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ABSTRACT

Language-capable robots interacting with human teammates may
need to make frequent reference to nearby objects, locations, or
people. In human-robot interaction, such references are often ac-
companied by deictic gestures such as pointing, using human-like
arm motions. However, with advancements in augmented reality
technology, new options become available for deictic gesture, which
may be more precise in picking out the target referent, and require
less energy on the part of the robot. In this paper, we present a con-
ceptual framework for categorizing different types of mixed-reality
deictic gestures that may be generated by robots in human-robot
interaction scenarios, and presented an analysis of how these cate-
gories differ along a variety of dimensions.
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1 INTRODUCTION

Language-capable robots interacting with human teammates may
need to make frequent reference to nearby objects, locations, or
people [11, 28, 29]. Consider the following example scenarios:

o A wheelchair user instructs his wheelchair: "I need my med-
ication." The wheelchair can see pill bottles on two nearby
tables and wishes to know which medication its user means.

e A mission commander in an alpine search and rescue sce-
nario instructs a UAV "Search for survivors behind that fallen
pylon" The UAV can see two fallen pylons and wishes to
know which its user means.

e A robot working on the ISS observes an astronaut teammate
struggling with a task, and spots a misplaced tool which
might make her task easier. The robot thus wishes to point
out the tool to its teammate.

In each of these scenarios, it will be advantageous if the robot
is able to generate a deictic (e.g., pointing) gesture [19] toward
its target referent simultaneous with its verbal description of that
referent [8]. In human-robot interaction, this type of deictic gesture
has typically been executed as a human-like arm motion [1, 15—
17, 22, 23]. However, with advancements in augmented reality tech-
nology, new options become available for deictic gesture, which
may be more precise in picking out the target referent, and require
less energy on the part of the robot. Specifically, if a human team-
mate is wearing an AR headset, a robot teammate may be able to

pick out an object it wishes to refer to in their teammate’s field
of view by circling it or drawing an arrow towards it. As such,
augmented reality also presents the opportunity for deixis within
the mixed-reality environment shared by robots and their human
teammates.

While there has been some previous work on using visualizations
as “gestures” within virtual or augmented environments [27], this
metaphor of visualization-as-gesture has not yet been fully explored.
This is doubly true for human-robot interaction scenarios, in which
the use of augmented reality is surprisingly underexplored, yet
also in which the connection between visualization and gesture is
strongest, as visualization becomes an alternative or complement
to “true” (i.e., physical) deictic gesture.

In order to fully explore this metaphor and the possibilities it
may afford to human-robot interactions, what is first needed is a
framework for differentiating between the different types of ges-
tures that may be used in mixed-reality contexts; as we will argue,
human-robot interactions in mixed-reality afford not only the tradi-
tional deictic gestures available in “pure reality” and the traditional
spatially grounded annotations available in augmented reality, but
also entirely new types of gestures that bridge the perspectives in-
herently encoded in those traditional gestural forms. In this paper,
we present an initial framework that allows for these distinctions to
be made clear, and present a set of example dimensions along which
differences between these categories can be observed, leaving for
future work a full exploration of the space of possible dimensions
that could be included in such a framework.

2 PREVIOUS WORK

While there has been work on using augmented reality to provide
visualizations and annotations to accompany language for several
decades [12, 13, 25, 26], there has been little research into using
augmented reality for human-robot communication, and surpris-
ingly, little research into using augmented reality for human-robot
interaction at all. And in fact, in their recent survey of augmented
reality, Billinghurst et al. [4] cite intelligent systems, hybrid user
interfaces, and collaborative systems as areas that have been under-
attended-to in the AR community.

Most relevant to the current paper, Sibirtseva et al. [24] use
augmented reality annotations to indicate different candidates ref-
erential hypotheses after receiving ambiguous natural language
commands, and Green et al. [14] present a system that uses aug-
mented reality to facilitate human-robot discussion of a plan prior
to execution. Also related, [20] use augmented reality to provide
a first-person view for robot teleoperators, integrating into this
framework a joystick which the teleoperator can use to control the
robot’s dialogue behavior.
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Figure 1: Categories of Mixed-Reality Deictic Gestures

There have also been approaches which use augmented real-
ity to non-verbally communicate the robot’s intentions: Andersen
et al. [2] and Chadalavada et al. [5] both use used projector-based
augmented reality to project robots’ intentions into the environ-
ment they share with their human teammates. Relatedly, Rosen
et al. [21] visualize robots’ intended arm trajectories using a mixed-
reality head-mounted display, and Frank et al. [9] visualize robot-
relevant spatial information, such as the robot’s current field of
reach, through AR visualizations on a hand-held tablet.

However, to the best of our knowledge, there has been no previ-
ous work looking at augmented reality or mixed reality as a means
to supplement, replace, or stand in for physical deictic gestures
generated by robots during the course of human-robot interaction.
In this paper, we provide a conceptual framework for categoriz-
ing different kinds of mixed-reality gestures that might be used in
human-robot interaction, and analyze how the different categories
of gestures within this framework differ along dimensions such as
perspective, legibility, cost, and privacy.

3 CONCEPTUAL FRAMEWORK

In this section, we present a conceptual framework for describing
mixed-reality deictic gestures. Let R be a robot and H be that robot’s
human teammate. An object appearing to both R and H can be said
to be located at point PR, in the robot’s coordinate frame, and at
point Py in the human’s coordinate frame. Suppose R wishes to
issue a deictic gesture to refer to this object. Note that unlike in
standard reality, a robot operating within a mixed-reality environ-
ment may have access to perspectives other than its own, both
with regards to perception (i.e., it may perceive perspectives other
than its own) and with regards to praxis (i.e., it may act within
perspectives other than its own). We argue that while standard
reality allows for but a single class of deictic gesture (with regards
to perspective), mixed-reality environments enable three classes
of deictic gestures: egocentric deictic gestures, allocentric deictic
gestures, and multi-perspective deictic gestures (as shown in Fig. 1).

3.1 Egocentric Deictic Gestures

We categorize the typical deictic gestures (such as pointing) avail-
able to a robot in standard reality as egocentric deictic gestures (as
shown in Fig. 1a), as they are executed, and must be interpreted by
others, from their own perspective. When viewed within the larger
framework of mixed-reality deictic gestures, we argue that these
gestures can be viewed as implicitly encoding the perspective of
their generator.

This is reflected in the manner in which a robot must exe-
cute such actions. That is, to gesture towards object O located
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at point PR (XR YR zR ) Within its own coordinate frame, a(n

armed) robot R may 51mply orient one of its arms along the vector

e
[X g Yg Zg] (with possible transformations based on orien-
tation of camera, e.g., relative to body relative to arm).

3.2 Allocentric Deictic Gestures

Unlike robots operating in standard reality, robots operating in
mixed-reality environments may - like any mixed-reality technol-
ogy - also generate allocentric deictic gestures (as shown in Fig. 1b)
from and through the perspectives of their human teammates. A
robot, may, for example, "gesture" to an object by circling it within
its teammate’s display. In contrast to egocentric gestures, we ar-
gue that these gestures can be viewed as implicitly encoding the
perspective of the generator’s intended interlocutor.

The allocentric nature of this type of action is similarly reflected
in the manner in which it must be executed. That is, to gesture
towards an object O located at point Pg = (Xg, Yy, Zg) within its
human teammate H’s coordinate frame, a robot need not consider
its own coordinate frame at all and may simply draw a circle cen-
tered at pixel coordinates po (po po ) after transformation

from camera coordinates to pixel coordlnates. This circle must of
course then be redrawn as the human teammate’s field of view
shifts.

3.3 Multi-Perspective Deictic Gestures

Finally, unlike robots operating in standard reality and unlike other
mixed-reality technologies, robots operating in mixed-reality envi-
ronments may generate gestures that connect their own perspective
to the perspective of their human teammates. A robot may, for ex-
ample, "gesture” to an object by drawing an arrow in its teammate’s
display from itself to its target object. Unlike egocentric and allo-
centric gestures, multi-perspective gestures (as shown in Fig. 1c) do
not encode a single canonical perspective, but are rather defined
entirely by their connection between multiple perspectives.

The multi-perspective nature of this type of action is, as before,
reflected in the manner in which it must be executed. That is, to
gesture towards an object located at pose Pr within its own per-
spective and at pose Py within its teammate’s perspective requires
the robot to first calculate its own pose from the perspective of its
interlocutor. The robot must then convert the poses of both the
object and itself from its human teammate’s coordinate frame to
pixel coordinates pog = (pg , pg ) (i.e., the pixel coordinates of

(PR, PR,
the pixel coordinates of the robot from the human’s perspectlve) in
its human teammate’s display, and then draw an arrow from pg to

the object from the human’s perspective) and pR

pg in that display. This arrow must of course then be redrawn as
the human teammate’s field of view shifts.

4 ANALYSIS OF MIXED-REALITY DEICTIC
GESTURES

Each of these three gesture categories comes with its own unique
properties. Here, we specifically examine six: perspective, embodi-
ment, capability, legibility, cost, and privacy. These dimensions are
summarized in Table 1.
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Category Perspective | Embodiment | Capability ‘ Legibility (D) ‘ Legibility (S) ‘ Cost (G) ‘ Cost (M) ‘ Privacy
Egocentric Robot Yes Yes Low Low High Low Low
Allocentric Human No No High High Low High High
Multi-Perspective | Human Yes No Low High Low High High
Table 1: Analysis of Mixed-Reality Deictic Gestures

Category | Perspective | Embodiment | Capability | Legibility (D) | Legibility (S) | Cost (G) | Cost (M) | Privacy

{E} Robot Yes Yes Low Low High Low Low

{A} Human No No High High Low High High

{M} Human Yes No Low High Low High High

{E, A} Both Yes Yes High High High High Low

{E, M} Both Yes Yes Low High High High Low

{A, M} Human Yes No High High Low High High

{E,A, M} | Both Yes Yes High High High High Low

Table 2: Analysis of Combinations of Mixed-Reality Deictic Gestures

The most salient dimensions that differentiate these three cat-
egories of mixed-reality deictic gestures are the perspectives and
embodiment that they require. The perspectives required for these
three categories are clearly defined: egocentric gestures require ac-
cess to the robot’s perspective, while allocentric and multi-perspective
gestures require access to the human teammate’s perspective. These
gestures are categorized differently, however, when viewed with
respect to embodiment; egocentric and multi-perspective gestures
require the gesturer to be embodied (and co-present), while allocen-
tric gestures do not require an embodied form. Finally, egocentric
gestures require a particular form of embodiment, i.e., they require
the gesturer to not only be embodied and co-present, but to be able
to take physical action in the world; whereas multi-perspective
(and, clearly, egocentric) gestures do not require this capability for
physical action.

4.1 Legibility

In previous work, Dragan et al. [7] defined the notion of the legi-
bility of an action, which describes the ease at which a human is
able to determine the goal or purpose of an action as it is being
carried out. In later work with Holladay et al. [16], Dragan then
applies this notion to deictic gestures as well, analyzing the ability
of the final gestural position to enable humans to pick out the target
object. We believe, however, that this is really a distinct sense of
legibility from Dragan’s original formulation, and as such, must
first refine this notion of legibility as applied to deictic gestures into
two categories. Specifically, we will use dynamic legibility to refer
to the degree to which a deictic gesture enables a human teammate
to pick out the target object as the action is unfolding (in line with
Dragan’s original formulation) and static legibility to refer to the
degree to which the final pose of a deictic gesture enables a human
teammate to pick out the target object after the action is completed
(in line with Holladay’s formulation).

The three categories of mixed-reality deictic gestures we describe
in this paper differ with respect to both dynamic and static legibility.
Allocentric gestures have high dynamic legibility (given that there
is no dynamic dimension) and high static legibility (given that

the target is uniquely picked out). Egocentric gestures have low
dynamic legibility (relative to allocentric gestures) given that their
target may not be clear at all as the action unfolds, and low static
legibility, as the target may not be clear after the action is performed
either, depending on distance to the target and density of distractors.
Multi-perspective gestures have high static legibility (given that
the target is uniquely picked out) but may have low static legibility
if they are portrayed as an animation unfolding over time rather
than instantaneously appearing.

4.2 Cost of Execution

These three categories of mixed-reality deictic gestures come with
different technical challenges. From the perspective of energy usage,
egocentric gestures are expensive due to their physical component,
while allocentric and multi-perspective gestures are cheap. On the
other hand, allocentric and multi-perspective gestures are diffi-
cult to maintain due to registration challenges, whereas egocentric
gestures have no additional cost once executed. Accordingly, we
categorize egocentric gestures as having a high generation cost
but low maintenance cost, and allocentric and multi-perspective
gestures as having low generation costs but high maintenance costs.

4.3 Privacy

In addition, these three categories afford different levels of privacy.
Allocentric and multi-perspective gestures, are only visible to the
human teammate with whom the robot is communicating, and as
such we regard them as high-privacy. Egocentric gestures, on the
other hand, are also visible to observers, and as such, we describe
them as low-privacy. This dimension is particularly important for
human-robot interaction scenarios involving both sensitive user
populations (e.g., elder care or education) or in adversarial scenarios
(e.g., competitive [6], police [3], campus safety [10], or military
domains (as in DARPA’s "Silent Talk" program) [18]).
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5 COMBINATION OF MIXED-REALITY
DEICTIC GESTURES

Given these three classes of mixed-reality deictic gestures, we can
now also reason about combinations of these gestures, as summa-
rized in Table 2. Specifically, we define seven categories of gesture
combinations: {E}: an egocentric gesture alone; {A}: an allocentric
gesture alone; {M}: a multi-perspective gesture alone; {E, A}: simul-
taneous egocentric and allocentric gestures; {E, M}: simultaneous
egocentric and multi-perspective gestures; {A, M}: simultaneous
allocentric and multi-perspective gestures; {E, A, M}: simultaneous
egocentric, allocentric, and multi-perspective gestures; (we ignore
the empty combination, {}, i.e., no gesture).

For example, simultaneously pointing to and circling an object
would fall into class {E, A}. These gesture combinations are par-
ticularly interesting because they combine properties of their con-
stituent gestures in various ways. Simultaneous generation of ges-
tures requiring different perspectives results in both perspectives
being needed. The embodiment and capability requirements of si-
multaneous gestures combine disjunctively. The legibilities and
costs of simultaneous gestures combine using a max operator, as
the legibility of one gesture will excuse the illegibility of another,
but the low cost of one gesture will not excuse the high cost of
another. And the privacies of simultaneous gestures combine using
a min operator, as the high privacy of one gesture does not excuse
the low privacy of another.

6 CONCLUSION

In this paper, we have presented a framework for categorizing dif-
ferent types of mixed-reality deictic gestures that may be generated
by robots in human-robot interaction scenarios, and presented an
analysis of how these categories differ along a variety of dimen-
sions. In future work, we first plan to expand this framework to
incorporate additional gestures, and to evaluate this framework
on a set of case studies. We then plan to apply this framework to
the design of mixed-reality deictic gestures, which we will use to
supplement the referring expressions generated by robots through
natural language.
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