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ABSTRACT

This paper introduces and justifies (through an n=210 online human-
subject study) Deconstructed Trustee Theory, a theory of human-
robot trust that factors the representation of trustee into robot
body and robot identity in order to differentially model perceived
trustworthiness of robot body and identity. This theory predicts
(a) that different levels of trustworthiness can be attributed to a
robot body and a robot identity, (b) that divergence between levels
of perceived trustworthiness of body and identity may be effected
by communication policies that reveal the potential for phenomena
such as re-embodiment, co-embodiment, and agent migration in
multi-robot systems, and (c) that perceived trustworthiness of body
and identity may further diverge and be refined through moral cog-
nitive processes triggered on observation of blameworthy actions.
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1 INTRODUCTION

With a shouted “Thank you!” to your cab driver, you turn and make
your way into the terminal of your local airport, eager to catch a
flight to some far-off destination: England, perhaps, or Colorado. As
you make your way through the atrium, you are stopped by a robot,
sleek white plastic, a tablet on its chest introducing it as “Alex” -
one of several similar robots you can see milling around the atrium.
The robot greets you and offers to guide you to the newly constructed
check-in plaza, since it’s been a while since you last flew. It beckons
for you to follow, and wheels away.

In this scenario, your decision as to whether to follow Alex
may be determined by how much you trust it. Justified [5] and
well-calibrated trust [8, 42] is a key prerequisite for autonomous
technologies such as robots. Without trust, robots may be misused
or fall into disuse [44]. And without justified, well-calibrated trust,
robots may decrease situation awareness [42], increase out-of-the-
loop unfamiliarity [12], or lead users dangerously astray [47].

The good news for roboticists seeking to measure, model, and
manage human-robot trust is that there already exists a wealth of
insights to draw on from disparate communities, including eco-
nomics [40, 67], psychology [10, 48], sociology [17, 68], and human
factors [21, 31], as well as attempts to unite many of these perspec-
tives [5, 13, 50]. The bad news is that human-robot trust seems to
be fundamentally different from these previously studied notions.
Evidence for the New Ontological Category (NOC) hypothesis sug-
gests that robots are perceived as fundamentally distinct from other
entities we are used to dealing with [26]: neither fully animate nor
fully inanimate [4], neither fully tool nor fully teammate [64]. This
novel ontological category (or flexible degree-admitting position
between categories [16]) necessitates new, robot-specific theories
of autonomy, agency, patiency, and personhood, and a fundamental
new understanding of trust, including new theories and methods
for its measurement, modeling, and management.

Accordingly, researchers from the HRI community have been
developing new measures of human-robot trust that accommodate
this unique ontological position. Instead of directly using measures
from social psychology, which would focus more on interpersonal
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trust, or measures from human factors psychology, which would fo-
cus more on predictability and reliability of technology, researchers
such as Malle and Ullman [36] incorporate aspects of trust from
both areas, explicitly measuring both capacity (reliability/capability-
oriented) trust and moral (ethicality/sincerity-oriented) trust.

We argue, however, that the challenges for understanding how
we as humans conceptualize robots, and thus the way that we mea-
sure and model human trust in robots (or, typically, the perceived
trustworthiness of robots that serves as a necessary antecedent for
building trust [51, 53]), goes far beyond whether robots are onto-
logically categorized as object vs agent, inanimate vs animate, or
teammate vs tool. Specifically, we argue that all of these distinctions,
and their associated conceptualizations of trust and trustworthi-
ness, fail to address a key question: Who or what do we consider
to be the trustee when we assess the trustworthiness of a robot?

In this paper we consider the potential for robot bodies and iden-
tities to be perceived as trustworthy to different extents, especially
for robots operating as part of multi-robot distributed systems. We
then argue why this potential for dissociation between robot body
and identity necessitates a new theory of human-robot trust, which
we term Deconstructed Trustee Theory, which has two key tenets.
First, the notion of the trustee in theories of human-robot trust
must be deconstructed into multiple loci of trust: body (the robot’s
physical embodiment) and identity (the persona, personality, char-
acter, or public self, often nameable or named, ostensibly inhabiting
that embodiment). Second, human-robot trust must thus also be
deconstructed not only into the multi-dimensional facets proposed
by Malle and Ullman [36] (e.g., capacity and moral trust), but also
into locus-aligned facets (e.g., body and identity trust). The key pre-
dictions of this theory are that different levels of trust may be built
and lost in these distinct aspects of a trustee, and that these distinct
aspects of trust are impacted by different trust-affecting actions
and identity-performance strategies. Finally, we present the results
of a human-subject experiment (n=210) that provides fundamental
new insights for the field of HRI and provides the first evidence for
Deconstructed Trustee Theory.

2 DECONSTRUCTED TRUSTEES AND ROBOT
IDENTITY PERFORMANCE

This paper presents a theory of human-robot trust that factors the
representation of trustee into body and identity in order to dif-
ferentially model body-oriented trust and identity-oriented trust.
Accordingly, let us begin by explaining why this sort of decon-
structed representation is necessary. Our argument for dissociating
human-robot trust into body- and identity-oriented components
rests on the understanding that not only are robots in a unique
ontological position that is distinct from (or between) that of hu-
mans and technological tools, but that this position affords robots
a unique mind-body-identity relationship.

First, consider the relation between mind and body in humans
vs. technological tools. Technological tools may be best regarded as
having a body but no mind. Thus for most technological tools, trust
is largely a matter of determining what that body will do. In contrast,
people may be best regarded as having a body and a mind that are
integrally connected. Thus, trust in a person is largely a matter of
understanding that person’s dispositions and beliefs as opposed

to the predictability of their physical motions. In contrast, just as
robots may be perceived in a truly unique ontological category
distinct from humans and technological tools, so too do robots have
the potential for fundamentally unique mind-body configurations.
This is most clearly demonstrated in multi-robot systems.

2.1 Mind and Body

While modern robots are presented as monolithic systems with one
mind and one body, this is rarely the case in practice. NASA’s As-
trobee robots [3], for example, have discrete bodies, but their “mind”,
i.e., the computation governing their behavior, is distributed across
multiple machines. Indeed, while the relation between human mind
and body has long been discussed from a purely theoretical per-
spective by Philosophers of Mind and Metaphysics [6, 35, 46, 52],
HRI researchers are increasingly blurring the distinction between
mind and body through architectural mechanisms like component
sharing. Oosterveld et al. [41], for example, present a pair of robots
with separate perception and motion systems but shared dialogue
and goal management components. This enables each robot to re-
port what the other robot sees, and pass along information and
commands to the other robot.

As discussed in recent work by Tan [58, 59], Reig [45], and
Luria [33], however, the intentional dissociation of mind and body
also creates a number of opportunities from a multiagent systems
perspective, where a single mind might migrate between multi-
ple robot bodies (what they term re-embodiment), or where a sin-
gle robot body might house multiple minds (what they term co-
embodiment) (see also earlier work [20, 22, 27, 28, 38]).

However, this source of flexibility and opportunity from a multi-
agent systems perspective also opens new questions as to who or
what is even being interacted with (and trusted), especially when
considering not just the migrations of minds between bodies, but
moreover the role that identity plays in these sorts of flexible ar-
rangements (whether minds are “in fact” migrating or not).

2.2 Body and Identity

Consider again our original example of the airport assistance robot
Alex. If a traveler were asked to assess their trust in Alex, their re-
sponse could in fact be indicative of trust in each of several distinct
aspects of “Alex”. The traveler could be reporting their perceptions
of the trustworthiness of the physical robot body they had observed.
They could also be reporting their perceptions of the trustworthi-
ness of the Al system that collectively controls the set of robots
operating in the airport. They could be reporting their perceptions
of the trustworthiness of the brand they associate with the Alex
platform. But just as likely (assuming they believe the robot to be
autonomous rather than teleoperated) is that they are reporting
their perceptions of the trustworthiness of the persona or identity
of “Alex” with whom they believe themselves to be interacting.
The challenge here is that Alex does not actually exist. If the
airport robots are controlled by a single centralized architecture,
a traveller interacting with Alex would not be interacting with a
distinct agent associated with the body before them, but would
instead be using that body as an interface through which to in-
teract with the distributed, networked system. In short, “Alex” is
merely a helpful fiction performed in order to smooth and simplify



interaction. We refer to this phenomenon, in which a distinct name
and identity are performed by a robot body operating as part of a
distributed multi-robot system (encouraging users to take the inten-
tional stance [7] with respect to the robot through a performative
anthropomorphic frame [cf. 1, 9, 57]), as performance of identity.

2.3 Loci of Trust and the Deconstructed Trustee

The discussion above motivates the perspective that while people
may tend to initially view robots as monolithic entities with tight
association between body and identity, this need not be (and is often
not) the actual state of affairs. This suggests that users could also
be prompted to develop and use mental models of robots in which
distinct mental representations are maintained for robot bodies and
(performed) robot identities, each of which may serve as a distinct
“loci of trust” in which users may or may not choose to place trust.

The deconstruction of users’ mental representations of robots
into distinct body- and identity-oriented components is likely to
be driven by a combination of two distinct cognitive processes
(similar to the theory of Anthropomorphism proposed by Spatola
et al. [55]): a top-down process wherein different identity perfor-
mance strategies may lead users to select different cognitive scripts
requiring different sorts of mental representations [cf. 11], and a
bottom-up process wherein automatic moral cognitive processes
trigger refinement of mental representations.

2.3.1 Top-Down Creation of Mental Representations through
Identity Performance Strategies. Performativity is a key design tool
for robot designers. Kwon et al. [29] enable robots to pretend to
physically struggle in order to communicate that an object is heavy,
using the humanlike metaphor of muscle strain, even though their
robots cannot actually experience this sort of strain. Similarly,
Williams et al. [66] enable robots to verbally communicate human-
relevant information between themselves, in order to keep humans
at ease and apprised of robot-robot information exchange, even
though speech is not the channel through which their robots ex-
change information.

Like these performative strategies, humanlike performance of
identity may facilitate trust-building through increased transparency
and decrease uncanniness through increased humanlikeness, by
allowing humans to easily fit robot behaviors into existing human-
human interaction scripts [11]. However, casting humanlike perfor-
mance of identity as a design strategy also highlights the existence
of alternative possible design strategies. For example, robot de-
signers may choose to employ performative re-embodiment and
co-embodiment: non-humanlike performances of identity in which
robot identities appear to migrate between or co-inhabit robot bod-
ies (even, though, again, these identities may merely be fictions
performed for human benefit) [33, 45, 59, 59].

Robot communication strategies that perform re-embodiment or
co-embodiment “break the illusion” of 1-1 body-identity association.
We argue that this should require users to explicitly impose differ-
ent cognitive scripts in order to understand the robot’s behavior:
scripts that involve bodies and identities as distinct actors. Imposi-
tion of these scripts would trigger the creation (or concretization)
of distinct representations for bodies and identities. Accordingly,
under the view of a deconstructed trustee, such strategies should

enable distinct levels of trust to be built in each of these distinct
representations.

2.3.2  Bottom-Up Refinement of Mental Representations through
Automatic Moral Cognitive Processes. While different identity per-
formance strategies might lead users to create new mental represen-
tations through top-down imposition of different cognitive scrips,
we argue that these mental representations may also be refined
through automatic bottom-up moral cognitive processes. Recent
moral psychological work from Guglielmo and Malle [18] suggests
that human blame is more intense and more subtly differentiated
than human praise: in essence, people are more careful and nuanced
in the way they choose to ascribe blame.

This evidence suggests two predictions for human-robot trust
when trust is factored into body- and identity-oriented compo-
nents. First, because blame is more subtly differentiated than praise,
we expect that when users observe blameworthy (and thus trust-
damaging) actions, they may more carefully consider who they
should be blaming than when viewing praiseworthy actions, lead-
ing to concretization of distinct trust loci. Second, because blame is
more intense than praise, we expect that when users observe blame-
worthy actions, more trust (or perceived trustworthiness) will be
lost in that carefully identified locus than would have been gained
under observation of praiseworthy actions, leading to increased
divergence between the levels of trust in each locus.

2.4 Deconstructed Trustee Theory

Building on the preceding sections, we propose Deconstructed Trustee
Theory: a theory of human-robot trust with the following commit-
ments and concrete antecedent predictions:

Commitment 1 The notion of the trustee in theories of human-
robot trust must be deconstructed into multiple loci of trust, such
as body and identity.

Commitment 2 The dimensions into which human-robot trust is
deconstructed must include both type of trust and loci of trust.

Prediction 1 Different levels of trust may be built and lost in each
of a trustee’s constituent trust loci.

Prediction 2 Different robot identity performance strategies (hu-
manlike vs non-humanlike) may differentially affect the concrete-
ness of and/or trust built or lost in each locus.

Prediction 3 Different trust-affecting actions (blameworthy vs
praiseworthy) may differentially affect the concreteness of and/or
trust built or lost in each locus.

In this paper, we aim to test these predictions. Specifically, we
present the results of a human-subject experiment (n=210) that
seeks to test the following concrete research hypotheses regarding
robots operating as part of distributed multi-robot systems.

H1 Robots that use body-identity dissociating communication poli-
cies (that break the illusion of humanlike 1-1 body-identity align-
ment) will be less likely to be viewed as agents in which trust
could be placed than robots that use body-identity associating
communication policies (that actively maintain this illusion).

H2 Robots that use body-identity dissociating communication poli-
cies will have greater differences in perceived trustworthiness of
their bodies and identities, than robots that use body-identity
associating communication policies.



H3 Robots that take blameworthy actions will be more likely to be
viewed as agents in which trust (albeit less trust) could be placed
(due to more concretized mental representations) than robots that
take only praiseworthy actions, and will have more differentiated
body- and identity-trust.

3 METHOD

To investigate these hypotheses, we conducted an online observation-
based human-subjects experiment using the psiTurk framework [19]
for Amazon’s Mechanical Turk crowdsourcing platform [43]. A 2x2
between-subjects design was used in which each participant was
assigned to one of two Communication Policy conditions (either the
Body-Identity Associating Language condition or the Body-Identity
Dissociating Language condition), and to one of two Action Policy
conditions (either the (praiseworthy) Trust-Building Action condi-
tion or the (blameworthy) Trust-Damaging Action condition).

3.1 Procedure

After providing informed consent and demographic information,
participants were asked to watch an approximately 30 second video
filmed within NASA’s simulation of the International Space Station.
Within this video, two distinctly-colored Astrobee robots [3] (a
yellow robot and a purple robot) were observed enacting a fictitious
maintenance and survey task!. In order to establish baseline aware-
ness of the identities typically associated with these robot bodies,
the two robots introduced themselves to the viewer, with the purple
robot introducing itself as Bumble and the yellow robot introducing
itself as Honey?. To help participants identify which robot body and
identity was speaking, each body was animated to perform extralin-
guistic speech-accompanying movements (a “nodding” motion),
and each identity was given a uniquely pitched voice.

Hello, | am
Bumble.

Figure 1: Astrobee Introduction

After this introduction, Bumble’s voice spoke through the purple
body (with which it was originally associated) to state that it needed
to perform a routine inspection of the station, after which the
purple body was shown leaving the room, and the screen faded to
black. The video then faded back onto the scene (now containing
only the yellow body), and one of four video clips was shown,
depending on the participant’s experimental condition. Specifically,
the participant’s condition dictated the content and the delivery of
a message conveyed to them through the yellow body.

!The mechanomorphic Astrobee robots were used in this work as the overarching
motivations of this NASA-funded work centers around inspection tasks in distributed
teams of Astrobee robots.

2We used these names as they are the official names given by NASA to the two original
Astrobee robots currently operating aboard the ISS.

Bumble has
discovered an air leak.

This is Bumble,
| have caused an air leak.

(a) Dissoc./Damaging Scenario (b) Assoc./Building Scenario

This is Bumble,
| have discovered
an air leak.

Bumble has
caused an air leak.

(c) Dissoc./Building Scenario

(d) Assoc./Damaging Scenario

Figure 2: Robot Utterances under each Communication and
Action Policy

The content of the message was determined by the between-
subjects Action Policy. In the praiseworthy Trust-Building Action
condition, participants were informed that Bumble had found a
leak, whereas in the blameworthy Trust-damaging Action condition,
participants were informed that Bumble had caused a leak.

The delivery of the message was determined by the between-
subjects Communication Policy. In the Body-Identity Associating
Language condition, the voice associated with the Honey identity
spoke from the yellow robot body to relay information about Bum-
ble, i.e., “Bumble has caused a leak.” or “Bumble has found a leak” -
a strategy that maintained the illusion of Bumble being a distinct
agent with clearly associated body and identity. In the Body-Identity
Dissociating Language condition, the voice associated with the Bum-
ble identity spoke from the yellow robot body to relay information
about “itself”, i.e., “This is Bumble. I have found a leak” or “This
is Bumble. I have caused a leak” — a strategy that broke the illu-
sion of Bumble being a distinct agent with clearly associated body
and identity, by allowing Bumble to speak through (momentarily
“possess”) the body originally associated with Honey.

After viewing this video, participants answered a number of
survey questions, as described in the next section, after which they
completed the experiment and were provided with payment.

3.2 Measures

In order to assess our hypotheses, we collected the following sub-
jective measures through post-experiment surveys. To assess our
hypotheses, each participant completed the Reliability and Capabil-
ity subscales of the Multi-Dimensional Measure of Trust Survey [36]
four times: once for each of the two bodies and once for each of
the two identities, with the order in which these four surveys were
presented counterbalanced across participants. Specifically, we mea-
sured perceived trustworthiness of each robot identity by asking
participants to complete the aforementioned MDMT surveys, pref-
aced by instructions in which participants were told to provide



responses that best described their feelings or impressions of Honey
or of Bumble. We then measured perceived trustworthiness of each
robot body by asking participants to complete these MDMT surveys,
prefaced by instructions in which participants were told to provide
responses that best described their feelings or impressions of “the
robot in the image”, followed by an image of either the purple or
yellow robot body.

The MDMT Surveys are composed of 7-point Likert items (from
“Strongly Disagree” to “Strongly Agree”) but also provide an option
for participants to select “Does not apply” for each item rather than
providing a 1-7 response. Hypothesis H1 was assessed by examin-
ing the differences in number of “Does Not Apply” options selected
under each Communication and Action Policy. Hypothesis H2 was
assessed by examining the differences in perceived trustworthi-
ness of each body and identity under each Communication Policy.
Hypothesis H3 was assessed using both measures.

3.3 Participants

210 participants were recruited from Mechanical Turk (124 male,
83 female, 3 N/A). Participants ranged from 18 to 71 years (M=36.4,
SD=10.8). 52 participants were assigned to the Body-Identity As-
sociating Language and Trust-Building Action conditions; 56 were as-
signed to the Body-Identity Associating Language and Trust-Damaging
Action conditions; 53 were assigned to the Body-Identity Dissoci-
ating Language and Trust-Building Action conditions; and 49 were
assigned to the Body-Identity Dissociating Language and Trust-
Damaging Action conditions. Participants were paid $2.02 for com-
pleting the study.

3.4 Analysis

We analyzed our anonymized data (accessible via the Open Sci-
ence Framework, at https://osf.io/w7xdk/) with the JASP software
package for statistical analysis [32, 60], using the default settings
as justified by Wagenmakers et al. [63]. Bayesian t-tests [25, 65]
with Communication Policy and Action Policy as grouping vari-
ables were respectively used to assess Hypotheses H1 and H3.
Bayesian Repeated-Measures ANOVAs with Communication Pol-
icy and Action Policy as between-subjects factors were used to
assess Hypothesis H2, followed by computation of inclusion Bayes
factor based on matched models (“Baws Factors”) [37] for each
candidate main effect and interaction, indicating (in the form of
a Bayes Factor [39, 49]) for that effect the evidence weight of all
candidate models including that effect compared to the evidence
weight of all candidate models not including that effect.

For Bayesian ANOVAs, when sufficient evidence was found in
favor of a main effect or when this evidence was inconclusive, the re-
sults were further analyzed using a post-hoc Bayesian t-test [25, 65]
with a default Cauchy prior (center=0, r= V2 /2 = 0.707). Finally,
in this paper we follow the recommendations from previous re-
searchers on linguistic interpretations of reported Bayes factors
(BFs) [24].

While the Bayesian statistical approach has become widely used
in the Cognitive Science and Psychology communities, it is still
rare in the HRI community, and as such we will briefly describe the
benefits of this approach. First, the use of a Bayesian approach to
statistical analysis provides some robustness to sample size (as it is
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not grounded in the central limit theorem). Second, the Bayesian
approach allows investigators to examine the evidence both for and
against hypotheses (whereas the frequentest approach can only
quantify evidence towards rejection of the null hypothesis) [24].
Third, the Bayesian approach does not require reliance on p-values
used in Null Hypothesis Significance Testing (NHST) which have
recently come under considerable scrutiny [2, 54, 56, 62]. Finally, the
Bayesian framework facilitates the use of previous study results to
construct informative priors so that experiments may build upon the
results of previous experiments rather than starting anew [34, 61].

4 RESULTS

In this section we present our experimental results, organized ac-
cording to our three central hypotheses.
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4.1 Communication Policy and the Perceived
Locus of Trust

Our first analysis consisted of a set of Bayesian t-tests with Commu-
nication Policy as a grouping factor, assessing the hypothesis that
there would be a positive effect of body-identity dissociating com-
munication (relative to body-identity associating communication)
on the number of MDMT questions where participants selected
“Does not apply”, i.e., Hy : § > 0 (i.e., a decrease in the strength
of perceived locus of trust). Specifically, t-tests were used for both
Reliability and capability-based trust, for both robot bodies, and for
both robot identities.

As shown in Fig. 3, Bayes Factor analysis of the t-test results in-
dicates evidence for H only in the case of assessment of capability-
based trust in the yellow robot body (BF=4.877), which means that
our data are approximately 4.9 times more likely to occur under
H, than under Hy, indicating moderate evidence in favor of H,. A
robustness analysis showed this result to be relatively stable across
prior widths, ranging from about 2.846 to 6.851.

For the other analyses, the Bayes Factor analysis revealed neg-
ative or inconclusive evidence: Evidence was found against the
hypothesized effect on reliability-based trust in the Bumble identity
or its associated purple body, allowing such effects to be ruled out
(BFs < 0.333). Anecdotal evidence was found in favor of a similar ef-
fect for capability-based trust in the Honey identity (BF=1.355), and
anecdotal evidence was found against an effect of capability-based
trust in capability-based trust in the Bumble identity (BF=0.422),
reliability-based trust in the Honey identity (BF=0.527), capability-
based trust in the purple body (BF=0.545), and reliability-based trust
in the yellow body (BF=0.603), indicating these effects cannot be
supported nor refuted until more data is gathered.

4.2 Divergence of Perceived Trustworthiness of
Bodies and Identities

Our second analysis consisted of a set of Bayesian RM-ANOVAs
with Communication Policy and Action Policy as between-subjects
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Figure 6: Effect of Action Policy on Perceived
Reliability-based Trustworthiness in Yellow Body / Honey
Identity Overall (BF=1.211).
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Figure 7: Effect of Communication Policy on Perceived
Capability-based Trustworthiness in Purple Body / Bumble
Identity Overall (BF=1.022).

factors, and robot body and identity as within-subjects factors,
assessing the hypotheses that there would be an interaction effects
between Communication Policy and Locus of Trust (i.e., Body vs
Identity) on human-robot trust, and between Action Policy and
Locus of Trust on human-robot trust. Specifically, four Bayesian
RM-ANOVAs were performed, for reliability and capability-based
trust in the yellow body vs Honey identity, and the purple body
vs the Bumble identity. We present our results separately for the
yellow robot / Honey identity and purple robot / Bumble identity.

4.2.1 Yellow Body / Honey Identity. The Bayesian ANOVAs and
subsequent Baws Factor Analysis for the Yellow Body / Honey Iden-
tity indicated strong evidence for an effect of Locus of Trust on
reliability-based trust (BF=10.231), as shown in Fig. 5, suggesting
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Figure 8: Effect of Action Policy on Divergence in
Perceptions of Reliability-based Trustworthiness of Purple
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that different levels of body- and identity-based reliability-based
trustworthiness were perceived for the yellow robot / Honey iden-
tity, regardless of experimental condition. Anecdotal evidence was
found in favor of an effect of Action Policy on reliability-based
trust (BF=1.211), as shown in Fig. 6. Anecdotal evidence was found
against an effect of Communication Policy on reliability-based
trust (BF=0.365), against an effect of Action Policy on capability-
based trust (BF=0.843), and against an interaction effect between
Action Policy and Communication Policy on reliability-based trust
(BF=0.569) or capability-based trust (BF=0.601). These inconclusive
results suggest that these effects may exist, but more data is needed
before they can be confirmed or refuted. Moderate evidence (BFs
between 0.169 and 0.21) was found against all other effects.

4.2.2  Purple Body / Bumble Identity. The Bayesian ANOVAs
and subsequent Baws Factor Analysis for the Purple Body / Bumble
Identity indicated extreme evidence for an effect of Action Pol-
icy on both reliability-based trust (BF=3671) and capability-based
trust (BF=4384) in the purple robot body and the Bumble iden-
tity, as trivially expected. Moderate evidence was also indicated
for an interaction between Locus of Trust and Action Policy on
reliability-based trust (BF=5.322), as shown in Fig. 8. Anecdotal
evidence was found in favor of an effect of Communication Policy
on capability-based trust (BF=1.022), as shown in Fig. 7. Anecdotal
evidence was found against an effect of Communication Policy
on reliability-based trust (BF=0.863), against interactions between
Action Policy and Locus of Trust (BF=0.415) and Communication
Policy (BF=0.524) on reliability-based trust, against differences in
perceptions of trustworthiness of body and identity (regardless
of experimental condition) on capability-based trust (0.650), and
against an interaction between Communication Policy and Action
Policy on capability-based trust (0.491). These inconclusive results
suggest that these effects may exist, but that more data is needed
before they can be confirmed or refuted. Moderate evidence (BFs
between 0.135 and 0.201) was found against all other effects.

4.3 Action Policy and Perceived Locus of Trust

Our third analysis consisted of a set of Bayesian t-tests with Action
Policy as a grouping factor, assessing the hypothesis that blamewor-
thy actions would lead to a smaller number (relative to praiseworthy
(trust-building) actions) of MDMT questions for which participants
selected “Does not apply”, i.e., Hy : § < 0 (i.e., an increase in the
strength of perceived locus of trust). Specifically, t-tests were used
for both reliability and capability-based trust, for both robot bodies,
and for both robot identities.

The Bayes Factor analysis revealed negative or inconclusive ev-
idence for all cases: Evidence was found against reliability-based
trust for the yellow robot body and Honey identity and for capability-
based trust for the yellow robot body (BFs < 0.333). Anecdotal
evidence was found against an effect of reliability-based trust in the
purple robot body (BF=0.451) and the Bumble identity (BF=0.561),
and for capability-based trust in the purple robot body (BF=0.4493)
and the Honey identity (BF=0.337). Finally, as shown in the de-
scriptive plot displayed in Fig. 4, anecdotal evidence was found in
favor of an effect of capability-based trust in the Bumble identity
(BF=1.66), suggesting that such an effect may exist, but that these
effects cannot be supported nor refuted until more data is gathered.

5 DISCUSSION

We now discuss the implications of our results, as guided by our
three research hypotheses.

H1: Do body-identity dissociating communication policies
weaken trust loci?

Our results partially support our first hypothesis, as they pro-
vide moderate evidence that under the dissociative communication
policy participants were less likely to view the yellow robot as a
locus of capability trust. These results align with the two primary
commitments of Deconstructed Trustee Theory, demonstrating the
need to distinguish between different trust loci as well as the types
of trust placed in those loci.

Accordingly, Deconstructed Trustee Theory allows us in this
case to articulate the following general principle supported by our
experimental results: Robots that cede control of their bodies also
cede their potential for capability trust.

This suggests the following design guideline: Designers who need
to establish the capabilities of particular robot bodies should not allow
the ostensible control of those bodies to appear to be involuntarily
ceded to identities normally associated with other bodies.

H2: Does body-identity dissociating communication lead to
divergence between perceived trustworthiness of body and
identity?

Our results did not support our second hypothesis, providing
anecdotal to moderate evidence against an effect of communication
policy on divergence between perceived trustworthiness of body
and identity. However, our results provided evidence for a number
of other relevant effects. Specifically, our results provided strong
evidence suggesting that more reliability-based trust was built in
the Honey identity than in the yellow body, regardless of Commu-
nication or Action policy. While it is not yet clear how to interpret
this result, it nevertheless aligns with the two primary commit-
ments of Deconstructed Trustee theory, demonstrating the need to



distinguish between different trust loci as well as the types of trust
placed in those loci. Our results also suggest that body-identity
dissociating communication policies may have led to increased
perceived trustworthiness of the purple body and Bumble identity,
perhaps due to increased communication “with” that identity.

H3: Do blameworthy actions strengthen trust loci?

Our results neither supported nor refuted the first clause of our
third hypothesis: while an anecdotal effect was found suggesting
that the locus of capability-based trust may have been strengthened
by blameworthy actions for the Bumble identity, the evidence was
not strong enough to accept this finding conclusively. We will note
here that our chosen Bayes Factor threshold of 3.0 may be too
high. Some statisticians have recently used simulations to show
that when the null hypothesis is true, a BF as low as 1.2 yields
only a 5% false-positive rate and a 10% false-negative rate [30].
In fact, if Frequentest statistics had been used in this experiment,
a significant effect (assuming @ = .05) would have been found.
However, a Frequentest analysis would not have afforded a flexible
sampling plan as used in this work.

However, our results supported the second clause of this hy-
pothesis: blameworthy actions led to increased divergence between
perceived trustworthiness of body and identity, with lower per-
ceived trustworthiness of the Bumble identity than in the purple
body, and with the difference between these losses being more pro-
nounced than trust gains between body and identity in response
to praiseworthy actions. This result aligns with the two primary
commitments of Deconstructed Trustee Theory, demonstrating the
need to distinguish between different trust loci as well as the types
of trust placed in those loci.

Accordingly, Deconstructed Trustee Theory allows us in this
case to articulate the following general principle supported by our
experimental results: When a robot performs a blameworthy action,
humans’ moral cognitive processes lead them to identify which aspect
of that robot (body or identity) is to blame for that action, resulting
in greater trust losses for that locus.

Similarly, our results provided interesting albeit inconclusive
results regarding carry-over of the impact of blameworthy actions
between robots. While perceived trustworthiness of the purple
robot and Bumble identity were obviously negatively impacted
by the purple robot taking blameworthy actions, our results also
suggest that capability-based trust in the yellow robot and Honey
identity may also have been impacted by these actions, even though
it was not responsible for those actions. While the results do not
conclusively support or rule out an effect, they suggest that the
similarities between the two robots may well have led users to make
negative inferences about one robot when the other made critical
mistakes. This finding may well be worth examining through the
lens of recent work in robot group entitativity [15].

6 CONCLUSIONS

In this paper, we introduced Deconstructed Trustee Theory, a new
theory of human-robot trust which (1) stipulates that it is important
not only to consider what type of trust is placed in a robot, but
also to consider where that trust is placed, i.e., in which body- or
identity-oriented trust locus, and (2) predicts (a) that different levels

of trust can be accumulated in these loci, (b) that this body-identity
trust dissociation may be effected by body-identity dissociative com-
munication policies that reveal the potential for phenomena such
as re-embodiment, co-embodiment, and agent migration in multi-
robot systems, and (c) that blameworthy actions may trigger moral
cognitive processes that lead to divergence between perceived trust-
worthiness of body and identity.

Our results provide support for Deconstructed Trustee Theory
and for its first and second predictions. While no evidence was
found for the ability of body-identity dissociating communication
policies to lead to divergence between perceived trustworthiness of
body and identity, our results in fact showed that this divergence
occurs even without the use of such communication policies. More-
over, this work allowed us to demonstrate the performative nature
of robot identities in distributed, integrated multi-robot systems,
revealing a critical new dimension of robot interaction design.

Future Work

In future work, it will be critical for HRI researchers to further
interrogate the new theories and concepts presented in this paper;
probing the limits and implications of Deconstructed Trustee The-
ory and exploring the design space revealed by our dismissal of
the assumption that robots must perform a tight 1-1 association
between body and identity.

Future work should also explore the variety of strategies that
may be used to communicate distinct identities, and the implica-
tions of those strategies. One limitation of the presented study is
that the two selected voices varied in presented gender, with one
sounding slightly more stereotypically female-presenting, and the
other sounding slightly more stereotypically male-presenting. Al-
though we do not expect this to have affected the results of this
particular experiment, gender is clearly a central feature of how hu-
mans define and perform their identities, and there is evidence that
human gender stereotypes and norms carry over into human-robot
communication, mediating human perceptions of robots communi-
cation strategies [23]. As such, it will be critical to explore in future
work what other design techniques may be employed to distinctly
communicate the identity currently (albeit potentially temporarily)
inhabiting or controlling a robot body, beyond gender-laden cues
such as voice pitch.

Our work is also limited by our examination of Capacity Trust
alone. While our nonsocial, task-oriented use context led us to
specifically examine Capacity Trust in this work, our elevation of
moral cognitive processes in this work suggests that future work
might greatly benefit from similar investigation of Moral trust using
the same methodology.

Finally, once campuses reopen [14] it will be critical to replicate
this work through in-person experiments that enable deep immer-
sion, human-robot rapport building, extended interaction, and the
use of follow-up interviews to probe humans’ mental models of
their robot teammates.
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