistic forms
from being differentiated between, and does not account for
the GH’s preference for lower tiers over higher tiers. Finally,
the algorithm presented by Chai et al. that makes use of the
modified hierarchy is greedy in nature; as we have discussed
in previous work, however, that this may make the algorithm
prone to errors when resolving references, and show how the
way the algorithm is employed negates some computational
benefits of the greedy approach.

In order to address these concerns, we presented the GH-
POWER algorithm [57]: an extension of the previously dis-
cussed POWER algorithm which uses the GH to handle a
wider class of expressions, including anaphoric and deictic
expressions, as well as to increase computational efficiency.
Because GROWLER (the algorithm we present in this paper)
builds directly off of GH-POWER, we will now describe its
design in some detail.

E. The GH-POWER Algorithm

As previously discussed, the first four tiers of the GH
evoke a hierarchically nested four-tiered memory structure,
comprised of the Focus of Attention (FOA), Short-Term Mem-
ory (STM), Discourse Context (DC) and Long Term Memory



(LTM). Our memory model uses just such a memory struc-
ture, wherein the first three tiers contain memory traces to
representations stored in LTM, where LTM itself is a set of
distributed heterogeneous knowledge bases managed through
our Consultant Framework.

Because the GH does not provide guidelines for how cogni-
tive structures are chosen for selection during reference reso-
lution, we presented a set of “Search Plans” that specify which
of these tiered memory structures to search through when
different linguistic forms are used, and when to hypothesize
new representations instead of searching for existing ones.
For example, “activated"-cueing forms, such as “this N”, are
associated with the search plan STM → FOA; because STM
is “preferred” to the FOA when an activated-cuing form is
used, GH-POWER first searches through the STM (ignoring
members that are also in the FOA) for a memory trace to an
entity that matches the properties used to describe N , and if
a sufficiently probable candidate cannot be found, the FOA is
searched. The rationale for each of these strategies is described
in our previous work [55]. Overall, this strategy serves to
significantly increase the efficiency of reference resolution, as
only a small set of known entities (i.e., those activated or in
focus) will need to be considered in most circumstances.

In order to handle multiply-referring expressions such as
“the green block that is on the blue block,” GH-POWER chooses
an appropriate search-plan for each sub-expression, and uses
these search plans to create a table containing each combina-
tion of search plan steps – this table is iterated through until
exhausted or until the combination of search steps indicated by
a particular table row (e.g., “the green block” → STM, “the
blue block” → LTM) produces satisfactory referents for all
subexpressions. Details of this process are described in more
depth in our previous work [55].

Because the GH does not provide guidelines for how candi-
dates are selected from within particular cognitive structures
during reference resolution, we previously proposed a set of
our own guidelines[57]. Specifically, we suggested that the
FOA and STM be sorted according to some scoring function
combining linguistic salience, visual salience, eye gaze, and
gesture, and that the DC be sorted chronologically; in either
case, the first sufficiently probable candidate (as assessed by
the POWER framework) according to the imposed ordering
would be selected as the correct referent.

We have previously demonstrated [57] that GH-POWER
correctly resolved the majority of referring expressions found
in a corpus of human-robot and human-human team tasks,
even without considering eye gaze and gestural information,
and that it was able to capture a variety of aspects of the GH
that were not captured by previous GH-theoretic approaches.
For example, Gundel et al. [21] present the following example:

(2) a. Alice: I failed my linguistics course.
b. Bob: Can you repeat that?

Here, “that” could either refer to the linguistics course,
which should be in Alice’s FOA, or to the utterance that she
just uttered, which should at least be “activated” to Alice.

Gundel et al. [21] argue that it’s more likely that Bob is
referring to the utterance itself, as otherwise Bob could have
used “it” rather than “that” to refer to the course. GH-POWER
captures this preference by checking STM before checking
the FOA; since the utterance is a satisfactory match and is
contained in STM, it is automatically chosen, and the contents
of the FOA need not even be examined.

F. Discussion

While GH-POWER represented an advance over previous
reference resolution algorithms, we have identified several
reasons why further improvement is needed [55]. For example
consider the following scenario, in which a human Bob
instructs a robot subordinate.

(3) Scene: A table on which sits a red box and a white box
a. Bob: "Look at the white box"
b. Bob: "Pick that up"

Figure 1 shows the contents of the robot’s GH-theoretic data
structure after hearing the first of the two commands. At this
point, the white box should be in the robot’s FOA and the red
box should be in its STM. When the robot hears Bob’s second
command, what should it resolve “that” to? GH-POWER first
considers the contents of STM, as if Bob had meant to refer
to something in the FOA he could have used “it” instead of
“that”. Because a suitable candidate (the red box) is in STM,
it will be selected. But while “it” may indeed have been a
better choice of wording to use in this scenario, choosing the
red box as the referent of “that” is clearly incorrect.

Fig. 1. Contents of GH-POWER’s hierarchical data structures during hypo-
thetical algorithm run.

As discussed in earlier work [55], GH-POWER likely errs
for two reasons: (1) it treats hierarchical preferences as
absolute, and removes dispreferred candidates entirely from
consideration; and (2) GH-POWER does not take salience or
conversational relevance into account when choosing what to
rule out, but instead only when choosing what to select.

GH-POWER operates by checking whether each candidate
in a tier is sufficiently probable, only moving on to consider
entities in another tier if no sufficiently probable candidate
can be found. In this case, this behavior produces an incorrect
decision: GH-POWER should accept the red box as sufficiently



probable, but given the previous sentence, perhaps should
not consider it sufficiently relevant to the conversation to
immediately stop the reference resolution process.

We thus previously suggested [55] that a successor al-
gorithm to GH-POWER should consider suitability (i.e., the
agent’s certainty that a candidate holds all described properties,
and, if the candidate is an argument to a verb, the agent’s
certainty that the candidate is a reasonable argument to the
verb) should be used when deciding whether to retain a
referential candidate, and should consider relevance (i.e., the
agent’s certainty that reference to a candidate would not
violate, e.g., Grice’s Maxim of Relevance [20]) when deciding
whether or not to extend search to a new tier.

In addition to these concerns, we point out that there
is another reason to extend the GH-POWER algorithm. As
it stands, the GH-POWER uses salience to sort the entities
contained in the FOA and STM. This ensures that the en-
tity chosen as the target referent is the most salient of the
sufficiently probable candidates. But this is only the case
when a single candidate referent is selected: when there are
multiple candidate referents, it may be more appropriate for
a robot to ask for clarification rather than simply select the
most salient option. If a robot considers all such sufficiently
plausible referents in this way, then the effect of sorting data
structures by salience is eliminated. Using salience as part of
the relevance metric used to decide whether or not to extend
search to additional tiers would allow salience to retain an ef-
fect even when all sufficiently probable candidates (rather than
simply the single most salient) are considered in subsequent
processing steps. For this reason, as well as the other concerns
listed above, we have developed a new reference resolution
algorithm that fulfills the design suggestions laid out in our
previous work [55].

III. THE GROWLER ALGORITHM

In this section we present Givenness- and Relevance-
theoretic Open WorLd Entity Resolution, or GROWLER: a
new GH-theoretic reference resolution algorithm that seeks to
address the concerns discussed in the previous section.

While GH-POWER proceeded through a list of variable-
tier combinations until a sufficiently probable solution was
found, GROWLER takes a different approach, as shown in
Algorithm 1. GROWLER takes four arguments: (1) a set of
logical formulae S encoding the surface semantics of an
utterance (excepting the predicate associated with the verb),
(2) a set of “status cue mappings” M associating each variable
found in S to its presumed cognitive status, (3) GH: the
hierarchical data structure comprised of the FOA, STM and
DC, and (4) POWER, a reference resolution algorithm for
querying LTM.

Given these arguments, GROWLER associates with each
variable v: (1) a sequence Θ(v) of data structures to search or
actions (i.e., hypothesization) to perform (Line 3), and (2) an
(initially empty) list C(v) of candidate referents (Line 4).

GROWLER then finds a set of candidate referents to asso-
ciate with each variable v that sufficiently satisfy the unary

Algorithm 1 GROWLER (S,M,GH)
1: S: set of formulae, M : set of status cue mappings, GH:

FOA, STM, and FAM data structures
2: V = [v|v ∈ vars(S)]
3: Θ = create_plan_maps(M,GH)
4: C = create_candidate_maps(V )
5: for all v ∈ V do
6: while (@c ∈ C(v) | R(c) > R̄) ∧ (Θ(v) 6= ∅) do
7: grow(S,C(v),Θ(v))
8: end while
9: end for

10: Q = populate_hypothesis_queue(C)
11: R = [v ∈ V |helpable_variables(v,Q)]
12: while R 6= ∅ do
13: for all v ∈ R do
14: C ′ = (C \ C(v)) ∪ grow(S,C(v),Θ(v))
15: Q = Q ∪ populate_hypothesis_queue(C ′)
16: C(v) = C(v) ∪ C ′(v)
17: end for
18: R = [v ∈ V |helpable_variables(v,Q)]
19: end while
20: Q = assess_LTM(S,Q)
21: Q = assert_LTM(S,Q)
22: return relevantPrefix(Q)

Algorithm 2 grow(S,C(v),Θ(v))

1: for all e ∈ domain(head(Θ(v))) do
2: P (e) = POWER.ASSESS(e, S)
3: if P (e) > P̄ then
4: C(v) = C(v) ∪ 〈e, P (e), R(e)〉
5: end if
6: end for
7: pop(Θ(v))
8: return C(v)

predicates in S that involve v (Lines 5–9). This is accom-
plished as follows: for each variable, GROWLER considers
each mnemonic action in Θ(v) until the perusal of a structure
reveals a sufficiently relevant candidate (i.e., for which its
relevance, R(c), is greater than some relevance threshold,
R̄ (Line 6)), or until it runs out of mnemonic actions to
take (other than LTM queries and hypothesization, which are
saved until the end of the resolution process). This process
makes use of Algorithm 2, which removes from considera-
tion all insufficiently probable candidates (i.e., candidates for
which probability P (e) is not greater than some probability
threshold P̄ , as judged by a query of Long-Term Memory
using POWER.ASSESS (Algorithm 2, Line 2). Note that
insufficiently relevant candidates are not removed from con-
sideration, but simply do not suffice to stop the search process.

For each candidate remaining at the end of this process,
C(v) will contain an entry 〈ID, P,R〉, where ID is a unique
identifier representing a memory trace allowing access to an
entity in LTM, P is the probability that entity ID satisfies



unary predicates (i.e., properties) involving v, and R is the
relevance of entity ID: a combined measure of its visual,
linguistic, and conversational salience, which we currently use
as an approximation of relevance. In this paper, the salience
score used only minimally assesses visual salience; we leave
a more robust estimate of visual salience for future work.

GROWLER must now apply the constraints imposed by
higher-arity predicates (i.e., relations). Through this process,
it may be determined that the existing candidate bindings for
a particular variable are not compatible with the bindings to
one or more other variables. If this is the case, additional
mnemonic actions must be taken in order to find alternate
candidate bindings for that variable. We will now describe how
this additional assessment and expansion process is handled.

First a hypothesis queue Q is created, where each “hy-
pothesis” added to Q represents a unique combination of the
candidate variable bindings found in C for each variable v ∈ V
(Line 10). As part of this step, the probability of satisfaction
for individual variables are multipled to calculate the joint
probability of each hypothesis, and insufficiently probable
hypotheses are pruned out. GROWLER then determines the set
of “helpable” variables (Line 11): a variable v is “helpable”
if (1) it can still be extended through the grow procedure,
and if (2) there does not exist a hypothesis in R that contains
binds v to a sufficiently relevant entity.

As long as there exist variables that can be “helped” in this
way, GROWLER tries to “help” each using the following loop:
First, GROWLER uses the grow algorithm to find additional
bindings to the variable v in need of help, and creates C′:
a copy of C in which the set of candidate bindings for v
are replaced by this new set of bindings (Line 14). Next,
GROWLER updates the hypothesis queue Q with all sufficiently
probable combinations of variable bindings that can be created
using C′ in the same way that Q was initialized using C
(Line 15). Finally, the new bindings for v found in the first
step are added to the full list of sufficiently probable bindings
for v stored in C(v) (Line 16).

Finally, previously set-aside mnemonic actions (i.e., LTM
queries and/or hypothesization) are executed (Lines 20-21); all
remaining combinations of candidate bindings in Q deemed
sufficiently relevant with respect to the most relevant remain-
ing combination of bindings are returned (Line 22). Currently,
we return all bindings that have a relevance score at least half
as large as the most relevant candidate; a deeper investigation
of possible metrics will be a topic for future work.

IV. DEMONSTRATION

In this section, we present a proof-of-concept demonstration
of our proposed algorithm, implemented as a component
of the ADE [41] implementation of the DIARC architec-
ture [46, 44, 40]. The Distributed Integrated Affect Reflection
Cognition (DIARC) Architecture is a component-based archi-
tecture that has been under development for over 15 years, and
which focuses on enabling robust open-world spoken language
understanding. The ADE (Agent Development Environment)
middleware in which DIARC is implemented provides a

well-validated infrastructure for enabling agent architectures
through parallel distributed processing.

For our demonstration scenario, the following architec-
tural components were used: Speech Recognition (using the
Sphinx4 Speech Recognizer [51]), Parsing (which uses the
most recent iteration [45] of the TLDL Parser [12]), the
Dialogue and Pragmatics Components [3, 17], the Goal Man-
ager [39], the Belief Component (which provides a Prolog
Knowledge Base [9]), the Resolver Component [53, 54], the
GROWLER HyperResolver Component, the Vision Compo-
nent [27, 28] (which serves as a Consultant), and the PR2
Component, which controls a Willow Garage PR2 [10]. In
front of the PR2 is placed a table, on top of which are
placed two objects, a mug and a knife. The Vision Component
identifies these two objects in the robot’s field of view, and
records them as object_0 and object_1, respectively.

A human teammate (hereafter “Jim”) approaches the
robot, and states “Find the knife”. This is recognized
by the Speech Recognizer, and parsed by the Parser
into an utterance of type INSTRUCT, with semantics
findObject(self,X) and supplemental semantics knife(X).
This is then translated by Pragmatics into the intention
want(jim, did(findObject(self,X))), i.e., that Jim wants
the robot to have achieved the goal of having found X (which
can be identified by its supplemental semantics).

Because “the” was used, X is denoted as being assumed by
the speaker to be at least Uniquely Identifiable. Accordingly,
a plan to search through memory for the target object is
made by GROWLER (Alg. 1, Line 3): ACT, FOC, FAM,
LTM, POSIT. GROWLER next identifies an initial set of
candidates that satisfy the unary properties found in the sup-
plemental semantics (i.e., {knife(X)}). This process begins
by GROWLER searching through the set of activated entities,
where it finds both objects, which the Vision Component has
claimed should be activated because they are the only objects
detected in the visual scene. It uses the POWER algorithm [54]
to determine that property knife(X) holds for object_1
(with probability 1.0), but not for object_0, accordingly,
the hypothesis X → object_1 is maintained (Alg. 2, Line 4).
However, because this object was not previously referenced
in conversation and is not regarded by the Vision Component
as being terribly salient, the relevance score for object_1
is very low (0.06), and accordingly, GROWLER continues its
initial expansion, considering FOC and FAM buffers, which,
being initially empty, yield no additional candidates. Because
there are no higher-arity predicates to consider, GROWLER’s
job is essentially done, and is able to return the hypothesis
X → object_1. This is used to create the bound semantics
want(jim, did(findObject(self, object_1))). An action to
achieve the indicated goal is submitted to the Goal Manager,
Vision reports it is able to find the requested object, and the
robot responds “okay.”

Next, Jim says “Grab that.” This is recognized by
the Speech Recognizer, and parsed by the Parser
into an utterance of type INSTRUCT, with semantics
graspObject(self,X) and supplemental semantics that(X).



This is then translated by Pragmatics into the intention
want(jim, did(graspObject(self,X))), i.e., that Jim wants
the robot to have achieved the goal of having grasped X
(which can be identified by its supplemental semantics).

Because “that” was used, X is denoted as being assumed
by the speaker to be at least Familiar. Accordingly, a plan
to search through memory for the target object is made by
GROWLER (Alg. 1, Line 3): ACT, FOC, FAM. GROWLER
next identifies an initial set of candidates that satisfy the
unary properties found in the supplemental semantics(i.e.,
{that(X)}). This process begins by GROWLER searching
through the set of activated entities, where it finds object_0
(because object_1 was prominently mentioned in the pre-
vious utterance, it has been promoted to being held in focus).
GROWLER then uses the POWER algorithm [54] to (trivially)
determine that property that(X) holds for object_0 (with
probability 1.0). Accordingly, the hypothesis X → object_0
is maintained (Alg. 2, Line 4). However, because this object
was not previously referenced in conversation and is not
regarded by the Vision Component as being terribly salient, the
relevance score for object_0 is very low (0.06), and accord-
ingly, GROWLER continues its initial expansion, considering
the FOC buffer, which yields the candidate object_1. This
candidate is also (trivially) found by POWER to hold property
that(X). But because object_1 was mentioned in the
main clause of the previous sentence, this factor of linguistic
salience is used to yield a higher relevance score (0.31),
which GROWLER deems sufficiently high to cease its’ search.
Because a relevant candidate binding (X → object1) was
found, it is returned, with the irrelevant hypothesis (X →
object0) discarded. This is used to create the bound semantics
want(jim, did(graspObject(self, object_1))). An action to
achieve the indicated goal is submitted to the Goal Manager,
the PR2 Component reports it is able to plan a trajectory to
grasp the requested object, the robot responds “okay,” and
grasps the object. Note that this utterance would have been in-
correctly handled by GH-POWER, as evidenced by the example
described in Sec. II-F. A video of this demonstration can be
found at https://www.youtube.com/watch?v=E5y7hNwzo3o.

V. DISCUSSION

The performance of GROWLER depends in large part upon
a number of factors, each of which require improvement upon
in future work. First, GROWLER depends on the accurate
calculation of relevance scores. Currently, we use a rudimen-
tary measure of relevance comprised of linearly combined
weighted measures of linguistic salience (considering whether
an entity has been prominently and recently mentioned) and
visual salience (considering whether an entity is present within
the current visual context). However, what would be more
helpful would be to have a robust measurement of conver-
sational relevance [18] beyond these local factors. Moreover,
the weighting factors currently used to calculate relevance, as
well as the thresholds for “sufficient relevance” and “sufficient
probability” are arbitrarily chosen: it would be more valuable
to have weightings and thresholds learned from data.

GROWLER also presents the opportunity to investigate a
number of interesting new research questions. For example,
it presents the opportunity to investigate the Givenness Hier-
archy’s account of references accompanying deictic gestures.
Consider, for example, the utterance “Pick that up”, accompa-
nied by a gesture towards a nearby object. While these were
not addressed algorithmically by GH-POWER, we previously
posited that these forms could be resolved using the GH coding
protocol [23], which suggests that entities that have just been
gestured or gazed at have activated status. Extending on this
account from the perspective of GROWLER, we might expect
that gesture or gaze might increase the relevance of a given
object, allowing it to be selected from among other activated
entities. Evaluating this account, however, will require the
development of models of the impact of gesture and gaze upon
relevance, and careful study to tease out the gaze-and-gesture
related factors that increase relevance versus those that activate
an entity in the first place. We believe that studying such topics
will be promising directions for future work.

VI. CONCLUSION

In this chapter, we began by outlining the language ground-
ing problem, and its constituent parts: reference resolution and
symbol grounding. We then described GH-POWER, in which
the task of symbol grounding is considered the purview of the
distributed heterogeneous knowledge bases that comprise long
term memory, and in which the task of reference resolution
is performed by a GH-theoretic algorithm that makes use of
consultants which provide access to those knowledge bases.
Next, we discussed some theoretical concerns which provide
motivation for future work, and discussed GH-POWER in
relation to other approaches to Reference Resolution within
robotics.

In addition to the modifications proposed in previous sec-
tions, there are a number of directions for future work within
our framework. Our algorithm should be extended to handle
references to sets, and references to non-discrete entities (e.g.,
vague regions of space). We should integrate common-sense
affordance-based reasoning capabilities [7] and incrementalize
and parallelize our algorithm, to come in line with psycholin-
guistic literature [13], similar to previous work from our
lab [42] and others [25]. We are also interested in using this
approach to generate referring expressions in a GH-theoretic
manner. And we are interested in more deeply integrating GH-
POWER with other components within our architecture (e.g.,
Vision Processing) so that our within-structure processes can
better account for eye gaze and gesture. Finally, and more
generally, it is our hope that the framework discussed in this
paper will serve as a jumping-off point for much further study
of the interaction of language, memory, and attention, not
only for algorithmic purposes in the development of integrated
systems, but for cognitive modeling purposes as well.
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