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ABSTRACT
This paper describes early work in the intersection of Mixed Reality
for Human-Robot Interaction and Brain-Computer Interface fields.
Our research seeks to answer these two questions: (1) How do differ-
ent types of mental workload impact the effectiveness of different
robot communication modalities? (2) How can a robot select the
effective communication modality given information regarding its
human teammate’s level and type of mental workload?
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1 INTRODUCTION AND BACKGROUND
Mixed reality technologies that integrate virtual objects into the
physical world have sparked research interest in the Human-Robot
Interaction (HRI) community [13] because they enable better ex-
change of information between people and robots, in order to im-
prove shared mental models, calibrated trust, and situation aware-
ness [10]. Consider a scenario presented in [14] that involves a
human teammate and an armless robot like a wheelchair or drone.
While mounting arms on these robots can be mechanically infeasi-
ble or cost-intensive, mixed reality visualizations of robot arms can
simply and cheaply enable these robots to gesture as they have a
physical arm. Previous work established a taxonomy of such forms
of mixed reality deictic gesture, including physical gestures, aug-
mented reality (AR) annotations, and combinations thereof [12, 14]:

• Egocentric gestures: Physical gestures performed by the
speaker.

• Allocentric gestures: AR gestures annotating the speaker’s
target referent from the addressee’s perspective (e.g., an AR
circle or arrow drawn around or pointing to an object).

• Perspective-free gestures: Gestures that change how all ob-
servers perceive theworld, that are not tied to the perspective
of any one agent (e.g., projecting a light on an object).
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• Ego-sensitive allocentric gestures: AR gestures indicating
the speaker’s referent within the addressee’s perspective but
performed as if generated from the speaker’s perspective
(e.g., a robot pointing with a simulated AR arm).

• Ego-sensitive perspective free gestures: Gestures that change
how all observers perceive the world, but that are performed
as if generated from the speaker’s perspective (e.g., project-
ing an arrow from the robot to its referent).

Hirshfield et al. [3] suggest several contextual factors that may
influence the scenarios in which mixed reality deictic gestures can
become helpful to human teammates: teammates’ cognitive load
may dictate whether they are capable of accepting new informa-
tion; and their auditory and visual perceptual load may dictate
the most effective modality to accompany or replace natural lan-
guage. These neural correlates of cognitive and perceptual states
can be collected using a neurophysiological sensor such as func-
tional Near-Infrared Spectroscopy (fNIRS). fNIRS, a lightweight and
non-invasive device, is gaining popularity in the Human-Computer
Interaction community [9], as it offers several advantages over
other brain-computer interface (BCI) technologies such as greater
spatial resolution, higher signal-to-noise ratio, and better practical-
ity for use in normal working conditions [8]. While there has been
some work combining AR and neurophysiological technologies
like the electroencephalography (EEG) [2], to our knowledge, there
has been no previous attempt to combine these technologies in
the context of human-robot communication. Our work seeks to
integrate mixed reality and fNIRS technologies to inform real-time
adaptation of robots’ deictic language and mixed reality gestures,
in order to answer the following key research questions:

(1) How do different types of mental workload impact the effec-
tiveness of different robot communication modalities?

(2) How can a robot select the effective communicationmodality
given information regarding its human teammate’s level and
type of mental workload?

2 CURRENTWORK
2.1 System Architecture

Figure 1: System architecture.

We have developed a robust communication interface, as shown
in Figure 1, that enables duplex data transmission among the mixed
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reality headset Microsoft HoloLens, the Pepper robot from SoftBank
Robotics, and the fNIRs system (in progress). Setup involves starting
the WebSocket server on a centralized computer and connecting
with the WebSocket client on the HoloLens side, and with Pepper
and fNIRs ends. After all clients connect to the same WebSocket
server, they are capable of publishing and subscribing to real time
messages to each other via bidirectional connection.

The fNIRS component, developed by our collaborator at a nearby
university, handles raw data from the sensor and outputs a mul-
tilabel vector consisting of four labels (workload, negative affect,
auditory perceptual load, and visual perceptual load) from a multil-
abel long short-term memory (LSTM) classifier every second. These
labels are sent to and processed by the centralized server, which
then communicates the appropriate decision to both the robot and
the mixed reality headset. In the next few weeks, we plan on in-
tegrating all components with the Distributed Integrated Affect
Reflection and Cognition (DIARC) architecture to leverage its affect
processing and deep natural language features [7].

2.2 Experiment
To investigate our two overarching research questions, we are
preparing to run an experiment to explore how human teammates
perceive mixed reality deictic gestures, and how such gestures
interact with the teammates’ perceptual and cognitive load (as
measured with fNIRS). In particular, we are interested in these
effects when allocentric mixed reality deictic gesture is compared
to or paired with complex natural language expressions.

Figure 2: Our experimental setup.

Our experimental design uses a dual-task paradigm oriented
around a tabletop pick-and-place task. Participants view this task
through the Microsoft HoloLens, allowing them to see virtual bins
overlaid over the markers on the table, as well as a panel of blocks
above the table that changes every few seconds (Figure 3). As shown
in Figure 2, the Pepper robot is positioned behind the table, ready
to interact with the participant.

The task consists of a set of 12 within-subject rounds, counterbal-
anced using a Latin square design. Over the course of these rounds,
we systematically vary the communication modalities the robot
uses to refer to target blocks, as well as participants’ expected cog-
nitive and perceptual load, which we manipulate using techniques

such as those proposed by Beck and Lavie [1], who do so by varying
the discriminability between target and distractor stimuli (cp. [4]).

Figure 3: Experiment in progress.

To formulate our hypotheses regarding the effect of communi-
cation strategies on mental workload and vice versa, we refer to
prior theoretical work on human information processing, includ-
ing Multiple Resource Theory [11], the Perceptual Load model [5],
and the Dual-Target Search model [6], which allow us to predict
which type of gesture or visual aid would be most appropriate for
a teammate under various levels of cognitive and perceptual load.

The data from this experiment will help us craft high level de-
sign guidelines regarding use of specific communication modalities
in contexts with specific expected perceptual and cognitive load
profiles. However, a single communication modality is unlikely
to be sufficient in any given context, as these load profiles may
dynamically change within or between tasks. Instead, we argue
that an adaptive system is needed, which can be sensitive to both
the current context and the predicted effect of potential choices of
communication modality. Therefore, we plan on developing such an
adaptive model for communication modality selection using prob-
abilistic modeling techniques such as Markov Decision Processes
(MDP).

Our reward function for this MDP is expected to be informed by
(1) the level of workload the participant is under, (2) the importance
of the participant’s current task in relation to the new task, and
(3) the discriminability that a gesture would have –and that a new
target would have if described through language–with respect to
both the existing visual search target and the distractors.

3 FUTUREWORK
Following these two upcoming studies, we will investigate other
types of visual gestures: Ego-sensitive allocentric gesture and Ego-
sensitive perspective free gesture. Future work will consider (1)
how these visual gestures will be perceived when accompanied by
natural language under different levels of cognitive and perceptual
load; (2) how robots can generate these different gestures so that
they are easily discriminable from both background visual stimuli,
and other task targets; and (3) creating an efficient architecture that
handles high speed data transfer between the neurophysiological
and mixed reality subsystems.
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