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1 Introduction

As robots become increasingly prevalent in our society, it becomes

increasingly important to endow them with natural language capabilities.

Natural language capabilities are especially important for robots designed

to operate in domains such as eldercare robotics, education robotics, space

robotics, and urban search-and-rescue robotics. In eldercare robotics and

education robotics, it may simply be too cognitively burdensome for the

target population to learn to interact with their would-be caregiving or

educational assistants through some other modality. In space robotics and

urban search-and-rescue robotics, it may be too physically burdensome for

the target population to interact with their would-be assistants or rescuers,

due to, e.g., lack of gravity, or trapped limbs. In urban search-and-rescue
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environments, victims are also not likely to have the time or inclination to

learn another control modality to interact with their would-be rescuers. It

is thus important that robots operating in these and other domains be

taskable through control modalities, like natural language, that the general

public is already familiar and proficient with.

A crucial aspect of natural language communication is the ability to

refer : the capability to which this volume is dedicated. Robots must thus

be able to both understand so-called referring expressions, and generate

them as well. In this chapter we will focus on the task of referring

expression understanding. There are a number of unique challenges that

present themselves to robots seeking to understand referring expressions

due to robots’ status as situated agents : agents (entities capable of

autonomously acting to achieve their own goals (Jennings, 2000)) that are

embedded in an environment that is perceivable and manipulable by

themselves and other agents with whom they can interact (Smith & Gero,

2005).

While a software entity operating within a non-situated domain such

as text mining or document summarization may need to associate entities

referenced in a text with previous portions of that text, a robot must

instead associate entities referenced in dialogue with its own mental

representations resulting not only from dialogue and inference, but also

from interpretation of sensory data gathered by its perceptual systems. The

robot’s knowledge of perceived entities will almost certainly be uncertain
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(as robots do not have perfect perception of the world) and incomplete (as

robots cannot presume to be familiar with every entity in the world).

In robotics, the problem of identifying what real-world entities are the

referents of referring expressions goes by many names, including language

grounding (Steels & Hild, 2012), reference resolution (Popescu-Belis,

Robba, & Sabah, 1998), and entity resolution (Meyer, 2013). While these

names are sometimes used to denote the same concept, they carry different

connotations. Specifically, reference resolution connotes association of a

referring expression with a discretely represented entity, while language

grounding further connotes grounding that discrete representation to

continuously represented perceptual data (Harnad, 1990). In our work, we

are specifically interested in reference resolution that is domain independent

(i.e., in which it is not assumed that referents will be of one particular type

(c.f. spatial reference resolution)) and open world (i.e., in which it is is not

assumed that all candidate referents are perceivable or otherwise known at

resolution time); assumption relaxations that are particularly important for

realistic human-robot interaction scenarios. Imagine a search-and-rescue

scenario, in which a supervisor says to a robot:

(1) The east wing needs to be evacuated. Please tell that to all

personnel.

This example contains three referring expressions: ‘The east wing’,

‘that’, and ‘all personnel’. We propose that a domain-independent
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algorithm is needed to resolve these references, which are of different types,

and that an open-world algorithm is needed as the agent should be able to

understand the utterance even if it did not previously know that the

building being discussed had an ‘east wing’. The need for open-world

reference resolution algorithms underlies our decision to study only the

reference resolution half of the language grounding problem. In

closed-world resolution, at resolution time all entities are either perceivable

or have been previously perceived, and thus continuous perceptual data is

available to adjudicate the fitness of all candidate referents. Because this is

not the case in an open world, it is important to develop reference

resolution algorithms that do not require symbols to be ground to

perceptual data, as do language grounding algorithms.

Furthermore, We argue that it is important to focus on the two halves

of the language grounding problem separately, as a robot is unlikely to

generate subsymbolic representations for entities learned of through

dialogue. In order to facilitate domain-dependent open-world reference

resolution, we have developed an algorithm which makes use of the

Givenness Hierarchy (GH) (Gundel, Hedberg, & Zacharski, 1993), which

provides an elegant linguistic framework for reasoning about notions of

reference in human discourse.

In the next section (Section 2), we provide an overview of the GH and

discuss previous GH-theoretic approaches to reference resolution. We then

describe in Section 3 our own GH-theoretic approach, the gh-power
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algorithm, and suggest future refinements of our algorithm with respect to

the theoretical commitments of the GH. In Section 4, we go on to briefly

survey other prominent approaches to reference resolution in robotics, and

discuss how these compare to our approach. Finally, in Section 5 we

conclude with a discussion of possible directions for future work.

2 The Givenness Hierarchy

In focus
Activated
Familiar

Uniquely identifiable

Referential
Type identifiable

Figure 1: The Givenness Hierarchy

The GH (Gundel et al., 1993) is comprised of six hierarchically nested

tiers of cognitive status, as seen in Fig. 1. If a candidate referent is marked

as having one of these statuses, the hierarchical nature of this framework

means that it also has all statuses lower in the hierarchy. For example, a

candidate referent that is familiar is also uniquely identifiable, referential,

and type identifiable. It is possible that the candidate referent is also

activated, or even in focus, but a higher status cannot be inferred from a

lower status. Each level of the GH is ‘cued’ by a set of linguistic forms, as

seen in Table 1 for English. For example, the second row of the table shows
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that when the definite ‘this’ is used, one can assume that the speaker

assumes the referent of ‘this’ to be at least activated for their interlocutor.

Table 1: Cognitive Status and Form in the GH

Cognitive Status Linguistic Form
In focus it
Activated this,that,this N
Familiar that N
Uniquely identifiable the N
Referential indefinite this N
Type identifiable a N

The GH is attractive to computational researchers not only because it

suggests a clear mapping between linguistic form and cognitive status, but

because, due to its focus on means of access rather than salience, each

status evokes a particular mnemonic actions (i.e., actions involving

selecting or creating mental representations) upon an agent’s cognitive

structures.

When the linguistic form of an expression explicitly signals that its

referent is type identifiable or referential (but not necessarily uniquely

identifiable), this suggests the action of hypothesization: creating a new

mental representation, and then selecting that representation as the target

referent.

When the linguistic form of an expression signals that its referent can

also be uniquely identified (but is not necessarily familiar), this suggests

either the action of hypothesizing a referent or selecting an existing

referent from memory. When the linguistic form of an expression signals
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that its referent is also familiar, this suggests that the referent should be

able to be found by searching through memory and selecting an existing

representation.

When the linguistic form of an expression signals that its referent is

also activated or in focus, this suggests that the referent should be able to

be found by searching through a subset of memory (the subset of activated

entities and the subset of activated entities that are in focus, respectively)

and selecting a referent from that subset.

The GH can directly solve certain computational problems: To

determine the cognitive status ascribed to a candidate referent, one need

only check which forms explicitly encode which statuses on the GH in a

given language (see also the Coding Protocol provided by Gundel et

al. (2006)). And, when Speaker S uses linguistic form F to refer to entity E

when speaking to hearer H, it is easy to determine the most restrictive

status that H can rationally assume S to ascribe to E. For example, when S

uses ‘it’, we can assume that S believes E to be in the subset of H ’s

memory that is in focus : any information that could not plausibly be in

focus can be ruled out, as such an interpretation would not be possible given

the cognitive status conventionally signaled by ‘it’; when S uses ‘this’, we

can assume that S believes E to be at least in the subset of H ’s memory

that is currently activated. E may also be in the subset of those entities

that are in focus, but we can not assume this; and in fact, it is unlikely that

S believes E to be in that subset, as otherwise S could have used the more
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informative ‘it’. Furthermore, information that could not plausibly be in

the activated subset of H ’s memory can be ruled out, as such an

interpretation would not be possible given the cognitive status

conventionally signaled by ‘this’.

However, within the GH framework, choices among referents that meet

cognitive status restrictions are made through interaction of the GH with

general pragmatic principles operative in language interpretation, such as

Grice’s maxims or Relevance theory. As a result, the GH can only facilitate,

but not directly produce solutions for the aforementioned computational

problems of reference resolution (i.e., determining, when S uses linguistic

form F when speaking to H, what entity E is most likely being referenced)

and referring expression generation (i.e., determining, when S wishes to

refer to E when speaking to H, what linguistic form F should be used

(c.f.(Krahmer & Van Deemter, 2012; Van Deemter, 2016)). As previously

discussed, this chapter will focus on a GH-theoretic approach to the

reference resolution problem.

There have been several previous partial implementations of the GH

(e.g., (Kehler, 2000; Chai, Prasov, & Qu, 2006)) for use in reference

resolution algorithms, the most extensive of which is that presented by

Chai et al. (Chai et al., 2006). Chai et al. were interested in handling

multi-modal referring expressions within the context of multi-modal user

interfaces, and combined the GH with ideas from Grice’s theory of

Conversational Implicature (Grice, 1970) to produce the reduced four-tier
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hierarchy seen in Fig. 2. In this hierarchy, ‘Focus’ subsumes the GH’s in

focus and activated tiers; ‘Visible’ subsumes the familiar and uniquely

identifiable tiers; and ‘Others’ subsumes the referential and type identifiable

tiers, but crucially, does not appear to be used. These three tiers are topped

by a new ‘Gesture’ tier which specifically handles gestured-towards entities.

Gesture
Focus
Visible
Others

Figure 2: Chai’s Modified Hierarchy

In previous work (Williams, Acharya, Schreitter, & Scheutz, 2016), we

discuss how this reduced hierarchy, and its accompanying algorithm

presented by Chai et al., do not address all aspects of reference resolution

found in typical human-robot dialogues. To summarize our concerns, the

approach taken by Chai et al. (1) assumes complete certainty in the

properties of entities, (2) appears to only handle references to objects, not

locations, people, or less concrete entities (e.g., utterances) (3) operates

under the closed-world assumption, (4) does not account for the GH’s

preference for lower tiers over higher tiers (e.g., in ‘Could you repeat that ’,

‘that’ is more likely to refer to an activated entity (e.g., the previous

utterance) than an in-focus entity (e.g., the topic of the previous utterance),

(5) cannot differentiate between the tiers that they join together, and (6)

may be prone to errors and inefficiencies when resolving complex noun
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phrases. To address our concerns, we presented the gh-power

algorithm (Williams et al., 2016), which we outline in the next section.

3 The GH-POWER Algorithm

The gh-power reference resolution algorithm dictates how the referent of

a referring expression should be searched for, given a memory model

organized in a specific, hierarchical way that parallels the organization of

the GH. In this section, we will first discuss the memory structure used in

our approach. Next, we will discuss the between-structure processes by

which gh-power algorithm chooses which structures to search. We will

then discuss the within-structure processes by which gh-power selects

suitable referents from a given structure. Finally, we will discuss the

shortcomings of this approach which we are seeking to address in our

current work. In all cases we choose to describe our approach at a high

level, and do not provide pseudocode or optimization details. The

interested reader should consult our previous work for such details, as cited

throughout the section.

3.1 The GH-POWER Memory Model

The memory model used by GH-POWER aligns well with Nelson Cowan’s

conceptualization of working memory (Cowan, 1998). According to Cowan,

working memory and long-term memory are not disjoint structures.
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Rather, working memory can be regarded as the subset of entities in long

term memory that are currently activated. Cowan further posits an

additional substructure, the focus of attention, which is a subset of those

activated entities that is limited in size to at most four elements, comprised

of those items of which an agent is consciously aware. There is clearly a

strong parallel between Cowan’s Focus of Attention ⊂ Set of Activated

Entities ⊂ Long Term Memory structures and Gundel’s In Focus ⊂

Activated ⊂ Familiar statuses, and observing this connection will facilitate

understanding the connection between our own memory structure and the

statuses of the GH.

Our approach consists of four hierarchical data structures: the Focus

of Attention (FOA), Set of Activated Entities (ACT), Set of Familiar

Entities (FAM) and Long Term Memory (LTM). These four data

structures are hierarchically organized such that FOA ⊂ ACT ⊂ FAM ⊂

LTM. At the computational level of analysis (Marr, 1982), the FOA, ACT,

and LTM data structures are identical to Cowan’s three memory structures.

But in a robot architecture, all of a robot’s knowledge is not typically

located in a single, monolith knowledge base. Instead, it may be distributed

across a set of knowledge bases that may be located on different machines,

may use different knowledge representation schemes, and may have different

ways of accessing and modifying the knowledge contained within them.

Thus, at the algorithmic level, our LTM data structure is really a set of

domain-specific distributed, heterogeneous knowledge bases. Because LTM is
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not a single coherent knowledge base, the FOA and ACT also must differ at

the algorithmic level; instead of being literal subsets of the mental

representations distributed across LTM, the FOA and ACT instead contain

memory traces that allow access to certain of those mental representations.

Note that these three structures are not intended to serve as the agent’s

actual cognitive structures; instead, they serve to model what an

interlocutor might believe to be in those structures, and thus as a model of

common ground.

Finally, for the sake of convenience and efficiency, we introduce the

FAM structure, a minor point of departure from both the GH and Cowan’s

model of Working Memory, which we make for practical rather than

theoretical reasons. FAM contains memory traces for entities in LTM that

are likely to be referenced, such as entities mentioned at some point in the

robot’s current dialogue, recently visited locations, and recently visited

objects, including all entities in ACT (and by extension, in the FOA).

Because searching all of LTM is potentially expensive, when LTM needs to

be searched for an entity that matches some criteria, that search is

preempted by a search of FAM: if a match can be found there, LTM need

not be searched.

To summarize, our model consists of four hierarchically nested data

structures: a distributed LTM data structure containing mental

representations of known entities, and three smaller data structures that

contain memory traces allowing fast access to entities in LTM (i.e., FOA,

12



ACT, and FAM). These three data structures are populated periodically

(e.g., after an utterance is processed) according to rules inspired by the GH

Coding Protocol. In the next two sections, we will describe how these

structures are used during reference resolution: in Section 3.2 we discuss

how the linguistic form of a referring expression is used by the gh-power

algorithm to determine which of these structures to examine; in Section 3.3,

we discuss how gh-power chooses whether a particular candidate referent

within one of those structures is the target referent.

3.2 Between-Structure Processes

The GH alone does not specify how cognitive structures are selected for

perusal during reference resolution. For example, suppose Speaker S uses

the pronoun‘that’ to refer to entity E when speaking with Hearer H. The

GH suggests that H can assume that S assumes that E is at least in H ’s

ACT, and thus may or may not also be in H ’s FOA.

Several strategies could be used to search ACT and the FOA. The

agent could consider entities in the FOA, then out-of-focus entities in short

term memory (a top down approach), or she could consider out-of-focus

entities in ACT, then in-focus entities (a bottom up approach).

While some previous approaches (e.g., (Chai et al., 2006)) have used a

global top-down approach, this may violate certain predictions of the GH.

For example, the Givenness Hierarchy framework (i.e., the GH when

working in conjunction with general cognitive principles such as Grice’s
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maxim as Quantity) suggests that in the example above, while the referent

of ‘that’ could be assumed to be in H ’s FOA, it is more likely to be

assumed to be in H ’s ACT but not in H’s FOA, as otherwise S could have

used ‘it’ to refer to the referent. If a purely top-down approach is used, this

effect may not be captured. On the other hand, consider the utterance

‘Pick up the box’. The bottom-up approach would inappropriately

prioritize inactive boxes from LTM over an activated box in front of the

listener. Since neither a purely top-down or purely bottom-up approach

seems adequate, we developed a hybrid approach, in which a unique search

strategy is used for each GH tier. These strategies, refinements of those

presented in (Williams et al., 2016) are seen in Table 2. In that table, FOA

denotes a search through memory traces found in the FOA; ACT denotes a

search through memory traces found in ACT but not in the FOA; FAM

denotes a search through memory traces found in FAM but not in ACT

LTM denotes a search through all of LTM; HYP denotes hypothesization.

We will now explain the rationale for each strategy.

Table 2: Search Plans for Complete GH

Level Search Plan
in focus FOA
activated ACT → FOA
familiar ACT → FOA → FAM → LTM
uniquely identifiable ACT → FOA → FAM → LTM → HYP
referential ACT → FOA → HYP
type identifiable HYP

14



3.2.1 In Focus

In the case of an ‘in focus’ cuing form (e.g., ‘it’), we only search the FOA,

as it would be otherwise inappropriate to use such a form.

3.2.2 Activated Entities

In the case of an ‘activated’ cuing form (e.g., ‘this’), search is expanded to

include out-of-focus entities in ACT. For the reasons discussed above, we

proceed bottom-up, first searching the out-of-focus entities in ACT, then

searching the FOA. However, this process is modified in the case of ‘This

N’, as we discuss below.

3.2.3 Familiar Entities

In the case of a ‘familiar’ cuing form (e.g., ‘that N’), search is expanded to

include all entities in memory. As it is inappropriate to prioritize entities in

LTM over those in ACT, we still perform our search through ACT and the

FOA first, and then move on to search through LTM. As previously

discussed, we first search through FAM, the subset of most probable

referents in LTM (not including those referents also found in ACT), and

only search all of LTM if this search fails, using the dist-power algorithm

described in (Williams & Scheutz, 2016). dist-power is a distributed

extension of the cognitive model proposed in (Williams & Scheutz, 2015a)

and computationalized in (Williams & Scheutz, 2015b). This algorithm has

two main features relevant to gh-power. First, it is able to simultaneously
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resolve all parts of a complex definite description. The second feature will

be discussed in the following subsection.

3.2.4 Uniquely Identifiable

In the case of a ‘uniquely identifiable’ cuing form (e.g., ‘the N’), search is

extended to allow for the possibility that the speaker is referencing a

previously unknown entity. This begins by searching through the four tiers

of the gh-power memory model, as performed with familiar entities.

However, when searching through LTM, we take advantage of

dist-power’s second important feature dist-power’s ‘hypothesization

mode’. When run in this mode, if dist-power is unable to find a mental

representation that satisfies all semantic criteria of a definite description, it

attempts to find a subset of that description that it can successfully resolve,

and automatically hypothesizes representations for remaining entities.

3.2.5 Referential

Gundel et al. suggest that the indefinite form of ‘this N’ (as in ‘This dog I

saw was enormous!’) cues the ‘referential’ tier1, resulting in the

hypothesization of a representation. As a simplification (i.e., so that we do

not need to decide whether each use of ‘This N’ is definite or indefinite),

gh-power deals with both forms at the referential tier. To do so, we begin

with the standard ‘activated’ search strategy (i.e., a bottom-up search

starting from ACT), and hypothesize a representation only if this search
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fails. We acknowledge that there may be cases in which this does not

produce the correct behavior. For example, if one says ‘This dog I saw was

enormous!’ while standing in front of a dog, ‘This dog’ may be incorrectly

resolved to the co-present canine.

3.2.6 Type Identifiable

In the case of a linguistic form that only cues the Type Identifiable tier

(e.g., ‘a N’), we immediately hypothesize a representation in the same way

as is performed in the previous subsection. Note that this does not imply

that the robot does not yet have a representation for the intended referent.

For example, suppose the robot is looking at a box, and its interlocutor

says to it remotely, ‘You should see a box: Bring it to me.’ In this case, the

robot’s interlocutor actually intends to refer to a particular box, and the

robot in fact already knows of this box. Even in such a case, we still create

a new mental representation for a new box. It will be up to subsequent

processing stages to recognize the meaning of the sentence, find the two

representations, verify that they match, consolidate them into a single

representation, and of course, bring the box to the interlocutor.

3.2.7 Complex Referring Expressions

The GH framework also does not specify how to resolve syntactically

complex referring expressions, i.e., referring expressions containing multiple

referents described in relation to each other, such as those in Example 2:
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(2) Scene: A table upon which sits a large green block and a large blue

block (towards the front of the table), and a greenish-yellow block on

a bluish-purple block (in a far corner of the table).

a. Pick up the green block that is on the blue block.

b. Pick up the one on the blue block.

Chai et al. resolve references of this sort using a a greedy algorithm in

which locally optimal choices are sequentially made for each sub-expression.

However, in cases like that seen in Example 2a, this is likely to incorrectly

resolve whichever referential expression is considered first, due to the

decreased salience, prototypicality, and proximity of the targets. Greedily

resolving Example 2b will likely be even less successful due to the

underspecification of ‘the one’.

We would thus argue that syntactically complex referring expressions

should not be considered greedily in a GH-theoretic reference resolution

algorithm. How, then, should search plans (i.e., from Table 2) for an

expression’s constituent parts be jointly examined? We decided to handle

this problem by ‘crossing’ the search plans for the constituent parts, that is,

considering all possible combinations of search plans sorted in search plan

order. For example, crossing ACT → FOA→ HY P with ACT → FOA

yields Table 3.

The rows of this table are successively examined until a sufficiently

probable solution is found or the table is exhausted. Here, for example,
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Table 3: Sample Joint Search Plan Table

Y X
ACT ACT
ACT FOA
FOA ACT
FOA FOA
HYP ACT
HYP FOA

gh-power would begin by searching for a pair of memory traces contained

in ACT which fit the given description. If no such pair can be found,

gh-power will proceed to the next line of the table, and search for a pair

of memory traces, one from ACT and one from the FOA, which fit the

given description, and so forth. Two decisions were made in designing this

subroutine.

First, rows are considered in left-to-right order. For example, when

searching for a pair of referents on the second line, gh-power would first

try to find candidate referents from ACT to associate with Y , and then try

to find candidate referents from FOA to associate with X given the set of

restricted candidates for Y .

Second, the action of hypothesization (denoted HYP) is postponed

until the search process is successfully terminated; a new representation

should only be generated if sufficiently probable referents are found for all

other entries in a row, halting the search process. For example, when line

five is considered, gh-power will begin by associating Y with a dummy

referent ‘?’. A new representation will be created for this referent if and
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only if a sufficiently probable referent can be found in ACT to associate

with X.

3.3 Within-Structure Processes

The GH does not specify how candidates are selected from within cognitive

structures during reference resolution. Despite what is often assumed (c.f.

(Brown-Schmidt, Byron, & Tanenhaus, 2005)), Gundel et al. state that the

GH is not a hierarchy of salience or accessibility, and that it is necessary to

model salience independently of tier of cognitive status (Gundel, 2010). We

will now describe how the proposed model handles degree of salience and

uncertainty, and how these measures are used to select candidates.

3.3.1 Focus of Attention and Activated Entities

In order to account for salience without relying on, e.g., a dedicated

gestural tier (c.f. (Chai et al., 2006)), gh-power uses a multi-modal

salience score to assign a ‘degree of activation’ to entities contained in the

FOA and ACT. The entities returned by the assess methods associated

with the FOA and ACT structures are then the set of all sufficiently

probable entities within those tiers, ordered by activation such that the

most salient candidate will be chosen if multiple are available.
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3.3.2 Familiar Entities and Long Term Memory

In the proposed model, the Set of Familiar Entities is equivalent to a

‘highly salient’ LTM cache; we would argue that the ‘Familiar’ and

‘Uniquely Identifiable’ tiers can be viewed as different means of accessing

the same structures, with different worst-case conditions. This is consistent

with Gundel’s claim (Gundel, 2010) that:

"[F]orms that encode cognitive status on the GH are not

markers of degree of accessibility. Rather, they provide

procedural information about manner of accessibility, how and

where to mentally access an appropriate representation."

The entities returned by the assess method associated with the FAM

are its sufficiently probable entities, ordered in reverse chronological order ;

the entities returned by the assess method associated with LTM are its

sufficiently probable entities, ordered in decreasing order of likelihood.

3.4 Discussion

In previous work, we demonstrated how gh-power was able to resolve the

majority of references occurring in a corpus of human-human and

human-robot team tasks (Williams et al., 2016). While, there were a

number of cases that gh-power was unable to handle, it was able to

capture several aspects of the GH missing from previous GH-theoretic
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approaches. Consider, for example, the following example presented by

Gundel et al. (Gundel, 2010):

(3) a. Alice: I failed my linguistics course.

b. Bob: Can you repeat that?

Before resolving ‘that’, the referent of ‘my linguistics course’ should be

in the agent’s FOA, while the utterance itself should be in the agent’s ACT,

but not in the agent’s FOA since, as Gundel et al. (1993) note, speech acts

are activated, but not brought into focus just by being uttered. Gundel et

al. suggest that if Bob had meant to refer to the course, he would have

used it instead of that, because ‘it’ explicitly picks out an in focus referent,

whereas ‘that’ only signals that the referent is activated and therefore could

be in focus, and thus the course should be dispreferred to the sentence itself.

This effect is captured through gh-power’s between-structure processes:

When ‘that’ is used, ACT is first checked; and because the utterance is in

ACT, it is chosen. FOA is not even examined, because any options residing

therein should be dispreferred. However, consider Example 4:

(4) Scene: A table on which sits a black box and a white box

a. Bob: Look at the white box

b. Bob: Pick that up

Before resolving ‘that’, the white box should be in the agent’s FOA,

and the black box is likely to only be in the agent’s ACT, as depicted in

Fig. 3. Following the logic of Example 3, if Bob had meant to refer to the
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LTM
[...]

FAM
[...]

ACT
black box

interlocutor
table

last utterance

FOA
white box

Figure 3: Contents of gh-power’s cognitive structures during hypothetical
algorithm run. Structures are arranged to depict their hierarchical nature
(i.e., an entity in one structure is also in all lower structures). [...] indicates
the wide variety of entities contained in the set of familiar entities and in
long term memory which are not immediately relevant to this example.

white box, he could have used ’it’ instead of ’that’, and thus the white box

should be dispreferred. Yet while ‘it’ would have been more natural in

referring to the white box, choosing the white box as the referent of ’that’ is

clearly not wrong and probably preferred in this situation in the absence of

any gesture indicating a shift in attention.

In this scenario, gh-power errs for two reasons. First, it treats

hierarchical preference as absolute, whereas dispreferred entities should be

just that: dispreferred, not removed from consideration. Second,

gh-power does not take conversational relevance into account. These

factors were initially overlooked because the GH does not specify how
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relevance factors influence search. gh-power checks whether resolution

candidates are suitable, i.e., whether they satisfy all described properties,

and only moves on to consider entities in another cognitive structure if no

resolution candidates in the current structure are deemed suitable. In this

case, however, this is insufficient. In order for gh-power to perform

correctly in this scenario, it should recognize not only that both boxes are

suitable, but that the white box is conversationally more relevant than the

black box; there is no clear reason why the agent would be asked to look at

the white box and then pick up the black box.

In order to address this issue, gh-power should operate in the

following way: When ACT is examined, the low conversational relevance of

the black box should be noted. This should result in search extending to

the FOA while retaining the black box as a resolution candidate. The white

box should then be selected using an equation that takes relevance,

suitability, and other factors into account.

To be precise, at least three factors must be considered in the

within-structure processes of future versions of gh-power: (1) suitability

(i.e., the agent’s certainty that a candidate holds all described properties),

(2) relevance, (i.e., the agent’s certainty that reference to a candidate would

not violate, e.g., Grice’s Maxim of Relevance (Grice, 1970)) and (3)

common-sense judgments (here, e.g., the agent’s certainty that a candidate

can be picked up). Note that each of these factors may be used differently:

while a candidate must score highly on all three factors for the search to
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cease, only low suitability will likely result in a candidate’s complete

removal from consideration. Furthermore, to respect the Theory-of-Mind

considerations of the GH, this process must consider the extent to which

the speaker would have been cognizant of each of these factors. We are

currently in the process of developing a new algorithm that takes these

factors into account.

4 Related Work

In the previous sections, we presented our own approach to reference

resolution, and described how it compared to other GH-theoretic

approaches (which had been developed within the context of multi-modal

user interfaces). In this section, we will discuss how our approach relates to

other approaches to reference resolution within robotics. While our

approach is open-world in nature, there has been very little work in that

area2, and thus we will be primarily discussing closed-world approaches to

reference resolution. We will also not discuss approaches that assume that a

unique name (i.e., a rigid designator) is always provided (e.g., (Khayrallah,

Trott, & Feldman, 2015)).

Reference resolution has been a topic of interest in robotics for nearly a

half century, beginning with Winograd’s SHRDLU system (Winograd,

1971). In the SHRDLU system, a simulated robot could be issued an array

of natural language commands in order to move blocks around in its
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simulated environment. Winograd introduced a procedural semantics view

of natural language understanding in which each lexical item was associated

with a short procedure to be executed: adjectives and nouns, for example,

were associated with procedures which considered each entity in the scene

and decided whether or not that entity fit the property denoted by the

lexical item. SHRDLU was also able to perform anaphora resolution:

anaphoric lexical items were associated with procedures that considered the

plausibility of anaphoric reference to each entity in SHRDLU’s world, giving

preference to elements considered to be ‘in focus’ (see also (Mitkov, 1999)).

Decades later, SHRDLU continues to inspire researchers. Gorniak and

Roy, for example, employ a similar approach (Gorniak & Roy, 2004; Roy,

Hsiao, Mavridis, & Gorniak, 2003). In their work, a simpler approach to

anaphora resolution is used, but they make important steps forward in

other respects: whereas SHRDLU’s procedural attachments consulted a

knowledge base populated with hand-assigned symbolic properties, Gorniak

and Roy’s procedural attachments effect the incremental and greedy

application of composable visual models. That is, properties of objects are

assessed by consulting the continuous perceptual features of those objects,

thus grounding internal symbols to the physical world. This thus represents

a solution to the full language grounding problem. In our work, we only

address the reference resolution half of the language problem, leaving the

symbol grounding half to POWER’s distributed knowledge bases. But

unlike Gorniak and Roy’s approach, gh-power is domain-independent,
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and operates in uncertain and open worlds.

Just as Gorniak and Roy incrementally execute procedures associated

with particular lexical items, Kruijff et al. (Kruijff, Lison, Benjamin,

Jacobsson, & Hawes, 2007) incrementally employ a set of comparators that

can make true/false judgments as to whether certain entities satisfy certain

properties. But while Gorniak and Roy focus on grounding, do not address

deixis, and only narrowly address anaphora, Kruijff et al. treat grounding

as a separate process, and address many aspects of deixis and anaphora.

Furthermore, Kruijff et al. use a central symbolic knowledge base that is

informed by subsymbolic perceptual systems, which is not dissimilar from

our own decision to use a set of distributed knowledge bases. Several other

researchers have used knowledge-based approaches similar to Kruijff et al.,

differing in the way in which their knowledge bases are queried.

Lemaignan et al. use semantic parsing techniques to translate

utterances into knowledge base queries.

Lemaignan et al. handle anaphora and deixis to a limited extent:

anaphoric expressions are replaced by the last entity in the dialogue history

that match animacy and gender constraints; deictic expressions are resolved

to the most recent focus of simultaneous eye gaze and gesture. Like that of

Kruijff, this approach does not handle uncertain or open worlds.

Zender et al. take a similar approach, but apply their approach to the

spatial domain of large-scale topological spaces (e.g., rooms and hallways)

rather than the object domain used by all previous approaches (Zender,
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Kruijff, & Kruijff-Korbayová, 2009). Zender et al. also use semantic parsing

techniques to translate utterances into knowledge base queries. As Zender

et al. are specifically targeting references to large-scale locations, they did

not attempt to handle deixis and eye gaze. They do, however, handle

anaphora through a dedicated co-reference resolution3 pre-processing step,

similar to other approaches we will examine.

Meyer, for example, performs co-reference resolution to resolve

anaphora; but this step is tightly coupled with his Markov Logic theoretic

reference resolution system such that anaphoric and other referential

expressions can be resolved as part of a joint model (Meyer, 2013). Deictic

expressions are not handled by this approach, and referents are restricted to

objects.

A slightly different approach is taken in recent work by Chai et

al. (Fang, Liu, & Chai, 2012; Liu, Fang, She, & Chai, 2013; Chai et al.,

2014) (in work distinct from their GH-theoretic approach discussed above).

As dialogue unfolds, Chai et al. build up a graph representing the relations

between discussed entities. When each utterance is heard, Chai et al. use a

graph matching algorithm to find the best partial overlapping region

between the dialogue graph and a separate vision graph representing the

relations between currently observed entities. Anaphora is handled in this

approach by a co-reference resolution pre-processing step; and while deictic

expressions are not discussed in this work, Chai et al. show in earlier work

how gestural information can be integrated into their dialogue graph
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structure (Chai, Hong, & Zhou, 2004). Furthermore, while more recent

publications do not discuss it, older work suggests that they are able to

handle uncertain properties (Fang et al., 2012). The previous approaches

we have discussed assume that sensors provide straightforward true-or-false

judgments on whether entities in the world have certain properties; but in

realistic situated interactions, an agent may not always be certain whether

certain entities in the world hold certain properties. Chai et al.’s approach

begins to address this, by incorporating extent of compatibility into their

graph-matching scoring functions. While Chai et al.’s approach is, like

gh-power, able to handle uncertain properties, it is unable to handle open

worlds.

Another approach that begins to address the uncertain nature of

reality is the Semantic Fields work presented by Fasola and Mataric (Fasola

& Matarić, 2013). In that work, reference resolution at the lowest level is

quite simple: when nouns are used, a knowledge base is examined to

determine whether it contains a unique entity with that label. If so, that

entity is chosen as the target referent. If not, their approach attempts to

disambiguate using semantic field models of spatial prepositions. This

approach does not handle deixis, and seems to be restricted to operation in

environments in which knowledge of objects is provided a priori. It does

handle some anaphoric expressions however, by choosing as the target

referent the most recent entity that matches gender and animacy

constraints (Fasola & Matarić, 2014). While the reference resolution
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portion of this work may not have all the capabilities of other approaches,

and is limited to closed worlds, we believe it would be interesting to

integrate the preposition models used by this approach into the gh-power

framework. It is important to recognize that gh-power is not necessarily

incompatible with all of the examined approaches. Many of these

approaches present innovative ways for grounding or evaluating certain

properties, and as long as these methods can be adapted to produce

probability values, they can be integrated into the gh-power framework.

In contrast to the approaches examined thus far stand a number of

recent Bayesian approaches, which seek to more formally handle

uncertainty. Kennington and Schlangen present an incremental Bayesian

model: as each word in a sentence is heard, the probability of each entity in

a scene being the target referent is modulated based on learned

probabilistic models that associate lexical units with observable

properties (Kennington & Schlangen, 2017). This approach handles deixis

and gaze by linearly combining the probability of reference given the

utterance, the probability of reference given the speaker’s gaze, and the

probability of reference given the speaker’s gestures. Anaphora is handled

by attributing a ‘selected’ property to entities which become selected

through dialogue: pronouns are statistically associated with this property

through the same learning process used for other lexical units. While this

approach does handle uncertainty with respect to the relationship between

words and features, it does not handle uncertainty with respect to the
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relationships between features and objects: each object in the scene has a

set of properties which are known a priori to be true of that object. This

approach is much more cognitively plausible than the other approaches

examined, including our own; and with this cognitive plausibility come a

number of computational advantages, the foremost being the increased

speed of processing inherent to the incremental approach. But this

approach is unable to handle uncertain and open worlds – a limitation that

is not entirely shared by the other Bayesian approaches we will examine.

In the Bayesian Generalized Grounding Graph approach taken by

Tellex and Kollar, utterance structures are used to instantiate probabilistic

graphical models where certain nodes are associated with certain words in

the utterance (Tellex et al., 2011). This approach operates in a manner

similar to our own (c.f. Williams and Scheutz (2015b)). Deixis and gaze do

not appear to be handled in this approach, and like the previous approach,

the uncertainty of objects’ properties is not represented. Anaphora is

handled through a co-reference resolution pre-processing step (Tellex et al.,

2012), and it appears to be usable in an incremental fashion (Manek &

Tellex, 2016). This framework does improve upon previous approaches,

however, in an important way: it is not limited to handling just objects, or

just locations, but handles both. It appears to handle references to any

physically extant entities located at particular points in space. Furthermore,

recent work building on this framework has begun to address open world

resolution. The work by Duvallet et al. allows a robot to hypothesize a new
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object described with respect to another object(Duvallet et al., 2014). This

hypothesization is, however, limited to spatially situated objects. Through

gh-power, we are interested in the hypothesization of not only spatially

situated objects, but other entities such as agents and locations.

Similarly, Chung, Propp, Walter, and Howard (2015) extend

Generalized Grounding Graphs to produce the Hierarchical Distributed

Correspondance Graph approach, which uses utterance structures to

instantiate probabilistic graphical models of a similar form. While this

approach is more nascent, and thus has not been incrementalized and

cannot yet handle deixis, gaze, or anaphora, it improves on previous

approaches in that it begins to pay attention to what entities are

considered. Considering all entities in the world when performing reference

resolution may be feasible when you need only consider a small number of

entities in a visual scene; but it will likely be computationally intractable in

larger, more realistic settings. In Chung’s approach, only the set of entities

matching the correct type indicated by each noun phrase are considered as

possible referents for that noun phrase. We believe that the GH provides a

powerful alternative – in the majority of cases, gh-power need only

consider the limited subset of entities in ACT and the FOA. Like Chung et

al., we are interested in restricting the search space considered during

reference resolution – but through gh-power, we are able to do so under

uncertainty, and in a context-sensitive manner.

Finally, Matuszek, Fitzgerald, Zettlemoyer, Bo, and Fox (2012) present
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an approach similar to both those of Tellex and Kollar, Gorniak and Roy,

and Kennington and Schlangen. In this approach, a semantic parser is

connected to a set of visual classifiers used to identify objects. As with

Kennington and Schlangen, deixis and gaze are handled through a linear

combination of probabilities. Unlike the majority of previous approaches,

however, Matuszek et al.’s approach is able to represent the robot’s

uncertainty in the properties of the objects it detects, based on classifier

confidences. This is an important step towards enabling operation in

natural, realistic settings. Like the majority of previous approaches,

however, Matuszek et al.’s approach is limited to handling references to

objects, and is restricted to operation in a closed world.

5 Conclusion

In this chapter, we began by outlining the language grounding problem, and

its constituent parts: reference resolution and symbol grounding. We then

described gh-power, in which the task of symbol grounding is considered

the purview of the distributed heterogeneous knowledge bases that comprise

long term memory, and in which the task of reference resolution is

performed by a GH-theoretic algorithm that makes use the information

distributed across those knowledge bases. Next, we discussed some

theoretical concerns which provide motivation for future work, and

discussed gh-power in relation to other approaches to reference resolution
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within robotics.

In addition to the modifications proposed in previous sections, there

are a number of directions for future work within our framework. Our

algorithm should be extended to handle references to sets, and references to

non-discrete entities (e.g., vague regions of space). We should integrate

common-sense affordance-based reasoning capabilities (Chambers,

Tanenhaus, & Magnuson, 2004) and incrementalize and parallelize our

algorithm, to come in line with psycholinguistic literature (Eberhard,

Spivey-Knowlton, Sedivy, & Tanenhaus, 1995), similar to previous work

from our lab (Scheutz, Eberhard, & Andronache, 2004) and

others (Kennington & Schlangen, 2017). We are also interested in using

this approach to generate referring expressions in a GH-theoretic manner.

And we are interested in more deeply integrating gh-power with other

components within our architecture (e.g., Vision Processing) so that our

within-structure processes can better account for eye gaze and gesture.

Finally, and more generally, it is our hope that the framework discussed in

this paper will serve as a jumping-off point for much further study of the

interaction of language, memory, and attention, not only for algorithmic

purposes in the development of integrated systems, but for cognitive

modeling purposes as well.
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Notes

1In fact, this form, which is only used colloquially, is the only form in English that

overtly cues the referential status.

2C.f. work in open-world directive grounding (Matuszek, Herbst, Zettlemoyer, & Fox,

2012; MacMahon, Stankiewicz, & Kuipers, 2006), in which natural language utterances

are translated directly into action sequences, bypassing the need to ground constituent

noun phrases.

3A co-reference resolution procedure attempts to identify whether a referring expression

refers to the same referent as a previous referring expression. If so, the new RE is added to

the previous RE’s co-reference cluster ; a unique identifier is used to identify the presumed

referent of each co-reference cluster during subsequent language processing steps.
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