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ABSTRACT

Human-Robot Interaction (HRI) seeks understanding, designing, and evaluating of robots
for human-robot teams. Previous research has indicated that the performance of human-
robot teams depends on human-robot trust, which in turn depends on appropriate robot-
to-human transparency. In this thesis, we explore one strategy for improving robot trans-
parency, proactive explanations, and its effect on the human-robot trust. We also introduce
a resource management testbed, in which human participants engage in a resource manage-
ment exercise while a robot teammate performs an assistive task. Our results suggest that
there is a positive relationship between providing proactive explanations and human-robot

trust.
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CHAPTER 1
INTRODUCTION

1.1 Human-Robot Trust

Human-Robot Interaction focuses in part on understanding, designing, and evaluat-
ing robots for human-robot collaboration tasks. Previous research has demonstrated that
human-robot team performance depends on human-robot trust. Billings et al. introduce that
the definition of human-robot trust refer to “exprectations, confidence, risk or uncertainty,
reliance, and vulnerability” [1]. Previous studies suggest that human-robot trust in robots
can be influenced by the task performance of a robot [2]. Human-robot trust may encourage
or discourage people to use automation [3] and operators’ trust is positively related to the
use of automation. Human teammates must accept and trust their robot partners to have
successful interactions [4]. Human-robot teams tend to have undesirable performance when
human-robot trust is either too low or too high, which means that human-robot trust must
be maintained at an appropriate level rather than directly maximized [5]. One key factor in
establishing human-robot trust is the transparency of robots’ internal beliefs, desires, and

intentions [6].
1.2 Transparency and Trust

One way to achieve an appropriate human-robot trust is by designing robots that exhibit
an appropriate level of transparency [7, 8]. It will help a human user to believe in a robot’s
capability and its ability to perform adequately for a certain type of task if the design of the
robot is clearly explained to the user. Earlier findings suggest that improving transparency
may minimize misunderstanding and confusion in a human-human interaction by considering
the methods, such as verbal input, body orientation, facial expression, and eye behavior [9].
The same theory may also apply to human-robot interaction: two principal methods to

improve the transparency of an autonomous system for a human participant are through



non-verbal or verbal communications. Wortham et al. [10] show that a simple real-time
visualization of a robotic system can help a human to understand the design of the robot.
Researchers have also developed a human-like verbal communication system for robots to
improve transparency for human-robot interaction [11].

Non-verbal communication is able to positively increase human understandability of
robots to improve human-robot task performance [12]. Non-verbal communication within a
human-robot team can be divided into two types, which are explicit and implicit [12]. For
explicit communication, an autonomous system deliberately informs the receiver about its
goal of sharing information. For example, a robot may move around and point to a particular
object to notify humans. Similarly, explicit non-verbal communication can also direct a hu-
man’s attention during human-robot conversation. An example of implicit communication,
on the other hand, is that a human can implicitly recognize a robot’s current interests by
monitoring the robot’s gaze. Breazeal et al. [12] suggests that the transparency of a human-
robot interaction can be improved by giving implicit non-verbal communication. Explicit
non-verbal communication can benefit a human-robot team because it informs humans of
the reason for the robot’s action. Implicit non-verbal communication can also improve the
efficiency and robustness of the HRI.

Another method of improving transparency of human-robot teamwork is through human-
like verbal communication. The next section provides more information about giving verbal

communication within a human-robot team.
1.3 Explanation Generation

Non-verbal communication can positively affect transparency within a human-robot team.
Ultimately, human-robot trust will be increased by a high level of transparency. This can
be accomplished through dialogue strategies such as explanation generation.

Sridharan et al. [13] discuss that there are different ways to formulate explanation gener-
ation. Sridharan divides existing approaches of explanation generation into two classes. The

first class is to use minimal heuristics with elaborate system descriptions and observations



of system behavior to generate explanations, such as Answer Set Programming (ASP) [14].
Another class is to depend more on heuristics to provide explanations, such as the method
that is introduced by Meadows et al. [15].

In this thesis, we specifically consider differences between two types of explanations:
proactive explanations and reactive explanations. Reactive explanations are explanations
generated in reaction to a request for explanation from a a human teammate, to help users
understand past robot actions. Previous studies on robot explanation generation have mainly
focused on these sorts of explanations that are provided by robots on demand. In contrast,
little work has been performed on proactive explanations: explanations that are generated
before an action is performed. This provides information to human users so that they can
understand the actions taken by these automation systems. One challenge of generating
proactive explanations is to avoid communicating too much information, which may over-
load users [16]. Hence, explanations generated by a robot will need to provide accurate
information for users without unnecessary details about the robot’s actions.

We further divide proactive explanations into two categories that differ according to the

level of information provided.

e ‘What’ Proactive Explanation: The first type of proactive explanation is to give
explanations that only inform the user of what the robot is going to do. For example,
a navigation robot can inform the user about its next turn by stating that it is going

to make a turn.

e ‘Why’ Proactive Explanation: The second type of proactive explanation will notify
the user of both what the robot is going to do, and why the robot is going to do it. For
example, a navigation robot will tell the user about its next turn and why it is making

that decision (traffic issue, shorter path, etc).

The ultimate goal of our study is to understand the effects of proactive explanation on

human-robot trust. In addition, we wish to understand how different types of proactive



explanations influence human-robot trust separately. Another important question we would

like to answer is whether human monitoring of a robot is related to human-robot trust.
1.4 Contents and Contributions of This Thesis

This remainder of the thesis is organized as follows:

Chapter 2 presents further related work that informs our approach. The background
section discusses the categories of human-robot interaction and relevant works in human-
robot trust.

Chapter 3 introduces the resource management testbed we designed and used for this
human-subject study. Chapter 4 presents the design and results of a human-subject study
conducted to answer our research questions.

Chapter 5 and Chapter 6 give the discussion and conclusion from the results of this
study. Our study suggested that there is a positive relationship between providing proactive
explanations by robots and an increase of human-robot trust. Finally, we discuss directions

for future work.



CHAPTER 2
BACKGROUND

2.1 Human-Robot Interaction

Human-robot interactions can be categorized into two main types [17]. The first type
is remote interaction, in which the locations of the human and the robot are not the same.
For example, researchers from Arizona State University simulate a remote human-robot
interaction for an urban search and rescue (USAR) task [18], in which a participant interacted
with a simulated Nao robot without being in the same location. As another example, a mobile
robot was designed and implemented as a teleoperated tool for remotely accessing objects
on requests by a remotely located operator [19]. The second type of interaction described
by Goodrich is proximate interaction in which the human and the robot stay in the same
location during the interaction. Most research in HRI focuses on proximate interaction.
For example, Tran et al. [20] presented work on mixed-reality HRI in which a participant
interacts with the Pepper robot while wearing a Microsoft HoloLens in the same room. In
this work, we focus on proximate human-robot interaction.

Proximate HRI can be categorized into three approaches as follows: [21]:

1. Robot-centered HRI: This category of HRI focuses on the view of an autonomous
system as the main entity that is acting based on its own decisions and motivations.
Human-robot interaction serves to help the robot to meet its needs. For example, a
robot may politely ask a person to open a door for the robot in order to deliver an
important document. In this case, the human-robot interaction (a person opens a
door for the robot) serves to achieve the robot’s goal (to deliver a document to the
destination). As another example, a group of researchers from Harvard investigated
human-robot overtrust [22] by placing a robot outside a student residence hall and let

the robot to request students for access. In this experiment, the robot is the main



2.2

entity to ask people (students) to open the door for it.

. Robot Cognition-centered HRI: This category of HRI emphasizes that a robot

should be treated as an intelligent system that solves problems by making it own
decisions for a specific application domain [21]. Robot cognition-centered researchers
focus on designing robots with an appropriate level of cognitive capacity [23]. For
example, a study recently introduced a self-driving robot that could properly climb a

mountain path with a deep convolutional neural network [24].

Human-centered HRI: This view of HRI mainly focuses on developing and designing
an autonomous system that can work with a person or a group of people in a manner
that is pleasant to human teammates. Researches in this area study the relationship
between human perceptions of robots and their actions [21]. Previous studies introduce
the importance of designing a robot that is safe and friendly for humans [25]. Since
robots are more and more commonly used in public workspaces, such as hospitals |26,
27], restaurants [28, 29], and colleges or schools [30], there are extraordinary demands
of social robots to interact with human and make them feel comfortable to work with
the robots. From this point of view, the design of robots should pay attention to
robots’ usability, acceptability, and believability [23]. Our work focuses on human-
centered HRI in order to develop robots that can work with people more efficiently

and effectively.

The Use of Social Robots

Much of human-centered HRI comes from the area of Social Robotics. Previous work

has defined social robots as autonomous systems developed to interact with human beings

socially or to provide social responses in a natural way [31]. In other words, a service

robot is designed to support a human-like interaction [32]. There are many applications of

using a social robot as a social agent, who interacts with humans in a human-like way. For

example, Satake et al. [33] proposed a model which allows an autonomous system to initiate



conversations with consumers who are walking in a shipping mall. The robot they used in
the study, Robovie, is designed to give human-like expressions. One of the key findings from
the work is that robots need to guess people’s behavior, such as willingness to interact with
the robot in a public environment. Hence, the design of a social robot has to consider not
only the robot’s performance and ability but also its social or communication skills with
humans. Social robots have become more and more popular the everyday environments.
While robots were previously limited to industries or labs for research purposes, service
robots or social robots are now being used in many fields to enhance the quality of human
lives. The number of service robots exceeds the number of industrial ones in 2008 according
to the World Robotics Survey [34], which was provided by the International Federation of
Robotics (IFR).

Social robots are being used in education. Mubin et al. [35] present that educational
robotic systems are developed to provide social supportive behaviors in the learning activities,
such as language, science, and technology educations. In this work, robots are categorized
into three different roles with an associated case study. The three roles of robots in educations
are a tutor, a peer, and a tool. Saerbeck et al. implemented a tutor robot to help students
with a language learning task [36]. The results in the study suggest that the robot tutor iCat,
which is developed by Philips Research, improved the young students’ learning performance.
Han and Kim [37] propose that using robots as a teaching peer by praising students can
effectively motivate students’ willingness to learn.

Robots have also been used specifically for science learning activities. Students interacted
with a robot playing an game to learn arithmetic [38]. The robot tutor dynamically adapts
the complexity of the assignments based on the learning outputs of the student. To use a
robot as a peer, an android robot SAYA and a human-like robot RoboThespian collaborate
with two sixth grade classes to work on science assignments [39]. Robots are also treated as
tools to teach students about science-related topics. Church et al. [40] described a robotic

system to enable high school students to learn physics. In addition, Mubin et al. [35] gave



instances of using robotic systems in technology education. Preceding work describes a Bee-
bot programmable toy as a tool to help young kids to develop excellent problem-solving
skills for the advanced technology [41]. Robots can play an important role in education to
motivate students, eventually improving students’ learning performance.

Robotics have also been used in the context of urban search and rescue (USAR). The
purpose of USAR is to locate stranded victims and provide initial medical support to those
trapped under a structural collapse. Robots designed for USAR can enter disaster envi-
ronments, which are either too dangerous for rescue personnel or too small for a human to
enter [42]. The most famous example of using robots for an urban search and rescue mission
is the 2001 World Trade Center (WTC) collapse [43]. From September 11 until October 2
2001, mobile robots were used to provide supports for the disaster. There are four main
targets for rescue robots. The first is to locate the victims and report their locations back to
the rescue center. The second is to find optimal paths in the building for a more expeditious
excavation. The third is to inspect the collapse. Finally, the robots work to detect any
harmful or poisonous gases or materials by sensors.

Intelligent hospital service robotic system becomes another innovative area for interactive
robots. The goal of assistant robots in hospitals is to save human resources to improve
hospital efficiency [44]. Takahashi et al. [26, 45] implemented a transport robot in a hospital
in Hong Kong. The omnidirectional mobile robot has a truck to transfer important specimens
and other supplies. Another case study of a transport robot in hospitals is introduced by
Ljungblad et al. [46] who use a mobile robot to deliver goods and blood samples in a semi-
public hospital environment.

Although there are numerous applications of social robots, the common design of robotic
systems is to interact with human beings to finish human-robot tasks. In other words, a
service robot is expected to perform and act in a human-like fashion to interact with a
real person. Service robotic systems are designed to understand human requests, provide

suitable solutions to meet human needs, and improve the work efficiency of a human-robot



team. Therefore, the study of human-robot interaction becomes crucial for the design of

modern robots.
2.3 Common Metrics in Human-Robot Interaction

Steinfeld et al. [47] introduce common metrics for evaluation across a large-scale range

of human-robot tasks and studies, including:
2.3.1 System Performance

System performance focuses on how to evaluate a robot-human team performance instead
of a task-specific performance. The metrics of system performance contains three subareas.
The first type is the quantitative performance, which measures the effectiveness and efficiency
of the human-robot team for a human-robot task. The definition of the effectiveness of a
human-robot team is the percentage of the human-robot task that was finished with the
designed autonomous systems. For example, a navigation robot is designed to guide a
person from place A to place B. The robot fails to finish the task by only guiding the person
to arrive at the destination. The human teammate has to intervene 20% of the task time
to help the robot to finish the task. Therefore the system only has 80% effectiveness. This
metric can be calculated by using the number and duration of human interventions for a
human-robot task. Another important metric for quantitative performance is efficiency. The
amount of time spent to accomplish a task represents the efficiency of a robot. The number
of completed tasks can also be used to compute the efficiency of a human-robot team.

The second sub-metric of system performance is subjective ratings. Subjective ratings
are used in addition to quantitative measures of the performance of a human-robot team.
The same navigation robot can be used as a great example to explain this concept. In
addition to the efficiency and effectiveness of guiding a human teammate to a destination,
the quality of the selected path or route is also valuable for the system performance.

The last sub-metric is the appropriate utilization of mixed-initiative, which is one of the

main challenges in task-oriented HRI. A robot is required to maintain more self-awareness



and awareness of their human teammate. The recommended measures are the percentage of
commands requested by a robot or a human and the number of unnecessary interruptions
of the human teammate. Consequently, the ability to self-regulate who possesses initiative

is crucial for a human-robot team.
2.3.2 Operator Performance

The second common metric is the evaluation of an operator’s performance. Operator
performance has three factors: situation awareness (SA), workload, and accuracy of mental
models of device operation. Operator situation awareness is categorized into three levels [48].
The first level of situation awareness is a perception of items in the surrounding environment.
The second level of SA is the comprehension of the noticed items. The third level is to project
the future of the items. Endsley [49] proposes a well-known measurement tool, called the
Situation Awareness Global Assessment Technique (SAGAT), for evaluating operator SA.
Other than operator SA, operator workload is another significant measurement for a human-
robot team. The workload can be assessed by relating operator cognitive load to their SA.
Hart and Staveland [50] introduce a multi-dimensional rating scale to estimate the human

workload. The assessment technique is known as the NASA-Task Load Index (NASA-TLX).
2.3.3 Robot Performance

Three aspects can be considered to evaluate the performance of a robot for a human-
robot task. The first measurement is to obtain a robot’s self-awareness, which is the ability
of a robot to evaluate itself. Self-awareness plays a very vital role to influence the efficiency
of human-robot interaction. When a robot has less awareness of its capabilities to complete
a certain task and fails to report its potential troubles to its human teammate, the human
has to take more time to monitor the robot’s condition to prevent system failures. The
following characteristics of a service robot are proposed to increase a robot’s self-awareness.
First, the robot should understand its intrinsic limitations, which include the limitation of

sensors connected to the robot. Second, the robot should be able to self-monitoring and
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identify its system failures. Finally, the robot with high self-awareness should be responsible
for recovering from errors.

Human awareness is another relevant aspect of the robot’s performance. Drury et al. [51]
present a HRI awareness framework to define the need for a robot’s human awareness. From
this framework, autonomous systems have to acknowledge humans’ commands for direct
interaction between robots and a group of individuals. The HRI awareness framework also
proposes a metric to assess human awareness by counting the number of awareness violation,
which is when the robot fails to provide needed information.

The performance evaluation of an autonomous system should also examine the robot’s
autonomy, which is the ability of a service robot to operate without helps from human
operators. The common metric for measuring autonomy is by applying the notion of neglect
tolerance [52]. Neglect tolerance is a measure of how a robot’s effectiveness drops below a
desirable level of performance when the operator is neglecting the robot.

As Steinfeld et al. [47] mentioned in the performance evaluation of a robot, a robot’s self-
awareness can affect human interventions and monitoring of the robot. A human operator
may spend more time on checking the robot’s current status and conditions if a robot has
low self-awareness to report its errors to the human operator. In other words, the robots
can deliberately provide explanations to the operator about its status to decrease the human
monitoring of the robot. In this thesis, we present a human-subject study to understand the
relationship between human monitoring and proactive explanations. Based on our research,
no previous study in HRI proposes that the human monitoring of a robot is related to
explanations by robots. Therefore, we explore the relationship between human monitoring
and proactive explanation to confirm whether human-robot trust is correlated to human

monitoring of autonomous systems.
2.4 Basis of Human-Robot Trust

As robots are designed to work with people, human-robot trust plays an important

role in a human-robot team to accomplish its goal. It is more necessary to consider the

11



effect of human-robot trust in robots during high-risk tasks. Robots can be used to enter
dangerous areas that are too small or unsafe to humans to rescue others during an emergency
situation [42]. In high-risk situations, people tend to have significantly less interest in working
with poorly performing robots [53]. Meanwhile, Salem et al. [54] suggest that a robot’s
performance does not affect human decisions to accept or reject its requests. The nature
of a robot’s requests has a significant effect on human teammates’ decision to obey its
instructions. There are other factors can describe the basis of human-robot trust. These
characteristics can be divided into three major classes [55]. The first type is the ability [56]
and expertise [57] of a robot. Another type is the performance of a robot. Competence [58]

and reliability [59] of a robot can also influence human-robot trust.
2.5 Human-Robot Trust Measurement

There are a large number of previous research studies focused on human-robot trust mea-
surement [55, 60-65]. One of the most commonly practiced methods of measuring human-
robot trust within a human-robot team is using self-report measures. Jian et al. [66] proposed
a trust survey to assess human-robot trust in autonomous systems, which become more and
more popular in our daily life. Jian et al. performed a three-phased human-subject exper-
iment relating human-robot trust in other people or robotic systems. Another well-known
trust scale proposed by Schaefer [60] is a 40 item trust scale, which was proved to be more
accurate than Jian’s work. The 40 item trust scale generally take between five to ten min-
utes to finish. A 14 item sub-scale of the 40 item scale is introduced by Schaefer. Schaefer
compared the performance of these two types of scale with Jian’s work. Both 14 item and
40 item trust scales successfully represent the human-robot trust change between pre- and

post-interaction [60], while Jian’s trust survey failed to measure the trust change.
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CHAPTER 3
RESOURCE MANAGEMENT TESTBED

In order to assess our research questions, we require an experimental testbed that meets
the following three requirements. The first requirement is that participants and robots must
be co-located in the same room. This will enable a proximate human-robot interaction, in
which the robot is physically embodied and can be treated as a real teammate. Previous
research suggests that it is difficult to assess the social and cognitive aspects of human-robot
interaction [17] when robots are not physically co-located with their human teammates. The
second requirement is that the testbed must include a robot that the human teammate is
depending on to perform a portion of their shared task. Moreover, these task-relevant actions
must be observable and understandable by the robot’s teammate, so that the teammate has
the motivation to physically monitor the robot’s actions in order to know what the robot
is doing and how it contributes to the human-robot task. The third requirement is that
the testbed must also require the human to perform a portion of the shared task in order
to ensure task success. This requirement prohibits human teammates from monitoring the
robot consistently, because they must spend the majority of their time on their portion of
the shared task. In this chapter, we present an experimental testbed designed to satisfy
these three requirements.

In order to study the effect of proactive explanations on human robot trust, we had
participants engage in a resource management task with the help of a robot, in which partic-
ipants spend different types of resources while exploring an environment. The robot behind
the player was responsible for “collecting” these resources. Figure 3.1 displays the user in-
terface design of the resource management testbed. For the resource management testbed,
a participant partners with a turtlebot robot, which consistently collects resources for the

human player. The player’s goal is to consume the collected resources efficiently by pursuing
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all found resources request blocks, which can be found on the board. The user can manu-
ally determine which type of resources is most needed and directly make a request to the
robot to collect this resource type. However, the robot also autonomously decides to collect
different types of resources on the user’s behalf, depending on the resources that it believes
are most needed. In this task context, proactive explanations can be used to explain these
autonomous decisions to the human teammate.

As shown in Figure 3.2, the red circle represents the player’s current location. The
participant can move around by clicking on the yellow squares. They can also move to any
visited cells in any direction by selecting the teal cells. Light gray cells indicate cells that
are visible based on the current location with potential resources. Some dark gray cells are
undiscovered and can be discovered as the player moves around the board.

Resources are dynamically distributed throughout the environment as the user explores,
according to a pre-defined resource distribution policy. The general idea of the distribution
algorithm is to allocate more blocks of a certain type of resource in the early portion of
the task and to distribute fewer blocks of the same type of resource in the latter portion of
the task. Table 3.1 presents the number of resource blocks in each color. Each cell holds
two resource blocks. We expect a human player to request more red resource blocks at the
beginning of the task. For the last 10 resource blocks, Table 3.1 shows that only one block
is assigned to be in red and more blocks in pink are requested. Early in the task, more red
blocks are needed, whereas later in the task, more pink blocks will be needed.

After the player moves from one cell to another, a simple math question will pop up for
him or her to solve (designed to keep the user’s attention on the resource management game,
rather than the robot situated behind them). The participant will need to type the correct
answer to the math problem to keep moving forward. Figure 3.1(a) gives an example of a
math question during the task. Here, the different colored blocks represent different types
of resources. If the user has enough resources to clear the blocks in an occupied cell, the

resource request blocks on the square will turn black to indicate that resources have been
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successfully spent to clear that block. An example of successfully cleared resource request
blocks can be seen in Figure 3.1(b). To cancel out a whole cell, the player will need enough
resources for both request blocks within the cell.

The resources needed to clear blocks on the user’s screen are collected by the user’s robot
teammate. As shown in both Figure 3.2(a) and Figure 3.2(b), on the right side of the testbed
interface are monitors to show the player the range of each resource being collected. These
allow the user to determine for themselves which resources are in short supply, but do not
allow them to explicitly determine which resource is currently being collected. In order to
determine which resource is currently being collected, the user must physically turn their
body around to observe the robot and determine which it is collecting (a process we describe
later on when describing our human-subject experiment).

The robot determines which resource type to collect through two different processes First,
the user may selecting a button located on the right side of the testbed interface to command
the robot to collect a particular type of resource. Second, the robot will periodically decide
autonomously to switch to collecting a different type of resource that it believes is more

critically needed, as decided by a resource selection algorithm.

Table 3.1: Pre-defined Resource Request Blocks Distribution

Red | Pink | Orange | Blue
5 Cells 4 1 2 3
10 Cells | 3 2 1 4
15 Cells | 2 3 4 1
20 Cells 1 4 3 2

3.1 Resource Selection Algorithm

A resource selection algorithm is designed and implemented to help the robot to deter-
mine which type of resource is most needed with the least collected amount. The selection

algorithm calculates ratios between the number of collected resources and the number of
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resource blocks on the board for each type of resource.

collected qopor

(3.1)
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The turtlebot will pick the resource type with the smallest ratio value (Equation 3.1),
which implies that the type of resources is most needed with the least collected amount. The
collection algorithm allows the turtlebot robot to dynamically make the optimal decision
during the resource management task. More information about the implementation can be

found under Section 3.2.4.
3.2 Software Architecture

The next sections describe the software architecture of the resource management testbed.
The resource management testbed was implemented using the Agent Development Environ-
ment (ADE) [67], through a total of seven Java classes that are together utilized by the

Resouce Management Game ADE Component:

e ResourceManagementGameComponent.java: The main method of the resource man-

agement component. This class is integrated as an ADE component.

e ResourceManagementGameComponentImpl.java: The implementation of ResourceM-
anagementGameComponent.java contains the methods to communicate with other
ADE components, such as turtlebotcomponent, which is used to control the move-

ment of a turtlebot robot.

e AudioPlayer.java: The class is used to play pre-recorded wav files for proactive expla-

nations and welcome sentences.

e Board.java: The GUI of the board for the resource management task plays a crucial
role to build other GUIs. The resource distribution algorithm is implemented. The

method of pop up math questions is also included.

e BoardCell.java: The GUI of each board cell within the board.
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e Resource.java: The GUI of resource request blocks.

e ResourceCollectionAlgorithm.java: The class of pre-defined resource collection algo-

rithm maintains the amounts of each type of resources.

e ResourceMonitor.java: The GUI of the monitoring system with buttons for the user to

make requests for the turtlebot robot to collect different types of resources.

e Player.java: The GUI of the player is represented as a red circle on the board.

The following sections include more details about the implementation of each of the ADE

components used in this implementation.
3.2.1 Resource Management Component

The resource management component is integrated with the Java-based Agent Develop-
ment Environment (ADE), which already includes Components for controlling the Turtlebot
robot used in our testbed and experiment. When the participant or the robot makes a new
decision to change the current resource type from one to another, The Resource Manage-
ment Component executes a Java RMI service call to ADE’s Turtlebot component to trigger
its movement. The Resource Management Component also maintains a GUI that serves as
the main JFrame to hold other GUIs, such as the testbed’s Board and MenuBar. Finally,
this component maintains two threads during the task. The first thread updates the testbed
GUlIs, calculates the levels of each resource, and consumes resource blocks as necessary. This
thread runs every 1 second. The second thread is used to call the turtlebot to update the
current resource type to collect based on the resource selection algorithm (and, potentially,
triggers generation of a proactive explanation as described later in this thesis). This thread

updates every 45 seconds.

3.2.2 Board GUI

The Board GUI displays 10 columns and 10 rows. A mouse listener is implemented to

enable a user’s movement by clicking on the screen.
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3.2.3 Board Cell Manager

The BoardCell Manager coordinates with the Board GUI by storing and updating the
information on each board cell, including the resource request blocks contained within the
cell and the color of the cell; yellow if it is the current target, light grey if it is visible but

not the target, and dark grey if it has not yet been revealed, as shown in Figure 3.1.
3.2.4 Resource Manager and Selector

The resource manager and selector maintains the number of collected blocks available for
each resource, automatically collects 5 resources per second for the robot’s currently targeted

resource, and provides the resource selection algorithm described in the previous section.
3.2.5 Resource Monitor

The resource monitor displays the range of collected resources for each type of resource,
and provides buttons for participants to select the resource type to collect. All four buttons
are disabled for three seconds after one of the buttons is pressed, so that the robot has
sufficient time to rotate towards the new block type. Figure 3.1 shows these monitors and
buttons.

In the next section we describe how this resource management testbed is deployed in the

context of a human-subject experiment.
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CHAPTER 4
EXPERIMENT

4.1 Research Goal

The main research goal of our study is to understand the fundamental relationship be-
tween human-robot trust of robots and proactive explanations. Specifically, we seek to assess

the following three hypotheses.

e H1: Robots that generate proactive explanations will be more trusted than robots

that do not.

e H2: There is a negative correlation between monitoring of a robot and human-robot

trust.

e H3: Proactive explanations that explain why a robot is about to perform an action
will have more influence on human-robot trust than proactive explanations that only

inform the participant about the robot’s action.

For the effects of proactive explanations on human-robot trust, we believe that com-
pared with providing no explanations, providing proactive explanations can bring high trans-
parency which can in turn lead to high human-robot trust. Similarly, proactive explanations
with more information give higher level of transparency than proactive explanations with less
details, which we would thus expect to lead to an equivalently higher level of human-robot
trust. Finally, this research seeks to confirm or refute the existence of a negative relationship

between human monitoring of robots and state human-robot trust (cp. [68]).
4.2 Experiment Design

In order to study the effects of robot’s proactive explanations, we designed a human-

subject experiment in which a robot used one of three explanation behaviors:
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1. “‘What’ Proactive explanations (PE1l): During the human-subject experiment,
the robot informed participants of what resource it planned to collect. For example,
a turtlebot robot would tell the player which type of resource will be collected (“I am
going to collect blue resources”). The proactive explanation will provide to the human
player whenever the turtlebot robot decides to change the current collecting resource

type from one to another.

2. “‘Why’ Proactive explanations (PE2): This type of proactive explanation includes
the information of both the next step and the reason behind the future action. For this
study, the turtlebot robot will not only inform its next action but also why it makes
the decision to the participant. For example, the turtlebot robot will explain to the
human player which type of resources and why it picks the resources (“I am going to
collect red resources because you are low on red resources, but it seems that you may
need a lot of them.”). This type of explanation is given to the human teammate when

the turtlebot robot changes the current resource type.

3. No explanations (NE): During the experiment, the turtlebot robot does not provide
any explanation about its decision/action to the human player. This control condition
is used to against other conditions by providing proactive explanations with partial or

full descriptions.

Each participant experienced all three conditions through a within-subjects Latin square
design. Table 4.1 shows the details of the well-designed sequences. Dividing participants
into diverse orders of proactive explanation types allows measuring the changes in trust
among different experiment conditions. One of the main advantages of the application of
this method is to control variation in more than one different directions without a large
number of runs [69]. The expected number of participants for each sequence is 15-20. The
anticipated total number of participants is 45-60. Each participant was randomly assigned

to one of the three conditions.
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Table 4.1: Three Sequences of Different Proactive Explanation Conditions

Sequence 1 (S1) | PE1 | PE2 | NE
Sequence 2 (S2) | NE | PE1 | PE2
Sequence 3 (S3) | PE2 | NE | PE1

For the human-subject experiment, our original plan was to have 45-60 participants. This
human-subject experiment was approved by the Human Subjects Research (HSR) Team at
Colorado School of Mines, with the title: HRI 011: Effects of Proactive Explanation on

human-robot trust.
4.3 Procedure

Participants were recruited through our experiment ad on campus and contacted us to
participate in the experiment. The experiments were performed at Brown hall with a real
robot. Upon arriving at the lab and providing informed consent, participants were guided

through the following experimental phases:

1. Pre-interaction: An introduction session is used to provide the instructions of the ex-
periment to the participant. The participant is invited to experiment with the testbed
and get familiar with the setup of the experiment before he or she starts the testing
session. The participant is asked to fill a trust survey check the participant’s initial
trust of robots as a ground level of trust. The participant is allowed to take unlimited
time to answer the survey. Once he or she finishes the survey, the participant moves

to the next step.

2. First interaction: The participant joins the first experiment session. The experiment
condition is picked from the assigned sequence (Table 4.1). The estimated time for

this session is less than 10 minutes.

3. First post-interaction survey: The participant fills another trust survey to measure the

participant’s trust after the first session. All participants are given enough time to
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answer the questionnaires.

4. Second interaction: Experiment session 2 is the same as the experiment session 1. The

test condition is based on the selected sequence.

5. Second post-interaction survey: Participant trust after the second experiment session

is measured through an additional trust survey.

6. Third interaction: Finally, participants participate in the final experimental condition.

7. Third post-interaction survey: The participant then takes the final trust survey.

8. Explanation and Compensation: The goal of the study is explained to the participant,

who is then paid and thanked.
4.4 Interaction Design

Each experiment session lasted less than 10 minutes, during which participants perform
the resource management task described in Chapter 3. During this task, the robot used the

following exact phrases when generating explanations:

1. Proactive explanations contain partial description to explain the robot’s next action.

I am going to collect red resources.

e [ am going to collect pink resources.

e [ am going to collect orange resources.
e [ am going to collect blue resources.

2. Proactive explanations with full description explain the robot’s next target and the

reason behind its decision.

e [ am going to collect red resources because you are low on red resources, but it

seems that you may need a lot of them.
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e [ am going to collect pink resources because you are low on pink resources, but it

seems that you may need a lot of them.

e [ am going to collect orange resources because you are low on orange resources,

but it seems that you may need a lot of them.

e [ am going to collect blue resources because you are low on blue resources, but it

seems that you may need a lot of them.
4.5 Measures

A 14 item scale [60] is selected for the human-subject experiment to measure the human-
robot trust of the turtlebot robot. During the human-subject experiments, all participants
are asked to fill a trust survey with 14 questions four times. Figure 4.1 displays the trust
survey for the human-subject experiment. The trust survey is stored on Google Drive and
allows a participant to click the click-box to record his or her responses. All participants
were given unlimited time to answer the questionnaire during the experiments. We also
record the amount of time that a user is monitoring a robot as an objective measures for

human-robot trust.
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1 Dependable
2 Reliable
3 Unresponsive
4 Predictable
Act
5 consistently
Function
6 successfully
7 Malfunction
8 Have errors
Provide
9 feedback
Meet the needs
of the
10 mission/task
Provide
appropriate
11 information
Communicate
12 with people
Perform
exactly as
13 instructed
Follow
14 directions

Figure 4.1: 14-Items Trust Survey
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4.6 Turtlebot Robot Setup

The robot was surrounded by four colored resources and turned to face whichever block it
was currently collecting. This allowed the user to identify what resource was currently being
collected by turning around and examining the robot. When the robot is facing one of the
resource types, this indicates the type of resource that is being collected. Two speakers were
placed on the top of the turtlebot to play pre-recorded proactive explanations to participants
during the experiment. All participants were informed that the front face of the turtlebot
robot is where the speaker is pointing. Figure 4.2(a) presents the locations of the turtlebot
robot and the resources in the 2D view. Since the turtlebot robot is surrounded by different
types of resources, the only necessary movement of the robot is to rotate itself to face the
correct resource type.

The turtlebot robot is controlled by the resource management testbed autonomously
during the task. A Thinkpad laptop is connected and carried by the turtlebot. The laptop
runs all the ADE components locally and shares the screen with the participant’s computer
to allow him or her to perform the resource management task and control the turtlebot
remotely.

Figure 4.2 illustrates the relative locations of the robot and four different resources.
Since the location of each resource is fixed during the experiment, we can program the robot
to rotate from the current resource type to the target resource type. For example, when
the type of resources changes from red to pink, the robot will turn 180 degrees clockwise.
The same logic applies to resource type changes for pink-red, orange-blue, and blue-orange.
When the resource type is turned from red to orange, the robot will need to turn 90 degrees
clockwise. For the change from red resources to blue resources, the robot will turn 90 degrees
counterclockwise instead of turn 270 degrees clockwise. The turtlebot robot maintains and

updates the current type of resources before and after it finishes the rotation.
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(a) Turtlebot Robot Setup in the 2D View

(b) Turtlebot Robot Setup With Resources

Figure 4.2: Turtlebot Robot Setup for the Human-subject Experiment
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4.6.1 Experiment Setup

The described experiment required one experimenter, one participant, and one turtlebot
robot. Participants were guided to sit in front of our lab’s desktop. The turtlebot robot and
resource blocks were located behind the participant. The amount of time that the player
was monitoring the turtlebot was recorded by using cameras mounted in the corners of the
laboratory. Figure 4.3(a) presents the positions of participants and the turtlebot robot in
the 2D view. Figure 4.3 presents the general setup of the human-subject experiment in
real-world conditions. Hence, we can easily record the amount of time that the player is
monitoring the turtlebot by using the cameras mounted in the lab. The major advantage of
this setup is that researchers can directly measure participants’ monitoring time by checking

the movement of their upper bodies.
4.7 Results

For this human-subject experiment, I ran a total of 32 participants on campus. The
majority of the participants were university students. 32 experiments were performed and
21 valid datasets were used after removing data from participants who performed actions
that required experimenter intervention (e.g., accidentally closing the testbed window). For
Sequence 1 (PE1-PE2-NE) from Table 4.1, we have 8 valid datapoints. The number of valid
datapoints for Sequence 2 (NE-PE1-PE2) is 6. The last sequence S3 (PE2-NE-PE1) has 7

valid human-subject datapoints.
4.7.1 human-robot trust

Table 4.2 and Table 4.3 present summary statistics on raw survey responses and gain
scores (i.e. per-participant differences from pre-experiment to after each within-subjects
experimental condition) for human-robot trust throughout the experiment. Participants’
gain scores were analyzed using a Bayesian Analysis of Variance, followed by calculation of
Baws scores (Bayes Inclusion Factors on Matched Models). Before presenting the results of

this analysis we briefly explain how to interpret the Bayes Factors produced by this analysis.
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Figure 4.3: Turtlebot Robot Setup for the Human-subject Experiment
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Table 4.2: Reported Human-Robot Trust

95% Credible Interval

N Mean SD SE  Lower Upper
Pre-Interaction 21.000 7.078 1.023 0.223 6.612 7.544
NE 21.000 6.684 1.109 0.242 6.179 7.189
PE1 21.000 7.524 1.042 0.227 7.049 7.998
PE2 21.000 7.844 1.034 0.226 7.373 8.315

Table 4.3: Trust Gain Scores

95% Credible Interval

Trust Gain  Mean SD N Lower Upper
NE -0.395 0.963 21.000 -0.833 0.044
PE1 0.446 1.343 21.000 -0.166 1.057
PE2 0.766 1.446 21.000 0.107 1.424

Bayes factors can roughly be interpreted as ratios of evidence in favor of alternative
hypotheses relative to competing (e.g., null) hypotheses [70]. Bayes factors between 0.33 and
3 are generally taken as anecdotal evidence [71] insufficient to confirm or refute a hypothesis.
Bayes factors between 0.33-0.10 or 3-10, in turn provide substantial evidence against or
for the hypothesis in question; Bayes factors between 0.03-0.10 and 10-30 provide strong
evidence; and Bayes factor less than 0.01 or greater than 100 provide decisive evidence to
assess hypotheses.

As shown in Table 4.4, our analysis provides decisive evidence in favor of an effect of
proactive explanation condition on human-robot trust. Here, the Bayes Factor of 222.649
indicates that the collected data were 222 times more likely to have been generated under
a model accounting for proactive explanation condition than one that does not. To inter-
rogate this difference, we performed post-hoc pairwise comparisons between experimental
conditions.

The results of these pairwise post-hoc analyses are summarized in Table 4.5. As shown

in Figure 4.4(b), our results specifically suggest that the trust gains in the two proactive
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Table 4.4: Bayesian ANOVA Results on Trust Gain Scores

Models P(M) P(M-—data) BFy  BFyo  error %
Null model (incl. subject) 0.500 0.004  0.004 0.004  0.975
trust gain 0.500 0.996 222.649 1.000

Table 4.5: Post Hoc Comparisons of Human-Robot Trust Gain

Prior Odds Posterior Odds BFjoy  error %

NE PE1l 0.587 4578  7.794 0.001
PE2 0.587 24784 42193 1.402e-4
PE1 PE2 0.587 0.742  1.264 7.902¢-4

explanation conditions were greater than in the no explanation condition, with stronger
evidence in favor of significant gains in trust when the robot delivered a proactive explanation
explaining why an action was being taken (PE2, Bf 24.784) than when the robot delivered
a proactive explanation that only explained what action was being taken (PE1, Bf 4.578).
Comparison between these conditions, however, produced weak evidence insufficient to either
confirm or refute a difference between those strategies (Bf 1.264). Overall, these results
strongly suggest that human-robot trust is more likely to increase when robots proactively

explain their actions.

4.7.2 Human Monitoring of Robots

Table 4.6: Percentage of Turn Around Time Data Description

95% Credible Interval

Percentage of Turn Around Mean SD N Lower Upper
Turn Around - NE 4.160 3.052 17.000 2.591 5.729
Turn Around - PE1 3.268 3.158 17.000 1.645 4.892
Turn Around - PE2 2.488 2.925 17.000 0.984 3.991

Participants’ time spent monitoring the robot was assessed by watching the video files

recorded by the camera system mounted in the lab. Unlike the datasets for human-robot
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Figure 4.4: Bayesian ANOVA for Experiment Conditions on human-robot trust Gain
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trust, we have a total of 17 available video recordings, as four video recordings were missing
due to the failure of the camera system. From the 17 video recordings, two types of observa-
tion are measured. The first measurement is the amount of monitoring time, which is when
a participant turns around and checks the condition of the robot. The second measurement
is the number of monitoring of the turtlebot robot for each participant. Table 4.6 presents
the data description of percentage of turn around time. A percentage of turn around time
was calculated by finding the ratio between the amount of monitoring time for a specific

task session and the time that the participant finished the task session.

Table 4.7: Model Comparison of Monitoring Time

Models P(M) P(M-—data) BF, BFy, error %
Null model (incl. subject)  0.500 0.488 0.951 1.000
Percentage of Turn Around 0.500 0.512 1.051 1.051 0.803

As shown in Table 4.7, our data analysis provides anecdotal evidence in favor of an effect
of proactive explanations on the percentage of monitoring time. The Bayes Factor of 1.051
suggests the collected data were only 1 times more likely to have been generated under a
model with proactive explanation condition the the model without proactive explanation

condition. Post-hoc pairwise comparisons were performed between experimental conditions.

Table 4.8: Post Hoc Comparisons of Monitoring Time

Prior Odds Posterior Odds BFjoy  error %

Turn Around - NE  Turn Around - PE1 0.587 0.258 0.440 6.640e-4
Turn Around - PE2 0.587 13.766 23.436 5.425e-5
Turn Around - PE1  Turn Around - PE2 0.587 0.215 0.366 0.003

Table 4.7 presents the results of these pairwise post-hoc analyses. As shown in Fig-
ure 4.5(b), our results suggest that percentage of monitoring time in the proactive explana-

tions conditions had a larger value than in the condition of no explanation. However, the
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Bayes Factor of 0.440 suggests anecdotal evidence to either confirm or refute a difference be-
tween percentage of monitoring time between in the no explanation condition and proactive
explanation explaining what action was being taken by a robot. The Bayes Factor of 23.436
proposes strong evidence in favor of increase in percentage of human monitoring when the
robot provides a ‘why’ proactive explanation (PE2, Bf 23.436) than when the robot gave
no proactive. Comparison between two proactive explanation conditions suggested weak
evidence to either confirm or refute a difference between percentage of monitoring time be-
tween when the robot delivered a ‘what’ proactive explanation and when the robot delivered
a ‘why’ proactive explanation. In conclusion, these results cannot confirm or refute that hu-
man monitoring of a robot is more likely to increase when robots gives proactive explanations

explaining what action was being taken.

Table 4.9: Turn Around per Second Data Description

95% Credible Interval

Turn Around per Second Mean SD N Lower Upper
NE 0.026 0.019 17.000 0.017 0.036
PE1 0.021 0.018 17.000 0.012 0.030
PE2 0.016 0.018 17.000  0.007 0.025

Table 4.10: Bayesian ANOVA Results on Turn Around per Second

Models P(M) P(M—data) BF, BFjy error %
Null model (incl. subject) 0.500 0.435 0.771 1.000
Turn Around per Second  0.500 0.565 1.298 1.298 0.498

Table 4.9 presents summary statistics on the number of turn around per second through-
out the experiment. As shown in Table 4.10, the Bayes Factor of 1.298 proposes anecdotal
proof for the role of proactive explanations in turn around per second. The Bayes Factor of
1.298 suggests that the collected data were only 1 times more likely to have been generated

under a model considering proactive explanation conditions than one that does not. Post-hoc
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Figure 4.5: Bayesian ANOVA for Experiment Conditions on Monitoring Time
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pairwise comparisons between experimental conditions are provided in the following table.

Table 4.11: Post Hoc Comparisons of Turn Around per Second

Prior Odds Posterior Odds BFoy  error %

NE PEl 0.587 0.343  0.583 0.002
PE2 0.587 3.130  5.328 1.591e-4

PE1 PE2 0.587 0.222  0.377 0.002

The results of these pairwise post-hoc analyses are summarized in Figure 4.6(b). As

shown in Figure 4.6(b), our results specifically suggest that turn around per second when a

robot provided proactive explanations explaining why an action was being taken (PE2, Bf

5.328) was less than in the no explanation condition. The Bayes Factor of 0.583 suggested

weak evidence insufficient to either confirm or refute a difference of turn around per second

when the robot delivered a ‘what’ proactive explanation. Comparison of turn around per

second in the two proactive explanation conditions suggested anecdotal evidence to either

confirm or refute that there is a difference of the turn around per second between those

strategies (Bf 0.377). Overall, these results weakly suggests that humans’ turn around per

second is more likely to decrease when robots proactively explain their actions.

4.7.3 Monitoring vs Trust

Table 4.12: Bayesian Pearson Correlation Between Monitoring and Human-Robot Trust

BFi
Trust Gain -  Percentage of Monitoring -0.276 1.128
- #Turn Around per Second -0.217 0.544

As shown in Table 4.12, our results failed to either confirm or refute either the relationship

between percentage of time spent monitoring the robot’s behavior and human-robot trust

(Bf 1.128), or a relationship between turns per second and human-robot trust (Bf 0.544).
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CHAPTER 5
DISCUSSION

Our first experimental hypothesis was that proactive explanations would increase human-
robot trust relative to when no explanation was given (H1). Our results confirm H1, clearly
showing that human-robot trust gain is larger when proactive explanations are presented
than the trust gain when no explanations are offered. In other words, proactive explanations
provided by a robot to its human teammate can increase the human-robot trust of the
robot within a human-robot team. This finding is consistent with the findings from previous
studies, which suggested that verbal communication can in general serve to increase the
level of transparency for human-robot interaction [9, 11]. Verbal communications, such
as the proactive explanations in this study, are able to promote appropriate human-robot
trust by maintaining an appropriate level of transparency [8]. Accordingly, the fundamental
finding from our investigation reconfirms these findings from previous research. Another
advantage of giving proactive explanations is to make humans feel that they work in a team.
Anecdotally, several times during the human-subject study, the participants discussed that
the task sessions with proactive explanations made them believe they work with a teammate
instead of a tool, whereas when the turtlebot robot provided no explanation, participants
felt the robot was more like a tool. This is a positive result given the research of Billings
et al. [4], which suggests that people should treat robots as real teammates instead of tools
to have an effective interaction.

The second hypothesis was that proactive explanations would decrease humans’ monitor-
ing relative to when no explanation was given (H2). Our results fail to confirm a correlation
between human monitoring and different type of proactive explanations. However, our re-
sults (Table 4.8) provide strong evidence that the percentage of monitoring time for PE2

is less than the percentage of turn around time for NE (Bf 23.436). For turn around per
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second, we have the same finding, which indicates that participants are more likely to turn
around less for experiment conditions of PE2 than the task sessions with no proactive expla-
nations. We had discussed this phenomenon with a few participants at the very end of their
experiments. They explained the reason to why they checked more frequently when there
were no proactive explanations. When the robot provided proactive explanations, they could
gain information about the robot from the explanations. For the experiment conditions of
no explanations, they had to turn around to check the robot’s status. More data will be
needed to confirm the correlation between human monitoring and proactive explanations. In
addition to understanding the influence of proactive explanations on human monitoring, we
wish to determine the relationship between human monitoring of an autonomous system and
human-robot trust. Earlier work in human-automation interaction proposed an inverse cor-
relation between the amount of time to monitor an automaton and human-robot trust [72].
Our results, however, failed to either confirm or refute this previously observed relationship.
Therefore, there is no evidence to confirm or refute our second hypothesis.

The third hypothesis was that ‘why’ proactive explanations would more greatly increase
human-robot trust relative to ‘what’ proactive explanations (H3). Our results provided only
anecdotal evidence that the level of human-robot trust was higher when a robot delivered
proactive “why” explanations (PE2) than when it delivered only proactive “what” explana-
tions (PE1). Hence, we can either confirm or refute H3 based on our current data analysis,
suggesting the need for more data collection. Anecdotally, several participants, who were
given a short interview after they finished all task sessions, indicated their preferences for
proactive explanations with less information than fully described proactive explanations.
Participants reported that PE2 was wordy and not necessary. This extends previous find-
ings by Stange et al. [73] showing that there are no differences between ‘why’-explanations
and ‘what’-explanations on increasing the robot’s understandability or desirability. This

conclusion can be used to explain our findings.
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CHAPTER 6
CONCLUSION

In this work, we conducted a human-subject study to better understand the relationship
between human-robot trust and robots’ proactive explanations. Our results suggested that
proactive explanations lead to increased human-robot trust. Our results failed to confirm
or refute, however, any relationship between human monitoring of robots and human-robot
trust, or any difference in effectiveness between proactive explanations that explain why
a robot is about to perform an action and proactive explanations that only inform the
participant about the robot’s action itself. Additional data will be needed to either confirm
or refute these latter two relationships.

Our results suggest that to increase human-robot trust, robot designers need to design
robots that are able to provide appropriate proactive explanations. However, it is not clear
what factors may dictate when and how often such explanations should be generated. In
future research, it may thus be important to study, for example, the impact of proactive
explanations on teammates’ mental workload, and to design communication policies for

autonomously deciding when to generate proactive explanations on the basis of such factors.
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