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Abstract—In previous work, researchers have repeatedly
demonstrated that robots’ use of deictic gestures enables effective
and natural human-robot interaction. However, new technolo-
gies such as augmented reality head mounted displays enable
environments in which mixed-reality becomes possible, and in
such environments, physical gestures become but one category
among many different types of mixed reality deictic gestures.
In this paper, we present the first experimental exploration of
the effectiveness of mixed reality deictic gestures beyond physical
gestures. Specifically, we investigate human perception of videos
simulating the display of allocentric gestures, in which robots
circle their targets in users’ fields of view. Our results suggest
that this is an effective communication strategy, both in terms
of objective accuracy and subjective perception, especially when
paired with complex natural language references.

Index Terms—Mixed Reality, Augmented Reality, Deixis, Nat-
ural Language Generation, Human-Robot Interaction

I. INTRODUCTION

Robots are already being deployed in factories, hospitals,
and search-and-rescue operations. In these domains, there is
increasing need for robots that are not just taskable, but truly
collaborative. Crucially, these robots need to communicate
with their human users and teammates in a way that is effective
and natural, while minimizing the need for special training.
Accordingly, researchers have investigated the use of natural
language as well as the other communicative behaviors that
humans naturally and effortlessly use to facilitate effective
human-human communication. For example, humans often use
gesture to improve the fluency of their speech, communicate
abstract concepts, and help them refer to objects, locations,
and people in their environment. Perhaps the most important
form of gesture in task-based contexts is deictic gesture (e.g.,
pointing), which humans use to draw their interlocutors’ atten-
tion to different parts of their shared environment, typically to
allow them to more readily make natural language reference
to nearby objects, people, and locations.

Implementing effective deictic gesture in robots (to reap
the same benefits seen in human-human interaction) has
many challenges. First, deictic gesture can take a wide va-
riety of forms beyond pointing, including presenting, ex-
hibiting, touching, grouping, and sweeping [28]. Accordingly,
researchers have needed to determine not only how robots
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might physically generate these different types of gestures, but
also have needed to investigate the different tradeoffs made by
these gesture types in both their effectiveness and how they
are perceived, and the effect of context on those tradeoffs [75].

These research challenges are made all the more challenging
by the dramatic differences that can be observed in robot mor-
phology. Consider, for example, an autonomous, collaborative,
unmanned aerial vehicle (UAV) working in an alpine search
and rescue environment. Such a robot may have many reasons
to refer to entities in its shared environment, such as reporting
the location of disaster victims, or as part of collaborative
dialogue about the search through the complex terrain of the
disaster zone [96], [97]. However, traditional deictic gesture
may not be possible for such a robot, as mounting an arm
on such a UAV may not be feasible, and moreover, it may
not be effective, due to the scale of the environment and
the frequent distance of the UAV from its teammates. For
such robots, it is thus critical to investigate whether new
communication modalities may enable behaviors that achieve
the same functionality as traditional deictic gestures, while
respecting these morphological constraints.

We believe that one promising path towards enabling these
alternative forms of gesture may be found by leveraging recent
Augmented and Mixed Reality technologies [11]1, which
allow spatially-grounded visualizations to be rendered over a
user’s view of their physical environment, typically by way
of a Head-Mounted Display (HMD). As a simple example,
consider again the case of a UAV communicating with human
teammates about the location of a disaster victim. Purely using
natural language, a UAV might use an utterance such as “There
is an injured person behind the fourth tree to the right of the
tall blue pylon.” Such an utterance is complex, verbose, may
require significant spatial reasoning capabilities to produce
and may require sustained attention to interpret. In contrast, if
the UAV’s teammate were wearing an HMD, the UAV might
instead be able to simply draw a circle around the relevant
tree and state "There is an injured person behind that tree".

1Mixed Reality (MR) refers to any portion of the Reality-Virtuality Contin-
uum containing both real and virtual objects: from Augmented Reality (AR),
where virtual objects are displayed in the real world, to Augmented Virtuality
(AV), where real objects are displayed in the virtual world [57]. However, AR
and MR are often used interchangeably, and are as well in this paper.
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This type of Mixed Reality Deictic Gesture would leverage
the UAV’s ability to manipulate its teammate’s Mixed Reality
Environment to achieve the same communicative goals as a
physical gesture would have.

In recent work, we presented the first conceptual framework
for categorizing the different types of Mixed Reality Deictic
Gestures that may be used in Mixed Reality Human-Robot
Interaction, as well as the dimensions along which such cate-
gories of gestures are expected to differ [91], [95]. However,
to date there has been no systematic empirical examination
of the effectiveness and perception of such gestures, in the
way that there has been for robots’ use of physical deictic
gestures [75]. In this paper, we present the first empirical
experiment designed to achieve this goal.

In Section II, we provide a brief survey of previous work
exploring human and robot use of deictic gesture, as well
as of recent work at the intersection of Augmented and
Mixed Reality and HRI, including the limited set of work
previously exploring Mixed Reality Deictic Gesture for HRI.
In Section III, we then describe the design of a human subject
experiment designed to provide a preliminary investigation
of the effectiveness and human perception of Mixed Reality
Deictic Gesture, in which we assess human perceptions of
videos simulating the display of such gesture; a study designed
to serve as a bridge towards future studies with real AR
hardware. We the present the results of that experiment in
Section IV. Finally, in Section V we discuss the implications
of our experiment and suggest possible design guidelines for
robot designers before concluding in Section VI.

II. RELATED WORK

A. Human Deictic Gesture

Deixis is one of the most crucial pieces of human-human
communications [52], [61], as well as one of the oldest, both
anthropologically and developmentally. Unlike many other
aspects of human communication, there are clear analogues
of deictic gesture in the animal kingdom (e.g., the signaling
capabilities of animals in the presence of predators) [54], [64].
However, deixis itself appears to be uniquely human: even
our closest relatives, primates, are unable to point [50], [84]
(beyond apes in captivity reaching out for food desired from
humans [51] or locations desired access to from humans [76],
see also [41], [44]), despite being able to use other kinds of
gestures to a limited extent [67]. This divergence in capability
may exist in part because deixis requires relatively sophisti-
cated capabilities involving modeling of attentional states and
theory of mind [13], [25], [63]. Not only does reasoning about
the feasibility and effectiveness of deictic gesture require about
perspective taking, but more fundamentally, deictic gesture
serves to direct an interlocutor’s attention from where it is to
where it should be; recognizing that an interlocutor’s attention
is not where you desire it to be is a complex capability indeed.

In contrast, humans point while speaking even from infancy,
with deictic gesture beginning around 9-12 months [8], and
general deictic reference mastered around age 4 [20]. Deictic
gestures have been shown to be a powerful technique for

language learners, as they allow speakers to communicate their
intended referents before being able to do so in language, in
the same way that other types of gestures help speakers to
communicate their intended sense or meaning when they other-
wise lack the words to do so. Indeed, developmental changes in
deictic gestural capabilities in humans has been demonstrated
to be a strong predictor of changes in language develop-
ment [47]. In addition, long past infancy, humans continue
to rely on deictic gesture as a core communicative capability,
as its attention-direction presents an efficient and workload-
reducing referential strategy in complex environments, far
beyond that of purely verbal reference [24], [33], [34], [36],
[48], and as deictic gesture allows for communication in en-
vironments in which verbal communication would be difficult
or impossible, such as in noisy factory environments [38].
Accordingly, it is no surprise that Human-Robot Interaction
researchers have sought to enable this effective and natural
communication strategy in robots.

B. Robot Deictic Gesture

Within the human-robot interaction literature, there has been
widespread evidence for the effectiveness of robots’ use of
physical deictic gesture2. Specifically, studies have shown that
robots’ use of deictic gesture is effective at shifting attention
in the same way as is humans’ use of deictic gesture [14], and
that robots’ use of deictic gesture improves both subsequent
human recall and human-robot rapport [12]. This effectiveness
has been demonstrated across different contextual scales as
well, including gestures to nearby objects on a tabletop [74],
gestures to larger regions of space between the robot and its
interlocutor [19], and gesture to large-scale spatial locations
during direction-giving [62]. Furthermore, this effectiveness
has shown to be especially true when gestures are generated
in socially appropriate ways [53]. Research has also shown
that robots’ use of deictic gesture is especially effective
when paired with deictic gaze, in which a robot (actually or
ostensibly) shifts its gaze towards its intended referent [1],
[2], [19], and that this is especially effective when gaze and
gesture are appropriately coordinated [72]. Also of interest is
a recent survey from Cha et al., in which deictic gaze and
gesture are discussed within the context of a wide variety
of nonverbal signaling mechanisms [15]. These findings have
motivated a variety of technical approaches to deictic gesture
generation [42], [43], [73], [90], as well as a number of
approaches for integrating gesture generation with natural
language generation [27] (see also [31], [32], [68], [85]).

Of particular interest to us is the work of Sauppé and
Mutlu [75]. Building off the work of Clark, who showed
that humans use many deictic gestures beyond pointing [21],
Sauppé and Mutlu explored a selection of robotic deictic
gestures: pointing, presenting, exhibiting, touching, grouping,
and sweeping. Sauppé and Mutlu were especially interested
in how these categories differed in both effectiveness and

2While there has also been significant work on robot understanding of
human deictic gesture [56], we focus on robots’ generation of such gestures.



perceived naturality, and how different contextual factors, such
as the density of candidate referents, the number of fully
ambiguous distractors for the referent, and the distance of
the referent from the referrer. As we will describe, the set of
questions we are interested in investigating both in this work
and in future work has a number of parallels with those of
interest to Sauppé and Mutlu, and accordingly, as we will also
describe, the experiment presented in this paper was designed
with careful attention to the design used by Sauppé and Mutlu.

C. Augmented Reality for HRI

Although research on augmented and mixed reality have
been steadily progressing over the past several decades [5],
[6], [11], [86], [98], there has been relatively little work using
augmented reality (AR) technologies to facilitate human-robot
interactions (despite a number of papers over the past twenty-
five years highlighting the advantages of doing so [35], [58]).
Recently, however, research at the intersection of these fields
has begun to dramatically increase [93], [94]. Recent work in
this area includes approaches using AR for robot design [66],
calibration [77], and training [80], and for communicating
robots’ perspectives [39], intentions [4], [16]–[18], [30] and
trajectories [29], [70], [88], [99].

Most relevant to this paper are recent works on aligning
human and robot perspective to enable more effective robot
communication. Amor et al., for example, demonstrate the use
of a projector to project instructions and highlight task-relevant
objects within a constrained and highly structured task envi-
ronment shared by robot and human teammates. In that work,
however, no natural language generation is used, and projected
visualizations are cast as part of the task environment, rather
than as part of the robot’s communication [3] (see also [4],
[30]). Even more closely related, Sibirtseva et al. present an
approach in which, as a human teammate describes a target
referent to a robot, the robot’s maintained distribution over
possible intended referents is visualized by circling remaining
reference candidates in the user’s AR HMD [78] (see also
similar work in VR from Perlmutter et al. [65]). This is
closer to our area of interest, as the visualizations used in
this work are explicitly used to pick out referential candidates,
and are explicitly cast as being from the robot’s perspective.
However, we note that this is passive communication, as the
robot is generating a backchannel response to the human’s
communication, whereas we are interested in robots’ use of
AR as a channel for active communication regarding its own
intended referents. Moreover, Sibirtseva et al. were principally
concerned with the tradeoffs between tablet, projector, and
HMD-based AR visualizations, rather than on the impact
of contextual factors. Also of interest is recent work from
Reardon et al., in which a robot draws the trajectory a human
teammate should take onto their field of view, and highlights
the intended targets of that trajectory [69]. This work takes
a more active communication approach than the work of
Sibirtseva et al., but like Sibirtseva et al., Reardon et al. operate
outside the context of language-based robot communication.

Finally, this work builds directly off of our own previous
work [91], [95] (see also [40]), in which we presented a
conceptual framework for categorizing the space of deictic
gestures available in Mixed-Reality human-robot interactions,
including both traditional physical gestures and purely virtual
deictic annotations (categorized into allocentric gestures (e.g.,
circling a target referent in a user’s AR HMD), perspective-free
gestures (e.g., projecting a circle around a target referent on
the floor of the shared environment), ego-sensitive allocentric
gestures (e.g., pointing to a target referent using a simu-
lated arm rendered in a user’s AR HMD), and ego-sensitive
perspective-free gestures (e.g., projecting a line from the robot
to its target on the floor of the shared environment)), as well
as combinations of different forms of mixed reality deictic
gesture. We then present an initial analysis hypothesizing how
these combinations of potential gestures would differ along
eleven dimensions, including privacy, cost, and legibility. This
framework is especially valuable for our research as, in con-
junction with the work of Sauppé and Mutlu [75], it suggests
concrete hypotheses regarding the effectiveness and perception
of mixed reality deictic gestures in different contexts, allowing
us to empirically investigate whether mixed reality deictic
gestures have the same communicative benefits as physical
gestures, and how those benefits differ according to context. In
the next section, we will present a set of such hypotheses, and a
human subject experiment designed to investigate them. While
in this paper we will only examine allocentric gestures, we
have designed our experiment so as to allow all of the gestural
categories in our conceptual framework to be examined in
future experiments using the same paradigm.

III. EXPERIMENT

To better understand the impact of mixed reality deictic
gesture as a new modality for robot communication, and its in-
teraction with natural language, we designed a human subject
experiment in which participants viewed a robot referring to
objects within a visual scene using natural language, mixed
reality deictic gesture, or both modalities in combination.
This experiment was designed so as to follow the general
paradigm used in the seminal evaluation of physical robot
gesture presented by Sauppé and Mutlu [75]. All aspects of
our experimental design received IRB approval.

A. Experimental Design

Following Sauppé and Mutlu, we used a within-subject
design, in which participants watched a robot refer to a series
of twelve objects using different communication strategies.

1) Interaction Design: Our first independent variable was
communication style. For one-third of the objects, the robot
used complex reference alone, generating an expression of
the form “Look at that {color} {shape}” (e.g. “Look at
that red cube”). While in future experiments we plan to use
fully articulated and minimally articulated baselines similar
to those used by Sauppé and Mutlu, in this experiment all
complex references followed a common pattern so as to better
investigate reaction time. For another third of the objects, the



Fig. 1: Task Environment, with simulated AR visualization

robot used a mixed reality deictic gesture, drawing a circle
around the target and stating “Look at that”; a pattern similar
to the gestural conditions used by Sauppé and Mutlu. For the
final third of the objects, the robot used both complex reference
and mixed reality deictic gesture, circling the target and then
generating a complex reference as described above; a pattern
similar to a combination of the gestural and fully articulated
conditions used by Sauppé and Mutlu.

2) Environment Design: The experimental environment
contained a Kobuki robot positioned behind an array of eigh-
teen blocks, of four shapes (cubes, triangles, cylinders, towers)
and four colors (red, yellow, green, blue), evenly spaced in four
rows. Specifically, there were six unique blocks and six pairs
of non-unique blocks (a difference of inherent ambiguity),
evenly split between the front and rear rows (a difference of
distance), and distributed as uniformly as possible according
to color and shape. This sought to simultaneously capture
multiple environmental dimensions previously determined by
Sauppé and Mutlu to affect the accuracy and perceived ef-
fectiveness of reference: ambiguity and distance from referrer
while controlling for the other dimensions previously investi-
gated by Sauppé and Mutlu (object clustering, visibility, and
noise). Our second and third independent variables were thus
referent ambiguity and referent distance3, yielding a total of
twelve (3x2x2) experimental conditions.

B. Procedure

Participants were recruited online using Amazon’s Mechani-
cal Turk platform, and directed towards a psiTurk experimental
environment [37]4. After providing informed consent and pro-
viding demographic information5, participants were instructed
that they would watch a series of videos in which a robot
described and/or visually gestured towards a target object by
drawing a circle around it. They were told that they should

3We did not expect to see any effects of distance, but decided to include
distance as an independent variable so that we can use an identical experimen-
tal design in future experiments in which we will use other types of gestures,
e.g., pointing gestures generated with real or simulated arms, for which we
would expect to see a potential difference.

4 Mechanical Turk is more successful than traditional university studies at
broad demographic sampling [23], though it still has population biases [82].

5In online experiments, it is valuable to collect demographic data pre-task
to prevent participants who do not meet age requirements from participating.

click on the object that was being described as soon as they
had identified it. Participants were then assigned to one of
twelve conditions each corresponding to a different video order
determined through a counterbalanced Latin Square array.
Participants then watched twelve videos, each corresponding
with a different experimental condition. When mixed reality
deictic gesture was used in a video, gesture onset began
660ms before speech onset, based on the gestural timing model
presented by Huang and Mutlu [45] and leveraged by Sauppé
and Mutlu [75]. Clicking on any object within a video sent
the participant to a survey page in which they were asked
to assess the effectiveness of the robot’s speech and gesture
and the likability of the robot, using the measures described
below. Upon answering these survey questions, participants
were allowed to proceed to the next video in the series. All
videos were six seconds in length, including padding before
and after the robot’s communicative act.

C. Hypotheses

We examined four core hypotheses:
H1 We hypothesized that participants would have worse

accuracy in identifying the robot’s target referent
only when ambiguous complex noun phrases were
used without an associated mixed reality deictic
gesture (i.e., in the complex reference condition for
targets with inherent ambiguity)6.

H2 We hypothesized (H2.1) that the speed at which
participants would be able to identify the robot’s
target referent would be better when mixed reality
deictic gesture was used, as it would allow target
referents to be disambiguated even before speech
began, and (H2.2) that this reaction time would
increase when a reference was ambiguous.

H3 We hypothesized (H3.1) that participants would per-
ceive the robot to be more effective when mixed
reality deictic gesture was used, especially (H3.2)
when used in combination with complex reference,
and (H3.3) when the target referent was ambiguous.

H4 We hypothesized that the extent to which participants
liked the robot would correlate with its effective-
ness, and accordingly, that (H4.1) perceived likability
would be higher when mixed reality deictic gesture
was used, (H4.2) especially in conjunction with
complex reference, and (H4.3) for ambiguous targets.

D. Measures

To assess these hypotheses, objective and subjective mea-
sures were used. All measures were collected once per video.

1) Accuracy: An objective measure of accuracy was gath-
ered by recording which item in the scene participants clicked
on, and determining whether or not this was in fact the object
intended by the robot.

6Performance will obviously be poor in this intersection of conditions, as
language used will not be fully discriminating. Our emphasis here is that with
the exception of such cases case, performance should be uniformly good.



2) Reaction Time: An objective measure of reaction time
was gathered by recording time stamps at the moment each
video phase began (i.e., when the page loaded) and ended (i.e.,
when an object was clicked on).

3) Effectiveness: A subjective measure of robot effective-
ness was gathered using a modified version of the Gesture
Perception scale presented by Sauppé and Mutlu [75]. Our
modified version asked participants to evaluate each of the
following statements by clicking a point anywhere along a
seven-point Likert-type scale:

1) The robot used its speech and/or mixed reality deictic gesture
effectively.

2) The robot’s speech and/or mixed reality deictic gesture helped
me to identify the object.

3) The robot’s speech and/or mixed reality deictic gesture was
appropriate for the context.

4) The robot’s speech and/or mixed reality deictic gesture was
easy to understand.

Each participants’ scores for a single video were then trans-
formed to a range of 0-100 and averaged. A reliability analysis
indicated that the internal reliability of this scale was very high
for our experiment, with Cronbach’s α = 0.955.

4) Likability: A subjective measure of robot likability was
gathered using the Godspeed II Likability scale [7]. Our
modified version asked participants to rate their perception of
the robot along each dimension by clicking a point anywhere
along a five-point Likert-type scale. Each participants’ scores
for a single video were transformed to a range of 0-100 and
averaged. A reliability analysis indicated very high internal
reliability (Cronbach’s α = 0.963).

E. Participants
50 participants were recruited from Amazon Mechanical

Turk (19 F, 31 M). Participants ranged in age from 19 to 69
(M=39.07,SD=11.35). None had participated in any previous
studies from our laboratory under the account used.

F. Analysis
Data analysis was performed within a Bayesian analysis

framework using the JASP 0.8.5.1 [83] software package,
using the default settings as justified by Wagenmakers et
al. [87]. All data files are available at tinyurl.com/hri19data.
For each measure, a repeated measures analysis of variance
(RM-ANOVA) [22], [60], [71] was performed, using commu-
nication style, ambiguity, and distance as random factors7.
Baws factors [55] were then computed for each candidate
main effect and interaction, indicating (in the form of a Bayes
Factor) for that effect the evidence weight of all candidate
models including that effect compared to the evidence weight
of all candidate models not including that effect, i.e.∑

m∈M |e∈m P (m|data)∑
m∈M |e 6∈m P (m|data)

,

7Note here that again, we did not expect to see effects of distance based
on any of our hypotheses; but wewould expect to see effects of distance in
future experiments in which we plan to compare real and simulated robotic
arms. We wanted this experiment to be directly comparable to those future
experiments, so we selected a set of analyses that could be performed in both
the current and future experiments.

where e is an effect under consideration, and m is a candidate
model in the space of candidate models M .

When sufficient evidence was found in favor of a main effect
of communication style (a three-level factor), the results were
further analyzed using a post-hoc Bayesian t-test [49], [89]
with a default Cauchy prior (center=0, r=

√
2
2 =0.707).

While the Bayesian statistical approach has become com-
monplace in the Cognitive Science and Psychology communi-
ties, it is still rare in the Human-Robot Interaction community,
and as such we will briefly describe the benefits of this
approach. First, the use of a Bayesian approach to statistical
analysis provides some robustness to sample size (as it is not
grounded in the central limit theorem). Second, the Bayesian
approach allows for investigators to examine the evidence for
and against hypotheses (whereas the frequentest approach can
only quantify evidence towards rejection of the null hypothe-
sis). Third, the Bayesian approach does not require reliance on
p-values used in Null Hypothesis Significance Testing (NHST)
which have recently come under considerable scrutiny [10],
[79], [81]. Finally, we intend for the present study to be the
first in a line of studies investigating the effectiveness of mixed
reality deictic gesture, and the Bayesian framework facilitates
the use of previous study results to construct informative priors
so that our experiments may build upon our previous findings
rather than starting anew.

IV. RESULTS

A. Accuracy

We hypothesized (H1) that accuracy would only drop when
ambiguous complex noun phrases were used without an as-
sociated mixed reality deictic gesture (i.e., in the complex
reference condition). Our results provided extreme evidence
in favor of an effect of communication style (Bf 5.626e28)8

and ambiguity (Bf 2.380e7), and for interactions between
communication style and both ambiguity (Bf 1.521e13) and
distance (Bf 44577.358). In addition, strong evidence was
found in favor of a three-way interaction (22.183).

1) Main effect: Communication style: Post-hoc analy-
sis provided extreme evidence for differences in accu-
racy, specifically between the complex reference condition
(M=0.605,SD=0.49) and both the mixed reality deictic ges-
ture condition (M=0.92,SD=0.272) (Bf 1.129e15) and the
complex reference + mixed reality deictic gesture condition
(M=0.925,SD=0.264) (Bf 4.728e13). This suggests that the use
of complex reference by itself was significantly less effective
than mixed reality deictic gesture.

2) Main effect: Ambiguity: Our results also suggest that
participants’ accuracy was worse when the robot was referring
to an ambiguous referent (M=0.743,SD=0.438) than when it
was referring to an unambiguous referent (M=0.89,SD=0.313).

8Bayes Factors above 100 indicate extreme evidence in favor of a hypothe-
sis [9]. Here, for example, our Baws Factor Bf of 5.626e28 suggests that our
data were 5.626e28 times more likely to be generated under models in which
communication style is included than under those in which it is not.

tinyurl.com/hri19data


3) Interaction: Communication style and ambiguity: These
results are clarified by the interaction found between com-
munication style and ambiguity: performance was only much
worse when using ambiguous complex references without an
associated gesture. This confirms hypothesis H1.

4) Interaction: Communication style and distance: Our
results demonstrate that when a target referent was close to the
robot, using a complex reference alone significantly harmed
performance more than when the referent was far away.

5) Interaction: Communication style, ambiguity, and dis-
tance: This effect is further clarified through the three-way
interaction, which shows that performance drops only occurred
when the reference was ambiguous, as shown in Fig. 2.

Fig. 2: Effect of communication style (Augmented Gesture
(AG), vs Complex Reference (CR) vs both (CR+AG)), referent
ambiguity and referent distance on participant accuracy.

B. Reaction Time

We hypothesized (H2.1) that reaction time would drop when
mixed reality deictic gesture was used, as it would allow target
referents to be disambiguated even before speech began, and
(H2.2) that reaction time would increase when a reference was
ambiguous. No results were found in favor of our hypotheses:
in fact, our analysis provided strong evidence against a main
effect of ambiguity and against any interaction effects. Median
reaction time was 7.7 seconds.

C. Effectiveness

We hypothesized (H3.1) that perceived effectiveness would
be higher when mixed reality deictic gesture was used,
especially (H3.2) when used in combination with complex
reference, and (H3.3) when the target referent was ambiguous.
Our results provided extreme evidence in favor of main effects
of communication style (Bf 1.601e36) and ambiguity (Bf
216.516), and for an interaction between communication style
and ambiguity (Bf 1.04e6).

1) Main effect: Communication style: Post-hoc analysis
provided extreme evidence in favor of a difference in perceived
effectiveness between all three communication styles (mixed
reality deictic gesture (M=74.17,SD=23.59) vs. complex refer-
ence (M=59.67,SD=27.30) (Bf 2.038e7); mixed reality deictic
gesture vs. complex reference + mixed reality deictic ges-
ture (M=87.50,SD=17.08) (Bf 1.462e10); complex reference
vs complex reference + mixed reality deictic gesture (Bf

Fig. 3: Effect of communication style (Augmented Gesture (AG), vs
Complex Reference (CR) vs both (CR+AG)) and referent ambiguity
on perceived effectiveness.

1.581e23)). Specifically, our results show a strong perceived
ordering in effectiveness: complex reference < mixed reality
deictic gesture < complex reference + mixed reality deictic
gesture. This confirms hypotheses H3.1 and H3.2.

2) Main effect: Ambiguity: In addition, our results
showed that robots were perceived as much less effective
when describing an ambiguous referent (M=70.63,SD=26.98)
than it was when describing an unambiguous referent
(M=76.93,SD=23.92).

3) Interaction: Communication style and ambiguity: These
results are clarified by examining the observed interaction
between communication style and ambiguity, which suggests
that while the robot was perceived as less effective when
using complex reference alone even when the referent was
unambiguous, the robot was perceived as much less effective
when using complex reference alone to describe ambiguous
targets, as seen in Fig. 3. This confirms hypothesis H3.3.

D. Likability

We hypothesized that robots’ perceived likability would
correlate with their effectiveness, and accordingly, that (H4.1)
perceived likability would be higher when mixed reality de-
ictic gesture was used, (H4.2) especially in conjunction with
complex reference, and (H4.3) when the target referent was
ambiguous. Our results provided extreme evidence in favor of
a main effect of communication (Bf 5.986e9), and moderate
evidence in favor of an effect of ambiguity (Bf 3.088) or an
interaction between communication and ambiguity (Bf 7.985).

1) Main effect: Communication style: Post-hoc analysis
provided extreme evidence in favor of a difference in likability
between the use of complex reference and mixed reality deictic
gesture (M=69.68, SD=19.27) and the use of either complex
reference (M=61.35, SD=22.40) (Bf 81289.052) or mixed
reality deictic gesture (M=60.11, SD=19.64) (Bf 9.940e7).
This suggests that participants much more strongly liked the
robot when it used both communication styles in combination,
confirming hypothesis H4.1.

2) Main effect: Ambiguity: Our results suggested that par-
ticipants liked the robot less when it referred to ambiguous
referents. This is clarified by our final interaction effect.



Fig. 4: Effect of communication style (Augmented Gesture (AG), vs
Complex Reference (CR) vs both (CR+AG)) and referent ambiguity
on likability

3) Interaction: Communication style and ambiguity: This
interaction effect suggested that when the robot’s target ref-
erent was unambiguous, participants exhibited a likability
preference ordering of: mixed reality deictic gesture < complex
reference < mixed reality deictic gesture + complex reference;
but when the robot’s target referent ambiguous, participants
particularly disliked the use of complex reference alone (which
is unsurprising given that in such cases complex reference
alone did not allow the target to be properly disambiguated).
These findings, as seen in Fig. 4, confirming hypotheses H4.3
and partially supporting H4.2.

V. DISCUSSION

Our results suggest that mixed reality deictic gestures may
be an accurate, likable, and effective communication strategy
for human-robot interaction, much the same as traditional
physical deictic gestures. In this section, we will discuss
these results in detail, and leverage them to produce design
guidelines for enabling mixed reality deictic gestures.

A. Objective Effectiveness of Mixed Reality Deictic Gesture

Our first and second hypotheses considered the objective
effectiveness of mixed reality deictic gestures. Specifically,
we hypothesized (H2.1) that mixed reality deictic gestures
would facilitate faster human reference resolution, especially
in the case of ambiguous referents (H2.2) – for which referents
we also hypothesized that mixed reality deictic gesture would
enable increased accuracy (H1). Our results did indeed suggest
that participants had better accuracy in selecting ambiguous
referents when mixed reality deictic gestures were used, and
especially when referents were ambiguous (supporting H1).
This is not particularly surprising, as when complex reference
alone was used to refer to otherwise ambiguous referents, the
specific descriptions we used were not themselves sufficient
to disambiguate those referents. Specifically, to appropriately
control language complexity, all instances of complex refer-
ence took the form ‘Look at that {color} {shape}. When a
referent was ambiguous (i.e., there were more than one object
of that color and shape), clearly this expression itself was
still ambiguous. In future experiments, it will be valuable

to use a complex reference condition that more fully aligns
with the "fully articulated" baseline used by Sauppé and
Mutlu [75], which sacrifices control over linguistic complexity
for assurance of complete disambiguation9.

But while our first hypothesis was supported, no effects on
reaction time were observed, thus failing to support H2. As
median reaction time was 7.7 seconds for videos that were
around 5-6 seconds in length, this suggests that participants
nearly uniformly waited until videos completed before select-
ing their targets, and were not hindered by ambiguity. We
note, however, that our timestamps may have simply been too
noisy a signal, or more likely, that despite our instructions
to click on target referents as soon as they were identified,
participants may simply not have been aware of the ability or
benefit of doing so. In future experiments, it may be valuable
to re-examine reaction time, potentially providing participants
with "points" based on speed of response, and letting them
know after each video whether or not they selected the correct
referent. Alternatively, in future work it could be interesting to
gain an even more fine-grained measure of how mixed reality
deictic reference affects reaction time in complex, multi-
entity reference, using eye-tracking techniques such as those
employed in Visual World-paradigmatic experiments [46].

In addition, we found a surprising interaction between com-
munication style and distance. We believe that this finding may
best be explained by imagining an attentional cone extending
in front of the robot. Several theories of qualitative spatial
reference (e.g., Ternary Point Configuration Calculus [59])
consider one entity to be "in front" of another if it falls within
just such a cone. Our results suggest that when participants
had to choose between options that had not been fully dis-
ambiguated, they were biased towards options that could be
considered to be "in front" of the robot because they fell
within that cone. Because of the conic nature of this region,
all objects far from the robot may have been considered "in
front" of the robot, yielding no bias for any particular distant
object, whereas only some of the objects close to the robot
would have been considered "in front" of it, yielding a bias
towards those objects. This led to poor accuracy in cases of
ambiguity where the "true" target referent did not fall within
that attentional cone. We would also note that our experimental
design uniquely enabled us to identify this interaction; no such
interaction was observed by Sauppé and Mutlu because their
experimental design did not allow distance and ambiguity to
be simultaneously investigated.

B. Subjective Perceptions of Mixed Reality Deictic Gesture

Our third and fourth hypotheses considered the subjective
perception of mixed reality deictic gestures. Specifically, we
hypothesized (H3.1) that participants would perceive the robot
to be more effective when mixed reality deictic gesture was

9This draws an interesting contrast with Sauppé and Mutlu’s experiment, in
which the fully articulated baseline was fully disambiguating, but the majority
of the deictic gestures examined were not; the opposite pattern as observed
in our own experimental design.



used, especially when used in conjunction with complex refer-
ence (H3.2), and when used to refer to an otherwise ambiguous
referent (H3.3). In addition, we hypothesized (H4.1) that
participants would perceive the robot to be more effective
when mixed reality deictic gesture was used, especially when
used in conjunction with complex reference (H4.2), and when
used to refer to an otherwise ambiguous referent (H4.3)

Our results supported all of these hypotheses, with the
possible exception of H4.2, in that when the target referent
would not have been otherwise ambiguous, participants actu-
ally reported liking the robot more when complex reference
alone was used than when the mixed reality deictic gesture
alone (that is, accompanied only by a minimally articulated
verbal reference) was used. This serves to emphasize that, like
physical gesture, mixed reality deictic gesture should be used
to supplement rather than replace natural language (excepting
extreme circumstances). However, clearly these differences
may be exaggerated by the same features of our complex
references that potentially exaggerated the accuracy effects.

C. Analysis with respect to Gestural Frameworks

In this paper, we conducted the first exploration of the real
and perceived effectiveness of mixed reality deictic gesture.
However, as evident within our framework of mixed reality
deictic gestures [95], the gestural form examined is but one
among many possible forms possible within mixed reality
environments. Moreover, while we presented the allocentric
gestural form examined in this paper as an alternative to
egocentric gesture, of which pointing was presented as the
archtypical gesture, it is not clear whether "circling" truly
counts as the allocentric equivalent of pointing, especially
given the wide variety of physical deictic forms examined
by Sauppé and Mutlu [75], who found similar effects of
ambiguity and communication style on accuracy in the cases
of exhibiting and presenting. Of these, we believe presenting is
a closer analogue for allocentric gesture, as, unlike exhibiting,
presenting can be used not only to refer to nearby entities, but
also to refer to entities out of "arm range", as would allocentric
gesture. Finally, Sauppé and Mutlu found significant effects of
exhibiting on perceived effectiveness, as we did with allocen-
tric gesture, further strengthening this proposed analogy.

It is also interesting to consider our findings through the
lens of our gestural framework [95]. We previously predicted
allocentric and perspective-free gestures as being of high
static legibility [42] and high dynamic legibility [26], when
compared to the other gestural categories. Our findings with
respect to accuracy support the first prediction, but our findings
with respect to reaction time are not sufficient to support
the second. In future work, it will be necessary to explore
the other categories of mixed reality deictic gesture beyond
allocentric gesture, including physical (egocentric) gestures;
while in this study we qualitatively demonstrated similar
benefits of allocentric gesture to the benefits of egocentric
gesture observed by Sauppé and Mutlu, a direct, empirical,
quantitative comparison will be necessary in future work.

D. Design Guidelines

Finally, our results suggest several guidelines for robot
designers seeking to enable allocentric mixed reality deictic
gesture as a robotic communication strategy.

1) Allocentric mixed reality deictic gestures may be of
increased benefit in contexts where disambiguation
through language alone is difficult or impossible, such
as when describing a specific tree along a treeline.

2) Allocentric mixed reality deictic gestures may be of
increased benefit in contexts where the intended target
falls outside of what humans may perceive as the robot’s
real or ostensible attentional cone.

3) Allocentric mixed reality deictic gestures alone are
perceived as more effective than language alone, but
result in the robot being perceived less well overall.
Accordingly, it is beneficial to pair such gestures with
complex reference, rather than as a replacement for
complex language entirely. Even if this strategy does
not glean efficiency benefits traditionally associated with
gesture (a point for future investigation, see also below),
it may yet glean the other benefits associated with
gesture, as discussed in this paper.

VI. CONCLUSION

In this work we explored the actual and perceived ef-
fectiveness of allocentric mixed reality deictic gestures in
multi-modal robot communication. Building off the findings
presented in this paper, we see several promising directions
for future work. We are currently preparing to run a follow-up
experiment in which complex references are fully articulated.
This will allow us to investigate the effects of allocentric
gesture when language alone would be enough for accurate
performance. In this experiment, we also hope to collect a
more accurate measure of reaction time. If this experiment
yields positive results with respect to reaction time, it will then
produce a tradeoff that must be examined, i.e., between the
efficiency of minimally articulated language and the likability
of fully articulated language. If reaction time effects are indeed
found in our followup experiment, then we plan to investigate
this tradeoff both experimentally and algorithmically. In addi-
tion, as described above, it will be important to investigate a
wider variety of mixed reality deictic gestures, with respect to
both Sauppé and Mutlu [75] and our own [95] frameworks,
and to investigate that wider array of gestures with respect to
the specific framework dimensions we previously highlighted.
We also hope to investigate the effect of different classes of
mixed reality deictic gesture when used by robots of differing
morphologies, e.g., robots that lack arms vs. robots that have
arms they could use instead of (or in conjunction with)
allocentric gestures. Finally, we are currently in the process
of implementing different mixed reality deictic gestures on the
Microsoft Hololens. Once these gestures are integrated with
our previous work on natural language generation [92], it will
be critical to attempt to replicate the results of this experiment
using that integrated system, for increased external validity.
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of visual saliency on deictic gesture production by a humanoid robot. In
Proceedings of the 20th IEEE International Symposium on Robot and
Human Interactive Communication (RO-MAN), pages 210–216. IEEE,
2011.

[20] Eve V Clark and CJ Sengul. Strategies in the acquisition of deixis.
Journal of child language, 5(3):457–475, 1978.

[21] Herbert H Clark. Coordinating with each other in a material world.
Discourse studies, 7(4-5):507–525, 2005.

[22] Martin J Crowder. Analysis of repeated measures. Routledge, 2017.
[23] Matthew JC Crump, John V McDonnell, and Todd M Gureckis. Evalu-

ating Amazon’s Mechanical Turk as a tool for experimental behavioral
research. PloS one, 8(3):e57410, 2013.

[24] Antonella De Angeli, Walter Gerbino, Giulia Cassano, and Daniela
Petrelli. Visual display, pointing, and natural language: the power of
multimodal interaction. In Proceedings of the International Working
Conference on Advanced Visual Interfaces (AVI), pages 164–173. ACM,
1998.

[25] Jill De Villiers. The interface of language and theory of mind. Lingua,
117(11):1858–1878, 2007.

[26] Anca D Dragan, Kenton CT Lee, and Siddhartha S Srinivasa. Legibility
and predictability of robot motion. In Proceedings of the 8th ACM/IEEE
International Conference on Human-Robot Interaction (HRI), pages
301–308. IEEE Press, 2013.

[27] Rui Fang, Malcolm Doering, and Joyce Y Chai. Embodied collaborative
referring expression generation in situated human-robot interaction. In
Proceedings of the 10th Annual ACM/IEEE International Conference on
Human-Robot Interaction (HRI), pages 271–278. ACM, 2015.

[28] Charles J Fillmore. Towards a descriptive framework for spatial deixis.
Speech, place and action: Studies in deixis and related topics, pages
31–59, 1982.

[29] Jared A Frank, Matthew Moorhead, and Vikram Kapila. Mobile mixed-
reality interfaces that enhance human–robot interaction in shared spaces.
Frontiers in Robotics and AI, 4:20, 2017.

[30] Ramsundar Kalpagam Ganesan, Yash K Rathore, Heather M Ross, and
Heni Ben Amor. Better teaming through visual cues. IEEE Robotics &
Automation Magazine, 2018.

[31] Albert Gatt and Patrizia Paggio. What and where: An empirical inves-
tigation of pointing gestures and descriptions in multimodal referring
actions. In Proceedings of the 14th European Workshop on Natural
Language Generation, pages 82–91, 2013.

[32] Albert Gatt and Patrizia Paggio. Learning when to point: A data-
driven approach. In Proceedings of the 25th International Conference
on Computational Linguistics (COLING), pages 2007–2017, 2014.

[33] Arthur M Glenberg and Mark A McDaniel. Mental models, pictures, and
text: Integration of spatial and verbal information. Memory & Cognition,
20(5):458–460, 1992.

[34] Susan Goldin-Meadow. The role of gesture in communication and
thinking. Trends in Cognitive Sciences (TiCS), 3(11):419–429, 1999.

[35] Scott A Green, Mark Billinghurst, XiaoQi Chen, and J Geoffrey Chase.
Human-robot collaboration: A literature review and augmented reality
approach in design. International Journal of Advanced Robotic Systems,
5(1):1, 2008.

[36] Marianne Gullberg. Deictic gesture and strategy in second language
narrative. In Workshop on the Integration of Gesture in Language and
Speech, pages 155–164. Applied Science and Engineering Laboratories,
University of Delaware, 1996.

[37] Todd M Gureckis, Jay Martin, John McDonnell, Alexander S Rich, Doug
Markant, Anna Coenen, David Halpern, Jessica B Hamrick, and Patricia
Chan. psiturk: An open-source framework for conducting replicable
behavioral experiments online. Behavior research methods, 48(3):829–
842, 2016.

[38] Simon Harrison. The creation and implementation of a gesture code
for factory communication. Proceedings of the 2nd International
Conference on Gesture in Speech and Interaction (GESPIN), 2011, 2011.

[39] Hooman Hedayati, Michael Walker, and Daniel Szafir. Improving
collocated robot teleoperation with augmented reality. In Proceedings of
the ACM/IEEE International Conference on Human-Robot Interaction
(HRI), pages 78–86. ACM, 2018.

[40] Leanne Hirshfield, Tom Williams, Natalie Sommer, Trevor Grant, and
Senem Velipasalar Gursoy. Workload-driven modulation of mixed-
reality robot-human communication. Workshop on Modeling Cognitive
Processes from Multimodal Data at the International Conference on
Multimodal Interaction, 2018.

[41] Catherine Hobaiter, David A Leavens, and Richard W Byrne. Deictic
gesturing in wild chimpanzees (pan troglodytes)? some possible cases.
Journal of Comparative Psychology, 128(1):82, 2014.

[42] Rachel M Holladay, Anca D Dragan, and Siddhartha S Srinivasa.
Legible robot pointing. In Proceedings of the 23rd IEEE International



Symposium on Robot and Human Interactive Communication (RO-
MAN), pages 217–223. IEEE, 2014.

[43] Rachel M Holladay and Siddhartha S Srinivasa. Rogue: Robot gesture
engine. In Proceedings of the AAAI Spring Symposium Series, 2016.

[44] William D Hopkins, Jared P Taglialatela, and David A Leavens.
Chimpanzees differentially produce novel vocalizations to capture the
attention of a human. Animal behaviour, 73(2):281–286, 2007.

[45] Chien-Ming Huang and Bilge Mutlu. Modeling and evaluating narrative
gestures for humanlike robots. In Robotics: Science and Systems (RSS),
pages 57–64, 2013.

[46] Falk Huettig, Joost Rommers, and Antje S Meyer. Using the visual
world paradigm to study language processing: A review and critical
evaluation. Acta psychologica, 137(2):151–171, 2011.

[47] Jana M Iverson and Susan Goldin-Meadow. Gesture paves the way for
language development. Psychological science, 16(5):367–371, 2005.

[48] MerryAnn Jancovic, Shannon Devoe, and Morton Wiener. Age-related
changes in hand and arm movements as nonverbal communication: Some
conceptualizations and an empirical exploration. Child Development,
pages 922–928, 1975.

[49] Harold Jeffreys. Significance tests when several degrees of freedom arise
simultaneously. Proceedings of the Royal Society of London. Series A,
Mathematical and Physical Sciences, pages 161–198, 1938.

[50] Sotaro Kita. Pointing: A foundational building block of human commu-
nication. In Pointing, pages 9–16. Psychology Press, 2003.

[51] David A Leavens. Manual deixis in apes and humans. Interaction
Studies, 5(3):387–408, 2004.

[52] Stephen C Levinson. Deixis. In The handbook of pragmatics, pages
97–121. Blackwell, 2004.

[53] Phoebe Liu, Dylan F Glas, Takayuki Kanda, Hiroshi Ishiguro, and
Norihiro Hagita. It’s not polite to point: generating socially-appropriate
deictic behaviors towards people. In Proceedings of the 8th ACM/IEEE
international conference on Human-robot interaction, pages 267–274.
IEEE Press, 2013.

[54] Peter Marler. Primate vocalization: affective or symbolic? In Speaking
of apes, pages 221–229. Springer, 1980.

[55] S. Mathôt. Bayes like a baws: Interpreting bayesian repeated measures
in JASP [blog post]. https://www.cogsci.nl/blog/interpreting-bayesian-
repeated-measures-in-jasp, May 2017.

[56] Cynthia Matuszek, Liefeng Bo, Luke Zettlemoyer, and Dieter Fox.
Learning from unscripted deictic gesture and language for human-robot
interactions. In AAAI, pages 2556–2563, 2014.

[57] Paul Milgram and Fumio Kishino. A taxonomy of mixed reality
visual displays. IEICE TRANSACTIONS on Information and Systems,
77(12):1321–1329, 1994.

[58] Paul Milgram, Shumin Zhai, David Drascic, and Julius Grodski. Ap-
plications of augmented reality for human-robot communication. In
Intelligent Robots and Systems’ 93, IROS’93. Proceedings of the 1993
IEEE/RSJ International Conference on, volume 3, pages 1467–1472.
IEEE, 1993.

[59] Reinhard Moratz and Marco Ragni. Qualitative spatial reasoning about
relative point position. Journal of Visual Languages & Computing,
19(1):75–98, 2008.

[60] RD Morey and JN Rouder. Bayesfactor (version 0.9. 9), 2014.
[61] Sigrid Norris. Three hierarchical positions of deictic gesture in relation

to spoken language: a multimodal interaction analysis. Visual Commu-
nication, 10(2):129–147, 2011.

[62] Yusuke Okuno, Takayuki Kanda, Michita Imai, Hiroshi Ishiguro, and
Norihiro Hagita. Providing route directions: design of robot’s utterance,
gesture, and timing. In Proceedings of the 4th ACM/IEEE international
conference on Human robot interaction, pages 53–60. ACM, 2009.

[63] Daniela K O’Neill. Two-year-old children’s sensitivity to a parent’s
knowledge state when making requests. Child development, 67(2):659–
677, 1996.

[64] Daniel Otte. Effects and functions in the evolution of signaling systems.
Annual Review of Ecology and Systematics, 5(1):385–417, 1974.

[65] Leah Perlmutter, Eric Kernfeld, and Maya Cakmak. Situated language
understanding with human-like and visualization-based transparency. In
Robotics: Science and Systems, 2016.

[66] Christopher Peters, Fangkai Yang, Himangshu Saikia, Chengjie Li, and
Gabriel Skantze. Towards the use of mixed reality for hri design via
virtual robots. In Proceedings of the 1st International Workshop on
Virtual, Augmented, and Mixed Reality for HRI (VAM-HRI), 2018.

[67] Simone Pika, Katja Liebal, Josep Call, and Michael Tomasello. Gestural
communication of apes. Gesture, 5(1):41–56, 2005.

[68] Paul Piwek. Salience in the generation of multimodal referring acts.
In Proceedings of the 2009 international conference on Multimodal
interfaces, pages 207–210. ACM, 2009.

[69] Christopher Reardon, Kevin Lee, and Jonathan Fink. Come see this!
augmented reality to enable human-robot cooperative search. In Pro-
ceedings of the IEEE International Symposium on Safety, Security, and
Rescue Robotics (SSRR), pages 1–7. IEEE, 2018.

[70] Eric Rosen, David Whitney, Elizabeth Phillips, Gary Chien, James
Tompkin, George Konidaris, and Stefanie Tellex. Communicating robot
arm motion intent through mixed reality head-mounted displays. arXiv
preprint arXiv:1708.03655, 2017.

[71] Jeffrey N Rouder, Richard D Morey, Paul L Speckman, and Jordan M
Province. Default bayes factors for anova designs. Journal of Mathe-
matical Psychology, 56(5):356–374, 2012.

[72] Maha Salem, Friederike Eyssel, Katharina Rohlfing, Stefan Kopp, and
Frank Joublin. Effects of gesture on the perception of psychological
anthropomorphism: a case study with a humanoid robot. In International
Conference on Social Robotics, pages 31–41. Springer, 2011.

[73] Maha Salem, Stefan Kopp, Ipke Wachsmuth, and Frank Joublin. Towards
an integrated model of speech and gesture production for multi-modal
robot behavior. In 19th IEEE International Symposium on Robot and
Human Interactive Communication (RO-MAN), pages 614–619. IEEE,
2010.

[74] Maha Salem, Stefan Kopp, Ipke Wachsmuth, Katharina Rohlfing, and
Frank Joublin. Generation and evaluation of communicative robot
gesture. International Journal of Social Robotics, 4(2):201–217, 2012.

[75] Allison Sauppé and Bilge Mutlu. Robot deictics: How gesture and
context shape referential communication. In Proceedings of the 2014
ACM/IEEE international conference on Human-robot interaction, pages
342–349. ACM, 2014.

[76] E Sue Savage-Rumbaugh. Language as a cause-effect communication
system. Philosophical psychology, 3(1):55–76, 1990.

[77] Manfred Schönheits and Florian Krebs. Embedding ar in industrial
hri applications. In Proceedings of the 1st International Workshop on
Virtual, Augmented, and Mixed Reality for HRI (VAM-HRI), 2018.

[78] Elena Sibirtseva, Dimosthenis Kontogiorgos, Olov Nykvist, Hakan
Karaoguz, Iolanda Leite, Joakim Gustafson, and Danica Kragic. A
comparison of visualisation methods for disambiguating verbal requests
in human-robot interaction. In Proceedings of the 27th IEEE Inter-
national Symposium on Robot and Human Interactive Communication
(RO-MAN). IEEE, 2018.

[79] Joseph P Simmons, Leif D Nelson, and Uri Simonsohn. False-positive
psychology: Undisclosed flexibility in data collection and analysis allows
presenting anything as significant. Psychological science, 22(11):1359–
1366, 2011.

[80] Daniele Sportillo, Alexis Paljic, Luciano Ojeda, Giacomo Partipilo,
Philippe Fuchs, and Vincent Roussarie. Training semi-autonomous vehi-
cle drivers with extended reality. In Proceedings of the 1st International
Workshop on Virtual, Augmented, and Mixed Reality for HRI (VAM-
HRI), 2018.

[81] Jonathan AC Sterne and George Davey Smith. Sifting the evidence –
what’s wrong with significance tests? Physical Therapy, 81(8):1464–
1469, 2001.

[82] Neil Stewart, Jesse Chandler, and Gabriele Paolacci. Crowdsourcing
samples in cognitive science. Trends in Cognitive Sciences (TiCS), 2017.

[83] JASP Team. Jasp (version 0.8.5.1)[computer software], 2018.
[84] Michael Tomasello. Why don’t apes point? Trends In Linguistics Studies

And Monographs, 197:375, 2008.
[85] Ielka Francisca Van Der Sluis. Multimodal Reference, Studies in

Automatic Generation of Multimodal Referring Expressions. PhD thesis,
University of Tilburg, 2005.

[86] DWF Van Krevelen and Ronald Poelman. A survey of augmented
reality technologies, applications and limitations. International journal
of virtual reality, 9(2):1, 2010.

[87] EJ Wagenmakers, J Love, M Marsman, T Jamil, A Ly, and J Verhagen.
Bayesian inference for psychology, Part II: Example applications with
JASP. Psychonomic Bulletin and Review, 25(1):35–57, 2018.

[88] Michael Walker, Hooman Hedayati, Jennifer Lee, and Daniel Szafir.
Communicating robot motion intent with augmented reality. In Pro-
ceedings of the ACM/IEEE International Conference on Human-Robot
Interaction (HRI), pages 316–324. ACM, 2018.

[89] Peter H Westfall, Wesley O Johnson, and Jessica M Utts. A bayesian
perspective on the bonferroni adjustment. Biometrika, 84(2):419–427,
1997.



[90] David Whitney, Eric Rosen, James MacGlashan, Lawson LS Wong, and
Stefanie Tellex. Reducing errors in object-fetching interactions through
social feedback. In Proceedings of the International Conference on
Robotics and Automation (ICRA), 2017.

[91] Tom Williams. A framework for robot-generated mixed-reality deixis.
In Proceedings of the 1st International Workshop on Virtual, Augmented,
and Mixed Reality for HRI (VAM-HRI), 2018.

[92] Tom Williams and Matthias Scheutz. Referring expression generation
under uncertainty: Algorithm and evaluation framework. In Proceedings
of the 10th International Conference on Natural Language Generation
(INLG), 2017.

[93] Tom Williams, Daniel Szafir, Tathagata Chakraborti, and Heni Ben
Amor. Report on the 1st international workshop on virtual, augmented,
and mixed reality for human-robot interaction (VAM-HRI). AI Maga-
zine, 2018 (forthcoming).

[94] Tom Williams, Daniel Szafir, Tathagata Chakraborti, and Heni
Ben Amor. Virtual, augmented, and mixed reality for human-robot inter-
action. In Companion of the 2018 ACM/IEEE International Conference
on Human-Robot Interaction (HRI), pages 403–404. ACM, 2018.

[95] Tom Williams, Nhan Tran, Josh Rands, and Neil T. Dantam. Augmented,
mixed, and virtual reality enabling of robot deixis. In Proceedings of
the 10th International Conference on Virtual, Augmented, and Mixed
Reality (VAMR), 2018.

[96] Tom Williams, Fereshta Yazdani, Prasanth Suresh, Matthias Scheutz,
and Michael Beetz. Dempster-shafer theoretic resolution of referential
ambiguity. Autonomous Robots, 2018.

[97] Fereshta Yazdani, Matthias Scheutz, and Michael Beetz. Guidelines
for improving task-based natural language understanding in human-
robot rescue teams. In Proceedings of the 2017 8th IEEE International
Conference on Cognitive Infocommunications (CogInfoCom), Debrecen,
Hungary, September 2017.

[98] Feng Zhou, Henry Been-Lirn Duh, and Mark Billinghurst. Trends in
augmented reality tracking, interaction and display: A review of ten
years of ismar. In Proceedings of the 7th IEEE/ACM International
Symposium on Mixed and Augmented Reality (ISMAR), pages 193–202.
IEEE Computer Society, 2008.

[99] Sebastian Meyer zu Borgsen, Patrick Renner, Florian Lier, Thies Pfeiffer,
and Sven Wachsmuth. Improving human-robot handover research by
mixed reality techniques. In Proceedings of the 1st International
Workshop on Virtual, Augmented, and Mixed Reality for HRI (VAM-
HRI), 2018.


	Introduction
	Related Work
	Human Deictic Gesture
	Robot Deictic Gesture
	Augmented Reality for HRI

	Experiment
	Experimental Design
	Interaction Design
	Environment Design

	Procedure
	Hypotheses
	Measures
	Accuracy
	Reaction Time
	Effectiveness
	Likability

	Participants
	Analysis

	Results
	Accuracy
	Main effect: Communication style
	Main effect: Ambiguity
	Interaction: Communication style and ambiguity
	Interaction: Communication style and distance
	Interaction: Communication style, ambiguity, and distance

	Reaction Time
	Effectiveness
	Main effect: Communication style
	Main effect: Ambiguity
	Interaction: Communication style and ambiguity

	Likability
	Main effect: Communication style
	Main effect: Ambiguity
	Interaction: Communication style and ambiguity


	Discussion
	Objective Effectiveness of Mixed Reality Deictic Gesture
	Subjective Perceptions of Mixed Reality Deictic Gesture
	Analysis with respect to Gestural Frameworks
	Design Guidelines

	Conclusion
	References

